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We develop a new algorithm to solve the system of integral equations. In this newmethod no need to use matrix weights. Beacause
of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary
value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

1. Introduction

The theory and application of integral equations are an
important subject within pure and applied mathematics and
they appear in various types in many fields of science and
engineering.The integral equations can also be represented as
convolution integral equations; see Srivastava and Buschman
[1]. In the applications, the number of computational prob-
lems can be reduced to the solution of a system of integral
equations (system of IEs) of the second kind; see [2–4].
However, solving systems of integrodifferential equations are
very important and such systems might be difficult analyti-
cally, somany researchers have attempted to propose different
numerical methods which are accurate and efficient. For
example, numerical expansion methods for solving a system
of linear IDEs by interpolation and Clenshaw Curtis quadra-
ture rules were presented in [5], where the integral system
was transferred into a matrix equation by the interpolation
points. Pour in [6] studied an extension of the Tau method to
obtain the numerical solution of Fredholm integrodifferential
equations systems ad applied Chebyshev basis to solve IDEs.
Similarly, Arikoglu and Ozkol [7] obtained solutions of
integral and integrodifferential equation systems by using
differential transform method where the approch provides
very good approximation to the exact solution.

Recently, the solution of the system has been estimated
by many different basic functions, such as orthonormal

bases and wavelets; see, for example [8, 9], and the hybrid
Legendre Block-Pulse functions, that is, a combination of the
Block-Pulse functions on [0, 1] and Legendre polynomials
was proposed. In addition, the Bessel matrix method was
introduced in [10] for solving a system of high order linear
Fredholm differential equations with variable coefficients. In
the literature there are several methods to solve the different
type of integral equations; see [11–16]. One of the novel
methods is known as the vector Monte Carlo algorithms
to solve the system of IEs. Among the vector Monte Carlo
algorithms the following are well known:

(i) an algorithm for solving the system of transfer equa-
tions with polarization;

(ii) a vector algorithm for solving multigroup transfer
equations;

(iii) a Monte Carlo technique combined with the finite
sum method and vector Monte Carlo method for
solving metaharmonic equations.

In the use of this method one can easily see that the
variance of the vector estimate largely depends on the form
of transitional density.Thus appropriate choice of the density
leads to the reduction of the complexity calculations, which is
defined as the product of the variance and the computational
time. To determine the density is difficult as to solve the
problem itself, although in some cases it is possible to obtain
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a minimal criterian of uniform optimality of the method.The
transitional density that corresponds to minimum complex-
ity of algoritm is said to be optimal for a given problem.

In Mikhailov [17], vector Monte Carlo algorithms are
used to solve system of IEs. The distinguished feature of that
vector algorithm is that its “weight” appears in the form of a
matrix weight. This matrix weight is multiplied by the kernel
matrix of the system of IEs dividing by a transition density
function in the Markov chain simulation, so that a number
of computational problems can be reduced to the solution
of a system of IEs of second kind. By introducing a suitable
discrete-continuous measure of the integration, we can write
the system of IEs in the form of a single integral equation,
and this allows us to use standard algorithms of the Monte
Carlo method. However, it is more expedient to make use of
the matrix structure of the system and solve the problem by
the Monte Carlo method with vector weights. The following
vector Monte Carlo algorithms are well known: an algorithm
for solving the system of transfer equations with polarization
taken into account, a vector algorithm for solvingmultigroup
transfer equations, a Monte Carlo technique combined with
the finite sum method, and vector Monte Carlo method for
solving metaharmonic equation.

In this study, a new algorithm is proposed for the
numerical solution of system of IEs but in this algorithm we
do not use matrix weights.The proposed algorithm has usual
advantages of ordinary Monte Carlo method. The new algo-
rithm is considerably reduced to computational complexity.
Using this new algorithm we have solved an initial boundary
value problem for system of parabolic equations.The paper is
organized as follows. In Section 2, we present the description
of the problem and proposed a new Monte Carlo algorithm
for the solution of system of IEs. In Section 3, we discuss
the application of the method to the solution of system of
parabolic equations. In Section 4, we will construct biased
and 𝜀-biased estimators for the solution. In Section 5, the
results of computational experiments are given, followed by
the conclusion in Section 6.

2. Description of the Problem
and a New Approach for the Solution of
System of IEs

Let us consider second kind nonhomogeneous system of IEs
of the form

𝜑
𝑖 (𝑥) =

𝑛

∑
𝑗=1

∫
𝑋

𝑘
𝑖,𝑗
(𝑥, 𝑦) 𝜑

𝑗
(𝑦) 𝑑𝑦 + ℎ

𝑖 (𝑥) , 𝑖 = 1, . . . , 𝑛,

(1)

where 𝑥 ∈ 𝑋 ⊆ R𝑚
, 𝑚 ≥ 1 or in vector form

Φ = 𝐾Φ +𝐻, (2)

here operator 𝐾 : 𝐿
∞
→ 𝐿

∞
where 𝐿

∞
is the space of

bounded function almost everywhere and

𝐻 = (ℎ
1
, . . . , ℎ

𝑛
) ∈ 𝐿

∞
, 𝐾 = (𝐾

𝑖𝑗
) ∈ 𝐿

∞
,

Φ = (𝜑
1
, 𝜑

2
, ..., 𝜑

𝑛
) ∈ 𝐿

∞
,

(3)

where the norm of𝐻 is

‖𝐻‖𝐿
∞

= vrai sup
1≤𝑖≤𝑛, 𝑥∈𝑋

󵄨󵄨󵄨󵄨ℎ𝑖 (𝑥)
󵄨󵄨󵄨󵄨 . (4)

