
Research Article
Sufficient Descent Polak-Ribière-Polyak Conjugate Gradient
Algorithm for Large-Scale Box-Constrained Optimization

Qiuyu Wang1 and Yingtao Che2

1 College of Software, Henan University, Kaifeng 475000, China
2 College of Mathematics and Information Science, Henan University, Kaifeng 475000, China

Correspondence should be addressed to Qiuyu Wang; wqy@henu.edu.cn

Received 7 December 2013; Accepted 14 February 2014; Published 13 April 2014

Academic Editor: Gaohang Yu

Copyright © 2014 Q. Wang and Y. Che.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A practical algorithm for solving large-scale box-constrained optimization problems is developed, analyzed, and tested. In the
proposed algorithm, an identification strategy is involved to estimate the active set at per-iteration. The components of inactive
variables are determined by the steepest descent method at first finite number of steps and then by conjugate gradient method
subsequently. Under some appropriate conditions, we show that the algorithm converges globally. Numerical experiments and
comparisons by using some box-constrained problems from CUTEr library are reported. Numerical comparisons illustrate that
the proposed method is promising and competitive with the well-known method—L-BFGS-B.

1. Introduction

We consider the box-constrained optimization problem

min
𝑥∈R𝑛

𝑓 (𝑥) , 𝑙 ≤ 𝑥 ≤ 𝑢, (1)

where 𝑓 : R𝑛 → R is continuously differentiable, and 𝑙, 𝑢 ∈
R𝑛 with 𝑙 < 𝑢. The gradient of 𝑓 at 𝑥𝑘 is ∇𝑓(𝑥𝑘) ∈ R𝑛, and its
𝑖th component is∇𝑓

𝑖
(𝑥𝑘) (∈ R) or𝑔𝑘

𝑖
for the sake of simplicity.

We define the feasible region of (1) asΩ; that is,

Ω = {𝑥 ∈ R
𝑛 : 𝑙 ≤ 𝑥 ≤ 𝑢} . (2)

We say that a vector 𝑥 ∈ Ω is a stationary point for problem
(1) if it satisfies

𝑙
𝑖
= 𝑥
𝑖
⇒ ∇𝑓

𝑖
(𝑥) ≥ 0,

𝑙
𝑖
< 𝑥
𝑖
< 𝑢
𝑖
⇒ ∇𝑓

𝑖
(𝑥) = 0,

𝑥
𝑖
= 𝑢
𝑖
⇒ ∇𝑓

𝑖
(𝑥) ≤ 0.

(3)

Problem (1) is very important in practical optimization,
because numerous practical problems can be converted
into this form. In addition, problem (1) is often treated as
a subproblem of augmented Lagrangian or penalty schemes

for general constrained optimization. Hence, the devel-
opment of numerical algorithms to efficiently solve (1),
especially when the dimension is large, is important both
in theory and application. Moreover, the box-constrained
optimization problems have been received much attention in
recent decades. We refer to the excellent paper [1] for a good
review.

Many algorithms for solving this type of problems are
based on active set strategies, for example, [2]. In this class
of methods, a working set is used to estimate the set of active
constraints at the solution and it is updated at per-iteration.
The early active set methods are quite efficient for relatively
lower dimensional problems but are typically unattractive
for large-scale ones [3]. The main reason is that at most
one constraint can be added to or dropped from the active
set at each step. However, this slows down the rate of the
convergence. Based on this consideration, more and more
scholars are engaged in designing active set methods aiming
tomake rapid changes against/from incorrect predictions, for
example, [3–8].

Let Ω = R𝑛. It is clear that problem (1) reduces to the
following unconstrained optimization problem:

min
𝑥∈R𝑛

𝑓 (𝑥) . (4)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 236158, 9 pages
http://dx.doi.org/10.1155/2014/236158

http://dx.doi.org/10.1155/2014/236158

2 Abstract and Applied Analysis

It can be solved by almost any existing effectivemethods such
as the nonlinear conjugate gradient method, limited memory
BFGSmethod, and spectral gradient method.These methods
are much suitable for solving (4) with 𝑛 being assumed to be
large due to their simplicity and low storage requirements.

In conjugate gradient methods scheme, Polak-Ribière-
Polyak (PRP) method is generally believed to be the most
efficient from computation point of view. But its global con-
vergence for nonconvex nonlinear function is still uncertain
[9]. To overcome this shortcoming, various techniques have
been proposed. In particular, Zhang et al. [10] introduced a
modified MPRP method in which the generated direction is
descent independent of line search rule [11]. Global conver-
gence is guaranteed by means of a variation of the Armijo-
like line search strategy of Grippo and Lucidi [12]. Moreover,
MPRP is also considered to be competent to solve the box-
constrained optimization problem (1) based on projected
gradient techniques [13]. However, to the best of our knowl-
edge, papers on nonlinear conjugate gradient for solving box-
constrained minimization problems are relatively fewer.

In this paper, from a different point of view, we further
study the applications of theMPRPmethod in [10] for solving
box-constrained minimization problems. First, motivated
by the work of Facchinei et al. [3], we estimate a lower
dimensional free subspace at per-iteration, which has the
potencies of being numerically cheaper when applied to solve
large-scale problems. The search direction at per-iteration
consists of two parts: some of the components are defined
simply; the others are determined by the nonlinear gradient
method. The remarkable feather of the proposed method is
that all the generated points are feasible without requiring
gradient projection. Under some appropriate conditions,
we show that the method converges globally. We present
experimental results comparing the developed method with
the well-known algorithm L-BFGS-B.

The paper is organized as follows. For easy comprehen-
sion of the proposed algorithm, we briefly recall an active
set identification technique and then state the steps of our
new algorithm in Section 2. In Section 3, we show that the
proposed method converges globally. In Section 4, we test
the performance of the algorithm and do some numerical
comparisons. Finally, we draw some conclusions in Section 5.
In the rest of this paper, the symbol ‖ ⋅‖ denotes the Euclidean
norm of vectors.

2. Motivation and Algorithm

In this section, we introduce a new algorithmwhich is defined
by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼
𝑘
𝑑𝑘, (5)

where𝑑𝑘 is a search direction and𝛼
𝑘
is the corresponding step

length. To construct our algorithm, throughout this paper, we
assume that the following assumptions hold.