Suppose the spectral radius 𝜌(𝐾) satisfy the inequalities

𝜌 (𝐾) = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐾
𝑛󵄩󵄩󵄩󵄩

1/𝑛
< 1, 𝜌 (𝐾) ≤

󵄩󵄩󵄩󵄩𝐾
𝑛󵄩󵄩󵄩󵄩

1/2
, (5)

where𝐾𝑛
𝜑 = 𝐾

𝑛−1
𝐾𝜑.

Let Markov chain {𝑥
𝑛
, 𝑛 = 0, 1, . . . , 𝑁} with transition

density 𝑝(𝑥, 𝑦) be

𝑔 (𝑥) = 1 − ∫
𝑋

𝑝 (𝑥, 𝑦) 𝑑𝑦 ≥ 0, (6)

where 𝑔(𝑥) is the probability of absorption at the point 𝑥
𝑁
,

where 𝑁 is the random number of the last moment and in
initial moment 𝑥

0
= 𝑥.

A standard vector algorithm of Monte Carlo forΦ(𝑥) is

Φ (𝑥) = (𝑀𝜉𝑥, 𝜉𝑥) = 𝐻 (𝑥) +

𝑁

∑
𝑛=1

𝑄
𝑛
𝐻(𝑥

𝑛
) ,

𝑄
0
= 𝐼, 𝑄

𝑛+1
=
𝑄
𝑛
𝐾(𝑥

𝑛
, 𝑥

𝑛+1
)

𝑃 (𝑥
𝑛
, 𝑥

𝑛+1
)
, 𝑛 = 0, 1, 2, . . . ,

(7)

where 𝐼 is a unit matrix,𝐾(𝑥, 𝑦) is a kernel matrix {𝑘
𝑖𝑗
(𝑥, 𝑦)},

and 𝑝(𝑥
𝑛
, 𝑥

𝑛+1
) is the transition density function at the points

(𝑥
𝑛
, 𝑥

𝑛+1
). The condition for unbiasedness is

𝑝 (𝐾
1
) < 1 or 𝐾

1
= ‖𝐾‖ < 1. (8)

We will assume also that the spectral radius of the operator
𝐾
1
obtained from 𝐾 by the substitution 𝑘

𝑖,𝑗
→ |𝑘

𝑖,𝑗
| is less

than one. Then, by using standard methods of Monte Carlo
theory we can show that

Φ (𝑥) = 𝐸𝜉𝑥, 𝜉
𝑥
=

𝑁

∑
𝑛=0

𝑄
𝑛
𝐻(𝑥

𝑛
) ,

𝑄
0
= {𝛿

𝑖,𝑗
}
𝑖,𝑗=(1,...,𝑛)

, 𝑄
𝑛
= 𝑄

𝑛−1

𝐾(𝑥
𝑛−1
, 𝑥

𝑛
)

𝑝 (𝑥
𝑛−1
, 𝑥

𝑛
)
,

(9)

where 𝑄
𝑛
can be considered as matrix weight and

𝐾(𝑥
𝑛−1
, 𝑥

𝑛
)

𝑝 (𝑥
𝑛−1
, 𝑥

𝑛
)
= {
𝑘
𝑖𝑗
(𝑥

𝑛−1
, 𝑥

𝑛
)

𝑝 (𝑥
𝑛−1
, 𝑥

𝑛
)
} , 𝑖, 𝑗 = {1, 2, . . . , 𝑛} .

(10)

TheMonte Carlo method is used to estimate linear function-
als of the form

(𝐹, Φ) = ∫
𝑋

𝐹
󸀠
(𝑥)Φ (𝑥) 𝑑𝑥, (11)

where 𝐹󸀠(𝑥) = (𝑓
1
(𝑥), 𝑓

2
(𝑥), . . . 𝑓

𝑛
(𝑥)) with

‖𝐹‖𝐿
1

=

𝑛

∑
𝑗=1

∫
𝑋

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 < ∞. (12)
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Let the point 𝑥
0
be distributed with initial probability density

𝜋(𝑥) such that

𝜋 (𝑥) ̸= 0 if 𝐹󸀠 (𝑥)Φ (𝑥) ̸= 0. (13)

Then, obviously (see Mikhailov [17]),

(𝐹, Φ) = 𝐸[
𝐹
󸀠
(𝑥

0
)

𝜋 (𝑥
0
)
𝜉
𝑥
0

] = 𝐸[

𝑁

∑
𝑛=0

𝐹
󸀠
(𝑥

0
)

𝜋 (𝑥
0
)
𝑄
𝑛
𝐻(𝑥

𝑛
)]

= 𝐸[

𝑁

∑
𝑛=0

𝐻
󸀠
(𝑥

𝑛
) 𝑄

󸀠

𝑛

𝐹
󸀠
(𝑥

0
)

𝜋 (𝑥
0
)
] .