Assumption 1. The level setF = {𝑥 ∈ R𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)}∩Ω
is compact.

Assumption 2. In some neighborhood N of F, the gradient
∇𝑓(𝑥) is Lipschitz continuous; that is, there exists a constant
L > 0 such that

∇𝑓 (𝑥) − ∇𝑓 (𝑦)
 ≤ L

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ N. (6)

Assumption 3. Strict complementarity condition holds at 𝑥;
that is, the strict inequalities hold in the first and the last
implications of (3).

In [3], Facchinei et al. presented an active set Newton
algorithm for solving problem (1). Their algorithm possesses
some favorable properties, such as fast local convergence
and feasibility of all iterations. In addition, only a lower
dimensional quadratic program subproblem needs to be
solved at per-iteration. We now simply recall the active
set identification technique in [3]. Let 𝑎

𝑖
(𝑥) and 𝑏

𝑖
(𝑥) be

nonnegative continuous and bounded functions defined on
Ω, such that if 𝑥

𝑖
= 𝑙
𝑖
or 𝑥
𝑖
= 𝑢
𝑖
, then 𝑎

𝑖
(𝑥) > 0 or 𝑏

𝑖
(𝑥) > 0,

respectively. For any 𝑥 ∈ Ω, define the index set 𝐿(𝑥), 𝐹(𝑥)
and 𝑈(𝑥) as

𝐿 (𝑥) = {𝑖 : 𝑥
𝑖
≤ 𝑙
𝑖
+ 𝑎
𝑖
(𝑥) ∇𝑓

𝑖
(𝑥)} ,

𝑈 (𝑥) = {𝑖 : 𝑥
𝑖
≥ 𝑢
𝑖
+ 𝑏
𝑖
(𝑥) ∇𝑓

𝑖
(𝑥)} ,

𝐹 (𝑥) = {1, . . . , 𝑛} \ (𝐿 ∪ 𝑈) .

(7)

The set 𝐿(𝑥) ∪ 𝑈(𝑥) is an estimate of the active set at point
𝑥. Facchinei et al. [3] showed that with Assumption 3, when
𝑥 is sufficiently close to 𝑥, the index set 𝐿(𝑥) ∪ 𝑈(𝑥) is an
exact identification of 𝐿(𝑥) ∪ 𝑈(𝑥). This property will enable
us to find the active set at the stationary point 𝑥 in a finite
number of steps. This active set identification technique (7)
has motivated much additional studies on box-constrained
optimization problems, for example, [14–18].

Using the active set estimation technique in (7), we
deduce the search direction used in our algorithm in detail
now. For the sake of simplicity, let 𝐿𝑘 = 𝐿(𝑥𝑘), 𝑈𝑘 =

𝑈(𝑥𝑘), 𝐹𝑘 = 𝐹(𝑥𝑘), and let | ⋅ | be the number of elements
in the corresponding vector let 𝑍

𝑘
be the matrix whose

columns are {𝑒
𝑖
: 𝑖 ∈ 𝐹𝑘}, where 𝑒

𝑖
is the 𝑖th column of the

identity matrix. Additionally, we denote, respectively, the 𝑖th
component of 𝑥𝑘 and 𝑑𝑘 by 𝑥𝑘

𝑖
and 𝑑𝑘

𝑖
.

Let 𝑑𝑘 ∈ R𝑛, in which

𝑑𝑘
𝑖
= 𝑙
𝑖
− 𝑥𝑘
𝑖
, 𝑖 ∈ 𝐿𝑘,

𝑑𝑘
𝑖
= 𝑢
𝑖
− 𝑥𝑘
𝑖
, 𝑖 ∈ 𝑈𝑘.

(8)

Now, we restrict our attention to define components with
index 𝑖 ∈ 𝐹𝑘. Let

𝑑𝑘 =
{{
{{
{

−𝑔0, if 𝑘 = 0,
−𝑔𝑘, if 𝑘 > 0, 𝐹𝑘 ̸= 𝐹𝑘−1,

−𝑔𝑘 + 𝛽
𝑘
𝑑𝑘−1 − 𝜃

𝑘
𝑦𝑘−1, if 𝑘 > 0, 𝐹𝑘 = 𝐹𝑘−1,

(9)

where

𝛽
𝑘
=
(𝑔𝑘)
⊤

𝑦𝑘−1

𝑔
𝑘−1

2
, 𝜃

𝑘
=
(𝑔𝑘)
⊤

𝑑𝑘−1

𝑔
𝑘−1

2
, (10)

Abstract and Applied Analysis 3

in which 𝑔𝑘 = 𝑍⊤
𝑘
𝑔𝑘, 𝑔𝑘−1 = 𝑍⊤

𝑘
𝑔𝑘−1, and 𝑦𝑘−1 = 𝑔𝑘 − 𝑔𝑘−1.

Clearly, 𝑑𝑘 ∈ R|𝐹
𝑘

| and therefore 𝑍
𝑘
𝑑𝑘 ∈ R𝑛. It is not difficult

to see that the definition of the search direction 𝑑𝑘 ensures
the sufficient descent property; that is

(𝑔𝑘)
⊤

𝑑𝑘 = −
𝑔
𝑘

2

. (11)

The definition of the search direction (9) was designed by
Zhang et al. [10] in full spaceR𝑛. Here, it is stated for slightly
different circumstances, but it is easy to verify that it is still
valid in our context.

In order to guarantee the feasibility of all iterations and
the descent of the objective function at each iteration, we
define the positive scalar 𝜉∗

𝑘
by

𝜉∗
𝑘
= max {𝜉 | 𝜉 ≤ 1, 𝑙

𝑖
− 𝑥𝑘
𝑖
≤ 𝜉(𝑍

𝑘
𝑑𝑘)
𝑖

≤ 𝑢
𝑖
− 𝑥𝑘
𝑖
, 𝑖 ∈ 𝐹𝑘} .

(12)

Note that when the strict complementarity condition holds
and 𝑙 < 𝑥 < 𝑢, then 𝜉∗

𝑘
is always well defined unless the

stationary point is achieved. Combining with (8) and (9), the
compact form of 𝑑𝑘 can be rewritten as

𝑑𝑘
𝑖
=
{{
{{
{

𝑙
𝑖
− 𝑥𝑘
𝑖
, 𝑖 ∈ 𝐿𝑘,

𝑢
𝑖
− 𝑥𝑘
𝑖
, 𝑖 ∈ 𝑈𝑘,

𝜉∗
𝑘
(𝑍
𝑘
𝑑𝑘)
𝑖

, 𝑖 ∈ 𝐹𝑘.

(13)

Remark 4. Observe that the search direction of inactive vari-
ables in (9) contain both gradient and direction information
at the current or the previous steps, while the set of inactive
variables might be changed as the iteration progresses. In
particular, the sets 𝐹𝑘−1 and 𝐹𝑘 might not be the same. In this
situation, we set 𝑑𝑘−1 = −𝑔𝑘−1, that is, a negative gradient
direction. Otherwise, we use the conjugate gradient formula
to update the search direction in the free subspace.

Remark 5. Considering the case when the current iteration
𝑥𝑘 is still not an optimal point, the value of 𝑔𝑘 might be
sufficiently small. In this case, for practical purpose, it might
be efficient to restrict ‖𝑔𝑘‖ bounded from zero.

To list our algorithm in detail, we first show some
useful properties of the direction. The following result shows
that whenever 𝑑𝑘 ̸= 0, it is a descent direction for objective
function𝑓 at current point𝑥𝑘.The property is very important
to our algorithm.

Lemma 6. If 𝑑𝑘 is attained by (13), it satisfies

(𝑔𝑘)
⊤

𝑑𝑘 ≤ 0, (14)

and the equality holds if and only if 𝑑𝑘 = 0.

Proof. By the definition of search direction 𝑑𝑘, we have

(𝑑𝑘)
⊤

𝑔𝑘 = ∑
𝑖∈𝐿
𝑘

(𝑙
𝑖
− 𝑥𝑘
𝑖
) 𝑔𝑘
𝑖

+ ∑
𝑖∈𝑈
𝑘

(𝑢
𝑖
− 𝑥𝑘
𝑖
) 𝑔𝑘
𝑖
−
𝑍
⊤

𝑘
𝑔𝑘

2

≤ 0.

(15)

The above relation can be easily obtained from the definition
of the direction 𝑑𝑘 in (13). Notice that the strict complemen-
tary condition holds, which shows (𝑑𝑘)⊤𝑔𝑘 = 0 if and only if
𝑑𝑘 = 0.

As an immediate consequence of the definition of the
search direction, we have the following fact.

Lemma 7. Let 𝑑𝑘 be determined by (13) and assume that
𝑑𝑘 ̸= 0; then,

𝑥𝑘 + 𝑑𝑘 ∈ Ω. (16)

The above lemma shows that for all 0 ≤ 𝛼 ≤ 1 such that

𝑃
Ω
(𝑥𝑘 + 𝛼𝑑𝑘) = 𝑥𝑘 + 𝛼𝑑𝑘. (17)

Since the search direction 𝑑𝑘 has been computed, a step
length 𝛼

𝑘
∈ (0, 1] ought to be determined in order to

obtain the next iteration as (5). In this paper, we consider
a backtracking line search procedure, where a decreasing
sequence of {𝜌𝑗} is tried until the smallest 𝑗

𝑘
is found which

satisfies

𝑓 (𝑥𝑘 + 𝜌𝑗𝑑𝑘) ≤ 𝑓 (𝑥𝑘) − 𝛿
𝜌
𝑗𝑑𝑘

2

, (18)

where 𝜌 ∈ (0, 1), 𝛿 ∈ (0, 1/2). Then a step length is accepted
corresponding to 𝛼𝑘 = 𝜌𝑗𝑘 .

We are now ready to formally state the overall algorithm
for solving the box-constrained optimization problems (1) as
follows.

Algorithm 8 (SDPRP). The steps of the algorithm is given as
follows.

Step 0. Given starting point 𝑥0 ∈ Ω, constants 𝛿 ∈ (0, 1/2),
𝜌 ∈ (0, 1) and 𝑔max > 𝑔min > 0. Set 𝑘 := 0.

Step 1. Determine 𝐿𝑘, 𝑈𝑘, and 𝐹𝑘 according to (7).

Step 2. If 𝐹𝑘 ̸= 𝐹𝑘−1, set 𝑑𝑘 = −𝑔𝑘. Otherwise, set

𝑔
𝑘−1

2

= min {𝑔max,max {𝑔min,
𝑔
𝑘−1

2

}} . (19)

Determine 𝑑𝑘 by (13).

Step 3. If 𝑑𝑘 = 0, then stop.

Step 4. Find the smallest integer 𝑗 (say 𝑗
𝑘
) satisfying (18). Let

𝛼
𝑘
= 𝜌𝑗𝑘 .

Step 5. Set 𝑥𝑘+1 := 𝑥𝑘 + 𝛼
𝑘
𝑑𝑘.

Step 6. Let 𝑘 := 𝑘 + 1, go to Step 1.

Remark 9. Now suppose that the active sets have been
identified after a finite number of steps; then, we have 𝑑𝑘

𝑖
= 0

for all 𝑖 ∈ 𝐿𝑘 ∪ 𝑈𝑘 and 𝑑𝑘
𝑖
= 𝜉∗
𝑘
(𝑍
𝑘
𝑑𝑘)
𝑖
for all 𝑖 ∈ 𝐹𝑘. If 𝛼

𝑘
̸= 1,

4 Abstract and Applied Analysis

by the line search process, we know that 𝛼
𝑘
= 𝜌−1𝛼

𝑘
does not

satisfy (18). That is,

𝑓 (𝑥𝑘 + 𝜌−1𝛼
𝑘
𝑑𝑘) − 𝑓 (𝑥𝑘) > −𝛿𝜌−2𝛼2

𝑘

𝑑
𝑘

2

. (20)

By themean-value theorem, there is a 𝜁
𝑘
∈ (0, 1) such that

𝑓 (𝑥𝑘 + 𝜌−1𝛼
𝑘
𝑑𝑘) − 𝑓 (𝑥𝑘)

= 𝜌−1𝛼
𝑘
𝑔(𝑥𝑘 + 𝜁

𝑘
𝜌−1𝛼
𝑘
𝑑𝑘)
⊤

𝑑𝑘

= 𝜌−1𝛼
𝑘
(𝑔𝑘)
⊤

𝑑𝑘

+ 𝜌−1𝛼
𝑘
[𝑔 (𝑥𝑘 + 𝜁

𝑘
𝜌−1𝛼
𝑘
𝑑𝑘) − 𝑔𝑘]

⊤

𝑑𝑘

≤ 𝜌−1𝛼
𝑘
(𝑔𝑘)
⊤

𝑑𝑘 +L𝜌−2𝛼2
𝑘

𝑑
𝑘

2

,

(21)

whereL is the Lipschitz constant. It follows from [10, Lemma
3.1] that there exists a positive constant 𝑀 such that ‖𝑑𝑘‖ ≤
𝑀. Substituting the above inequality into (20), we have

𝛼
𝑘
≥

𝜌

L + 𝛿

(𝑔𝑘)
⊤

𝑑𝑘

𝑑
𝑘

2

=
𝜌

L + 𝛿

𝑔
𝑘

2

𝑑
𝑘

2
≥

𝜌

𝑀(L + 𝛿)

𝑔
𝑘

2

.

(22)

It follows that when ‖𝑔𝑘‖
2

̸= 0, the line search step is well
defined, so is the whole algorithm.

3. Convergence Analysis

In this section, we show that Algorithm 8. converges globally.
The following lemma gives a sufficient and necessary condi-
tion for the global convergence of Algorithm 8.

Lemma 10. Let {𝑥𝑘} be a sequence of iterations generated by
Algorithm 8, and let 𝑑𝑘 be a search direction defined by (13).
Then 𝑥𝑘 is a stationary point of (1) if and only if 𝑑𝑘 = 0.

Proof. Let 𝑑𝑘 = 0. If 𝑖 ∈ 𝐿𝑘, then we have

0 = 𝑑𝑘
𝑖
= 𝑙
𝑖
− 𝑥𝑘
𝑖
≥ −𝑎
𝑖
(𝑥𝑘) ∇𝑓

𝑖
(𝑥𝑘) . (23)

Since 𝑥𝑘
𝑖
= 𝑙
𝑖
and 𝑎

𝑖
(𝑥𝑘) > 0, the right inequality implies

∇𝑓
𝑖
(𝑥𝑘) ≥ 0. If ∈ 𝑈𝑘, we will prove it similarly. And if ∈ 𝐹𝑘,

we can get from (11) that ∇𝑓
𝑖
(𝑥𝑘) = 0. Now suppose that 𝑥𝑘 is

a stationary point of (1); it gets from (3) and (7) that

𝐿𝑘 = {𝑖 : 𝑥𝑘
𝑖
= 𝑙
𝑖
} ,

𝐹𝑘 = {𝑖 : 𝑙
𝑖
< 𝑥𝑘
𝑖
< 𝑢
𝑖
} ,

𝑈𝑘 = {𝑖 : 𝑥𝑘
𝑖
= 𝑢
𝑖
} .

(24)

Then it follows from (9) and (11) that 𝑑𝑘
𝐿
𝑘
= 0, 𝑑𝑘

𝑈
𝑘
= 0 and

𝑑𝑘
𝐹
𝑘
= 0. Therefore 𝑑𝑘 = 0.

Lemma 11. Let {𝑥𝑘} be a sequence of iterations generated
by Algorithm 8 and let 𝑑𝑘 be a search direction defined by
(13). Suppose that there are subsequences {𝑥𝑘}K → 𝑥 and
{𝑑𝑘}K → 0 as 𝑘 → ∞. Then 𝑥 is a stationary point of
problem (1).

Proof. Since the number of distinct sets𝐿𝑘,𝑈𝑘, and𝐹𝑘 is finite
and Assumptions 1–3 hold, Assumption 3 ensures that there
exists 𝑘

0
such that for all 𝑘 > 𝑘

0
[3],

𝐿𝑘 = 𝐿, 𝑈𝑘 = 𝑈, 𝐹𝑘 = 𝐹. (25)

Since {𝑥𝑘} ⊆ F, we obviously have

𝑙 ≤ 𝑥 ≤ 𝑢. (26)

Furthermore, the fact that {𝑑𝑘
𝐿
}K → 0 and {𝑑𝑘

𝑈
}K → 0

implies

𝑥
𝐿
= 𝑙
𝐿
, ∇𝑓

𝐿
(𝑥) ≥ 0,

𝑥
𝑈
= 𝑢
𝑈
, ∇𝑓

𝑈
(𝑥) ≤ 0.

(27)

The proof of ∇𝑓
𝐹
(𝑥) = 0 can be obtained once we notice that

(11) and 𝑑𝑘
𝐹
𝑘
→ 0 as 𝑘 → ∞.

The similar proof of Lemmas 10 and 11 can also be found
in [3]. To end of this section, now we are ready to establish
global convergence of Algorithm 8.

Theorem 12. Suppose that Assumptions 1–3 hold. Then the
sequence {𝑥𝑘} generated by Algorithm 8 has at least a limit
point, and every limit point of this sequence is a stationary point
of problem (1).

Proof. It easily follows from Lemma 7 that the sequence {𝑥𝑘}
of points generated by the Algorithm 8 is contained in the
compact set F. Hence, by Assumption 1, there exists at least
a limit point of this sequence.

If the sequence {𝑥𝑘} is finite with last point 𝑥, then, by
Lemma 10, 𝑥 is a stationary point of problem (1). So we
assume that the sequence is infinite.

Regarding the first part of proof in Lemma 11, 𝐿𝑘,𝑈𝑘, and
𝐹𝑘 are constants starting from some iteration index 𝑘

0
; that

is,

𝐿𝑘 = 𝐿, 𝑈𝑘 = 𝑈, 𝐹𝑘 = 𝐹. (28)

It is easy to see that

𝑑𝑘
𝑖
= 𝑙𝑘
𝑖
− 𝑥𝑘
𝑖
= 0, ∀𝑖 ∈ 𝐿𝑘,

𝑑𝑘
𝑖
= 𝑢𝑘
𝑖
− 𝑥𝑘
𝑖
= 0, ∀𝑖 ∈ 𝑈𝑘,

(29)

as 𝑘 → ∞. Now, it remains to prove 𝑑𝑘
𝑖
→ 0 (𝑖 ∈ 𝐹𝑘) as

𝑘 → ∞. According to the global convergence theorem in
[10], we have

lim inf
𝑘→∞

𝑔
𝑘

𝑖

 = 0, ∀𝑖 ∈ 𝐹𝑘. (30)

Abstract and Applied Analysis 5

By the definition of 𝑑
𝑘
in (9), it is equivalent to

lim inf
𝑘→∞

𝑑
𝑘

𝑖

 = 0, ∀𝑖 ∈ 𝐹𝑘. (31)

It follows from (29) and (31) that {𝑑𝑘}
𝑘∈K → 0, which shows

our claims by Lemma 11. The proof is complete.

4. Numerical Experiments

Now, let us report some numerical results attained by our
Sufficient Descent Polak-Ribière-PolyakAlgorithm—SDPRP.
The algorithm is implemented by Fortran77 code in double
precision arithmetic. All experiments are run on a PC with
CPU Intel Pentium Dual E2140 1.6GHz, 512M bytes of
SDRAMmemory, and Red Hat Linux 9.03 operating system.
Our experiments are performed on a set of the nonlinear
box-constrained problems from the CUTEr [19] library that
have second derivatives available. Since we are interested
in large problems, we refine this selection by considering
only problems where the number of variables is at least
50. Altogether, we solve 54 problems. The type of objective
function and the character of the problems being tested are
listed in Table 1.

In the experiments, for easily comparing with other
codes, we use the projected gradient errors to measure the
quality of the solutions instead of ‖𝑑𝑘‖; that is, we force the
iteration stopped when

𝑃Ω(𝑥
𝑘 − ∇𝑓(𝑥𝑘)) − 𝑥𝑘

∞ ≤ 10−5, (32)

where 𝑃
Ω
(⋅) is the projected gradient of objective function

and ‖ ⋅ ‖
∞

denotes the maximum absolute component of
a vector. Clearly, the stopping criteria (32) are equivalent
to ‖∇𝑓(𝑥𝑘)‖

∞
≤ 10−5 in our method. We also stop the

execution of SDPRP when 10000 iterations or 20000
function evaluations are completed without achieving
convergence. We choose the initial parameters 𝑔min = 10−7,
𝑔max = 1020, 𝜌 = 0.29, and 𝛿 = 10−1. Moreover, we also test
our proposed methods with different parameters 𝑎

𝑖
(𝑥) and

𝑏
𝑖
(𝑥) to see that 𝑎

𝑖
(𝑥) = 𝑏

𝑖
(𝑥) = 10−6‖𝑃

Ω
(∇𝑓(𝑥0)‖ is the best

choice. In order to assess the performance of the SDPRP,
we then test the well-known method L-BFGS-B (available
at http://www.ece.northwestern.edu/∼nocedal/lbfgsb.html)
[20, 21] for comparison.

When running the codes L-BFGS-B, default values are
used for all parameters. For L-BFGS-B, besides (32), the
algorithm has another built-in stopping test based on the
parameter factr. It is designed to terminate the run when
the change in the objective function 𝑓 is sufficiently small.
The default value factr = 1.0d + 7 for moderate accuracy.
Additionally, it can occur sometimes that the line search
cannot make any progress, or the value of Nfg reached a
prefixed number (=10000); in these cases, the run is also
terminated.

The numerical results of the algorithms SDPRP and L-
BFGS-B are listed in Tables 2 and 3, respectively. We used
horizontal lines in both tables to divide the selected problems

Table 1: Problem set according to the CUTEr classification.

Number of sets Objective type Problem character Classification
1 Others Academic OBR2-AN-∗-∗
2 Others Modeling OBR2-MN-∗-∗
3 Others Real application OBR2-RN-∗-∗
4 Sum of squares Academic SBR2-AN-∗-∗
5 Sum of squares Modeling SBR2-AN-∗-∗
6 Quadratic Academic QBR2-AN-∗-∗
7 Quadratic Modeling QBR2-MN-∗-∗
8 Quadratic Real application QBR2-RN-∗-∗
9 Others Modeling OBI2-MY-∗-∗
10 Quadratic Academic QBR2-AY-∗-∗

into 10 classes according to Table 1. The columns in Tables 2
and 3 have the following meanings:

Problem: name of the problem;
Dim: dimension of the problem;
Iter: number of iterations;
Nf: number of function evaluations;
Ng: number of gradient evaluations;
Time: CPU time in seconds;
Fv: final function value;
Pgnorm1: maximum-norm of the final gradient pro-
jection.

The symbol “—” indicates that the CUTEr system
becomes nonrespondent when calculating the corresponding
problem. For L-BFGS-B, we record the number of function
and gradient evaluations Nfg because L-BFGS-B always
evaluates the function and gradient at the same time.

Some general observations on the results in Tables
2 and 3 are the following. From the last column of
Table 3, we see that, for 41 problems, L-BFGS-B has
terminated abnormally without being able to satisfy the
termination condition (32). SDPRP fails to reach a sta-
tionary point based on the stopping criteria (32) only
on the 12 problems: BDEXP, EXPQUAD, SOND1LS,
QR3DLS, BIGGS1, BQPGAUSS, CHENHARK, JNLBRNGB,
NCVXBQP1, ODNAMUR, NCVXBQP2, GRIDGENA. It is
an interesting fact that L-BFGS-B obtains at least as good
function value as SDPRP on some problems but the projected
gradient did not meet the stooping condition. This reason is
not clear as pointed out by Zhu et al. in [21]. In analyzing the
performance of bothmethods on the 13 problems at which at
least onemethodworks successfully, we observe that, on these
problems, L-BFGS-B requires less iterations, less function
evaluations than SDPRP.The sterical data of both algorithms
are summarized in Table 4, where “Scueed” is the number
of successes and “Failure” is the number of failures of tested
problems for both algorithms.

Taking everything together, the preliminary numerical
comparisons indicate that our proposed method is efficient
and competitive with the well-known method L-BFGS-B.

6 Abstract and Applied Analysis

Table 2: Performance of SDPRP.

Problem Dim Iter Nf Time Fv Pgnorm1
SINEALI 1000 19 64 0.030 −0.99860𝐸 + 05 0.54718𝐸 − 05

BDEXP 1000 10001 10003 6.030 0.92538𝐸 − 03 0.13189𝐸 − 04

EXPLIN 120 76 260 0.010 −0.72376𝐸 + 06 0.95740𝐸 − 05

EXPLIN2 120 59 183 0.000 −0.72446𝐸 + 06 0.50532𝐸 − 05

EXPQUAD 120 4007 20001 0.230 −0.36260𝐸 + 07 0.28861𝐸 − 03

MCCORMCK 5000 32 72 0.130 −0.45666𝐸 + 04 0.69662𝐸 − 05

PROBPENL 500 18 173 0.010 0.39919𝐸 − 06 0.71380𝐸 − 05

QRTQUAD 120 949 4240 0.030 −0.36246𝐸 + 07 0.89349𝐸 − 05

S368 100 54 136 0.240 −0.14025𝐸 + 03 0.42537𝐸 − 05

HADAMALS 1024 113 479 0.390 0.30658𝐸 + 05 0.31465𝐸 − 05

SCOND1LS 5002 5061 20001 81.330 0.11463𝐸 + 03 0.10058𝐸 + 00

CHEBYQAD 50 735 4514 6.440 0.53863𝐸 − 02 0.98736𝐸 − 05

HS110 200 1 2 0.000 −0.99601𝐸 + 40 0.00000𝐸 + 00

LINVERSE 1999 1527 1565 2.220 0.68200𝐸 + 03 0.89735𝐸 − 05

NONSCOMP 5000 67 128 0.110 0.23525𝐸 − 10 0.42102𝐸 − 05

QR3DLS 610 2760 20000 5.530 0.17615𝐸 + 00 0.29073𝐸 − 01

DECONVB 61 3353 11830 0.260 0.35269𝐸 − 07 0.95952𝐸 − 05

QUDLIN 5000 1 2 0.00 −0.12500𝐸 + 10 0.00000𝐸 + 00

BIGGSB1 5000 10001 11535 10.93 0.21870𝐸 − 01 0.74163𝐸 − 04

BQPGABIM 50 45 213 0.00 −0.37903𝐸 − 04 0.75229𝐸 − 05

BQPGASIM 50 57 223 0.00 −0.55198𝐸 − 04 0.62637𝐸 − 05

BQPGAUSS 2003 3945 20001 6.78 −0.18077𝐸 + 00 0.98485𝐸 − 01

CHENHARK 5000 6335 20001 9.56 −0.19998𝐸 + 01 0.36782𝐸 − 04

CVXBQP1 10000 14 15 0.05 0.22502𝐸 + 07 0.00000𝐸 + 00

HARKERP2 100 10 47 0.00 −0.50000𝐸 + 00 0.20897𝐸 − 07

JNLBRNG1 10000 4001 7427 38.40 −0.18057𝐸 + 00 0.96930𝐸 − 05

JNLBRNG2 10000 1911 6880 23.35 −0.41486𝐸 + 01 0.85547𝐸 − 05

JNLBRNGA 10000 2182 5955 20.17 −0.27109𝐸 + 00 0.94192𝐸 − 05

JNLBRNGB 10000 4981 20001 54.23 −0.62068𝐸 + 01 0.23366𝐸 − 01

NCVXBQP1 10000 1 2 0.01 −0.19855𝐸 + 11 0.27756𝐸 − 16

NCVXBQP2 10000 3180 20000 16.18 −0.13340𝐸 + 11 0.13402𝐸 + 01

NCVXBQP3 10000 3184 20000 17.11 −0.65583𝐸 + 10 0.92309𝐸 + 01

NOBNDTOR 5476 893 1462 3.54 −0.44993𝐸 + 00 0.51489𝐸 − 05

OBSTCLAE 10000 5261 5794 40.60 0.18865𝐸 + 01 0.97210𝐸 − 05

OBSTCLAL 10000 813 1121 6.29 0.18865𝐸 + 01 0.83060𝐸 − 05

OBSTCLBL 10000 3509 3872 26.90 0.72722𝐸 + 01 0.56157𝐸 − 05

OBSTCLBM 10000 3362 3730 25.97 0.72722𝐸 + 01 0.87301𝐸 − 05

OBSTCLBU 10000 2126 2454 16.71 0.72722𝐸 + 01 0.86796𝐸 − 05

PENTDI 1000 11 22 0.00 −0.75000𝐸 + 00 0.31759𝐸 − 05

TORSION1 10000 1550 2401 12.51 −0.42726𝐸 + 00 0.72463𝐸 − 05

TORSION2 10000 3227 4745 26.11 −0.42725𝐸 + 00 0.90789𝐸 − 05

TORSION3 10000 394 712 3.23 −0.12138𝐸 + 01 0.62159𝐸 − 05

TORSION4 10000 2183 2957 17.40 −0.12138𝐸 + 01 0.76428𝐸 − 05

TORSION5 10000 114 228 1.26 −0.28604𝐸 + 01 0.86795𝐸 − 05

TORSION6 10000 1639 1847 12.37 −0.28604𝐸 + 01 0.54347𝐸 − 05

TORSIONA 10000 1410 2273 13.26 −0.41838𝐸 + 00 0.97648𝐸 − 05

TORSIONB 10000 2662 4351 25.30 −0.41838𝐸 + 00 0.97029𝐸 − 05

TORSIONC 10000 433 747 4.41 −0.12044𝐸 + 01 0.65687𝐸 − 05

TORSIOND 10000 2269 3019 20.06 −0.12044𝐸 + 01 0.69877𝐸 − 05

TORSIONE 10000 97 194 0.95 −0.28507𝐸 + 01 0.68035𝐸 − 05

TORSIONF 10000 1589 1775 13.42 −0.28507𝐸 + 01 0.94166𝐸 − 05

ODNAMUR 11130 10001 16448 44.78 0.11336𝐸 + 05 0.21497𝐸 + 02

GRIDGENA 6218 620 20000 16.58 −0.19243𝐸 + 16 0.99274𝐸 + 01

NOBNDTOR 5476 893 1462 3.69 −0.44993𝐸 + 00 0.51489𝐸 − 05

Abstract and Applied Analysis 7

Table 3: Performance of L-BFGS-B.

Problem Dim Nf Ng Time Fv Pgnorm1
SINEALI 1000 44 44 0.03 −0.9990𝐸 + 05 0.8973𝐸 − 03

BDEXP 1000 18 18 0.01 0.4808𝐸 − 03 0.6140𝐸 − 05

EXPLIN 120 40 40 0.00 −0.5150𝐸 + 08 0.3206𝐸 + 07

EXPLIN2 120 43 43 0.00 −0.7833𝐸 + 08 0.5921𝐸 + 07

EXPQUAD 120 8 8 0.00 −0.3163𝐸 + 07 0.1181𝐸 + 05

MCCORMCK 5000 10150 10150 40.29 −0.1221𝐸 + 12 0.1426𝐸 + 03

PROBPENL 500 4 4 0.00 0.3992𝐸 − 06 0.3071𝐸 − 06

QRTQUAD 120 13349 13349 0.63 −0.3561𝐸 + 08 0.3110𝐸 + 06

S368 100 21 21 0.07 −0.4084𝐸 + 02 0.2220𝐸 + 02

HADAMALS 1024 20 20 0.04 0.3165𝐸 + 05 0.4539𝐸 − 05

SCOND1LS 5002 25 25 0.15 0.6374𝐸 + 05 0.7813𝐸 + 03

CHEBYQAD 50 21 21 0.15 0.1395𝐸 − 01 0.1642𝐸 + 01

HS110 200 21 21 0.02 −0.1478𝐸 + 39 0.3285𝐸 + 37

LINVERSE 1999 195 195 0.32 0.6810𝐸 + 03 0.4605𝐸 − 04

NONSCOMP 5000 42 42 0.09 0.7536𝐸 − 11 0.6216𝐸 − 05

QR3DLS 610 11054 11054 10.24 0.4538𝐸 − 02 0.1914𝐸 − 01

DECONVB 61 291 291 0.02 0.5845𝐸 − 07 0.8405𝐸 − 05

QUDLIN 5000 314 314 0.16 −0.1315 + 301 0.1380 + 151

BIGGSB1 5000 4452 4452 8.36 0.1481𝐸 − 03 0.8917𝐸 − 05

BQPGABIM 50 41 41 0.00 −0.1839𝐸 − 03 0.7289𝐸 − 05

BQPGASIM 50 41 41 0.00 −0.1839𝐸 − 03 0.7289𝐸 − 05

BQPGAUSS 2003 9873 9873 11.62 −0.7222 + 301 0.1179 + 154

CHENHARK 5000 10323 10323 21.54 −0.8985𝐸 + 10 0.1722𝐸 + 03

CVXBQP1 10000 6798 6798 30.27 0.1339𝐸 − 07 0.5419𝐸 − 03

HARKERP2 100 11329 11329 1.26 −0.3318𝐸 + 02 0.3309𝐸 + 00

JNLBRNG1 10000 333 333 2.99 −0.1146𝐸 + 01 0.9604𝐸 − 05

JNLBRNG2 10000 998 998 9.02 −0.1065𝐸 + 03 0.9553𝐸 − 05

JNLBRNGA 10000 440 440 3.60 −0.2179𝐸 + 01 0.7975𝐸 − 05

JNLBRNGB 10000 6375 6375 52.41 −0.9552𝐸 + 03 0.9473𝐸 − 05

NCVXBQP1 10000 21 21 0.03 −0.4922𝐸 + 08 0.5250𝐸 + 05

NCVXBQP2 10000 21 21 0.03 −0.2812𝐸 + 08 0.3750𝐸 + 05

NCVXBQP3 10000 21 21 0.02 0.7034𝐸 + 07 0.3750𝐸 + 05

NOBNDTOR 5476 658 658 2.86 −0.3683𝐸 + 14 0.3672𝐸 + 00

OBSTCLAE 10000 2780 2780 23.21 −0.4897𝐸 + 12 0.1952𝐸 + 00

OBSTCLAL 10000 2274 2274 19.01 −0.4304𝐸 + 12 0.1289𝐸 + 00

OBSTCLBL 10000 4281 4281 35.78 −0.4744𝐸 + 12 0.1875𝐸 + 00

OBSTCLBM 10000 3998 3998 33.56 −0.5849𝐸 + 12 0.6435𝐸 − 01

OBSTCLBU 10000 1551 1551 13.03 −0.5328𝐸 + 11 0.4544𝐸 − 01

PENTDI 1000 14 14 0.01 −0.4267𝐸 + 02 0.2967𝐸 − 05

TORSION1 10000 811 811 6.80 −0.2733𝐸 + 14 0.2905𝐸 + 00

TORSION2 10000 1644 1644 13.76 −0.5354𝐸 + 13 0.1543𝐸 + 00

TORSION3 10000 712 712 5.98 −0.7571𝐸 + 11 0.4588𝐸 − 01

TORSION4 10000 2079 2079 17.47 −0.3908𝐸 + 14 0.7154𝐸 + 00

TORSION5 10000 744 744 6.20 −0.8637𝐸 + 13 0.1263𝐸 + 00

TORSION6 10000 730 730 6.07 −0.1361𝐸 + 15 0.5556𝐸 + 00

TORSIONA 10000 831 831 7.65 −0.3461𝐸 + 13 0.8291𝐸 − 01

TORSIONB 10000 1049 1049 9.61 −0.4526𝐸 + 10 0.3910𝐸 − 01

TORSIONC 10000 1165 1165 10.65 −0.6297𝐸 + 14 0.5303𝐸 + 00

TORSIOND 10000 980 980 9.01 −0.3573𝐸 + 14 0.4092𝐸 + 00

TORSIONE 10000 704 704 6.48 −0.2645𝐸 + 15 0.2775𝐸 + 01

TORSIONF 10000 646 646 5.91 −0.1976𝐸 + 15 0.1459𝐸 + 01

ODNAMUR 11130 10692 10692 57.16 0.8793𝐸 + 04 0.1247𝐸 + 01

GRIDGENA 6218 1145 1145 6.92 0.2352𝐸 + 05 0.9992𝐸 − 03

NOBNDTOR 5746 — — — — —

8 Abstract and Applied Analysis

Table 4: Statical data of SDPRP and L-BFGS-B.

Success Failure
SDPRP 42 12
L-BFGS-B 13 41

Moreover, we conclude that the method provides a valid
approach for solving large-scale box-constrained problems.

5. Conclusions

In this paper, we have developed a subspace nonlinear conju-
gate gradient method for solving box-constrained optimiza-
tion problems. For most of the tested optimization problems
(42 out of 54), the algorithm works successfully to terminate
at the solution. However, in the most cases, the number
of function evaluations seems large. A common feather of
this method is that all the generated points are feasible,
without requiring gradient projection as usual methods in
this scheme. Therefore, this may be the reason why the func-
tion evaluation numbers are higher than those of projected
gradient or trust-region methods. However, we also believe
that SDPRP is a valid approach for box-constrained problems.
In our view, there are at least three issues that could lead
to improvements. The first point that should be considered
is probably the choice of the parameters in the active set
identification technique and the value of the used parameters
is not the only choice. Another important point that should
be further investigated is the adoption of gradient projection
technique. The third assumption is strong; how can we
modify this algorithm so as to avoid the strict complementary
assumption? Additionally, it is worthwhile to investigate that
some existing conjugate gradient methods, such as [12, 22],
whether it is possible to embed an active set framework to
solve box-constrained problems. To this end, although the
proposed method does not obtain significant development
as we have expected, we think that the enhancement of this
proposed method is still noticeable. Hence, we believe that
the proposed algorithm is a valid approach for the problems
and possibility and it may have its own potency.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors thank the associate editor and two anonymous
referees for their constructive suggestions which improved
the paper greatly. This author’s work is supported by Naturel
Science Foundation of Henan Province Grants GGJS2011030
and 132300410168.

References

[1] N. Gould, D. Orban, and P. Toint, “Numerical methods for
large-scale nonlinear optimization,” Acta Numerica, vol. 14, pp.
299–361, 2005.

[2] D. G. Luenberger, Introduction to Linear and Nonlinear Pro-
gramming, chapter 11, Addison-Wesley, Reading, Mass, USA,
1973.

[3] F. Facchinei, J. Júdice, and J. Soares, “An active set Newton algo-
rithm for large-scale nonlinear programs with box constraints,”
SIAM Journal on Optimization, vol. 8, no. 1, pp. 158–186, 1998.

[4] E. G. Birgin and J. M. Mart́ınez, “Large-scale active-set box-
constrained optimization method with spectral projected gra-
dients,” Computational Optimization and Applications, vol. 23,
no. 1, pp. 101–125, 2002.

[5] F. Facchinei, S. Lucidi, and L. Palagi, “A truncated Newton
algorithm for large scale box constrained optimization,” SIAM
Journal on Optimization, vol. 12, no. 4, pp. 1100–1125, 2002.

[6] W.W. Hager and H. Zhang, “A new active set algorithm for box
constrained optimization,” SIAM Journal on Optimization, vol.
17, no. 2, pp. 526–557, 2006.

[7] Q. Ni and Y. Yuan, “A subspace limited memory quasi-Newton
algorithm for large-scale nonlinear bound constrained opti-
mization,” Mathematics of Computation, vol. 66, no. 220, pp.
1509–1520, 1997.

[8] D. P. Bertsekas, “Projected Newton methods for optimization
problemswith simple constraints,” SIAM Journal onControl and
Optimization, vol. 20, no. 2, pp. 221–246, 1982.

[9] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate
gradient methods,” Pacific Journal of Optimization, vol. 2, no. 1,
pp. 35–58, 2006.

[10] L. Zhang, W. Zhou, and D.-H. Li, “A descent modified Polak-
Ribière-Polyak conjugate gradient method and its global con-
vergence,” IMA Journal of Numerical Analysis, vol. 26, no. 4, pp.
629–640, 2006.

[11] J. Zhang, Y. Xiao, and Z. Wei, “Nonlinear conjugate gra-
dient methods with sufficient descent condition for large-
scale unconstrained optimization,” Mathematical Problems in
Engineering, vol. 2009, Article ID 243290, 16 pages, 2009.

[12] L. Grippo and S. Lucidi, “A globally convergent version of
the Polak-Ribière conjugate gradient method,” Mathematical
Programming, vol. 78, no. 3, pp. 375–391, 1997.

[13] L. Zhang,Nonlinear conjugate gradientmethods for optimization
problems [Ph.D. thesis], College ofMathematics and Economet-
rics, Hunan University, Hunan, China, 2006.

[14] L. Qi, X. J. Tong, and D. H. Li, “Active-set projected trust-region
algorithm for box-constrained nonsmooth equations,” Journal
of OptimizationTheory and Applications, vol. 120, no. 3, pp. 601–
625, 2004.

[15] Y. Xiao and D.-H. Li, “An active set limited memory BFGS
algorithm for large-scale bound constrained optimization,”
Mathematical Methods of Operations Research, vol. 67, no. 3, pp.
443–454, 2008.

[16] Y. Xiao and Q. Hu, “Subspace Barzilai-Borwein gradient
method for large-scale bound constrained optimization,”
Applied Mathematics and Optimization, vol. 58, no. 2, pp. 275–
290, 2008.

[17] Y.-H. Xiao, Q.-J. Hu, and Z. Wei, “Modified active set projected
spectral gradient method for bound constrained optimization,”
Applied Mathematical Modelling, vol. 35, no. 7, pp. 3117–3127,
2011.

Abstract and Applied Analysis 9

[18] Y.-F. Yang, D.-H. Li, and L. Qi, “A feasible sequential linear
equation method for inequality constrained optimization,”
SIAM Journal on Optimization, vol. 13, no. 4, pp. 1222–1244,
2003.

[19] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE:
constrained and unconstrained testing environment,” ACM
Transactions on Mathematical Software, vol. 21, no. 1, pp. 123–
160, 1995.

[20] R. H. Byrd, P. Lu, J. Nocedal, and C. Y. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM Journal
on Scientific Computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[21] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-
BFGS-B: fortran subroutines for large-scale bound-constrained
optimization,” ACM Transactions on Mathematical Software,
vol. 23, no. 4, pp. 550–560, 1997.

[22] J. C. Gilbert and J. Nocedal, “Global convergence properties of
conjugate gradient methods for optimization,” SIAM Journal on
Optimization, vol. 2, no. 1, pp. 21–42, 1992.