(14)

The random vector with weight 𝑄(1)

𝑛
= 𝑄

󸀠

𝑛
(𝐹

󸀠
(𝑥

0
)/𝜋(𝑥

0
)) is

computed by the formula

𝑄
(1)

𝑛
=
𝐾
󸀠
(𝑥

𝑛−1
, 𝑥

𝑛
)

𝑝 (𝑥
𝑛−1
, 𝑥

𝑛
)
𝑄
(1)

𝑛−1
. (15)

Precisely such a vector algorithm, corresponding to the
representation 𝐼 = (Φ∗

, 𝐻), has been formulated in the work
ofMikhailov [17]. Below on the contrary to vector algorithms
we will propose a new algorithm for the solution of system of
integral equations. Our method does not use matrix weights.

Suppose we have to find the solution of the inhomoge-
neous system of IEs (1) of the second kind at the point 𝑥 ∈ 𝑋.
We will define two types of Markov chain {𝑖

𝐾
} and {𝑥

𝐾
} by

the following way.

(a) Definition of the First Homogeneous Markov Chain. Now
we simulate the Markov chain 𝑖

0
, 𝑖
1
⋅ ⋅ ⋅ ∈ 𝑁 with 𝑛 + 1 state.

Initial state 𝑖
0
will simulate according to initial distribution

𝜋 = (𝜋
1
, . . . , 𝜋

𝑛
, 0) and the next 𝑖

1
with the transition matrix

𝐴 = 𝐴 (𝑥) =
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑖,𝑗 (𝑥)

󵄩󵄩󵄩󵄩󵄩

𝑛+1

𝑖,𝑗=1
,

𝑛

∑
𝑗=1

𝛼
𝑖,𝑗 (𝑥) = 1 − 𝑔𝑖 (𝑥) ,

𝑔
𝑖 (𝑥) = 𝛼𝑖,𝑛+1 (𝑥) , 𝑖 = 1, . . . , 𝑛.

(16)

Here 𝛼
𝑛+1,𝑛+1

(𝑥) = 1 and

𝐴 (𝑥) = (

𝛼
11 (𝑥) , . . . , 𝛼1𝑛 (𝑥) , 𝑔1 (𝑥)

𝛼
21 (𝑥) , . . . , 𝛼2𝑛 (𝑥) , 𝑔2 (𝑥)

𝛼
𝑛1 (𝑥) , . . . , 𝛼𝑛𝑛 (𝑥) , 𝑔𝑛 (𝑥)

0, . . . , 0, 1

) . (17)

Let 𝑁 be a random absorption moment with 𝑁 =

{max 𝑘, 𝑖
𝑘
̸= 𝑛 + 1}, a life time of chain.

(b) A second homogeneous Markov chain {𝑥
𝑘
} with space

phase𝑋 is defined by the following way.

Firstly, we define the transition density matrix as

𝑃 (𝑥
1
󳨀→ 𝑥) =

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑖,𝑗
(𝑥

1
󳨀→ 𝑥)

󵄩󵄩󵄩󵄩󵄩

𝑛+1

𝑖,𝑗=1
,

𝑃 (𝑥
1
󳨀→𝑥)=(

𝑃
11
(𝑥

1
󳨀→ 𝑥) , . . . , 𝑃

1𝑛
(𝑥

1
󳨀→ 𝑥) , 0

𝑃
21
(𝑥

1
󳨀→ 𝑥) , . . . , 𝑃

2𝑛
(𝑥

1
󳨀→ 𝑥) , 0

𝑃
𝑛1
(𝑥

1
󳨀→ 𝑥) , . . . , 𝑃

𝑛𝑛
(𝑥

1
󳨀→ 𝑥) , 0

0, . . . , 0, 1

).

(18)

Let an initial point 𝑥
0
= 𝑥; using 𝜋(𝑥) we will simulate initial

moment 𝑖
0
, then according to the transition matrix 𝐴(𝑥

0
) we

are able to simulate again the next state of chain 𝑖
1
. It means

with the probability 𝛼
𝑖
0
,𝑖
1

(𝑥
0
), 𝑃(𝑖

1
= 𝑘) = 𝛼

0𝑘
(𝑥

0
).

The next phase coordinates of the chain 𝑥
1
simulated

according to𝑝
𝑖
0
,𝑖
1

(𝑥
0
, 𝑥

1
).The probability of absorption of the

trajectory is 𝑔
𝑖
0

(𝑥
0
). Let (𝑖

𝑘
, 𝑥

𝑘
) be known then the next value

of 𝑖
𝑘+1

will be defined according to the matrix𝐴(𝑥
𝑘
) and next

random point 𝑥
𝑘+1

simulated according to the probability
density function 𝑃

𝑖
𝑘
,𝑖
𝑘+1

(𝑥
1

𝑘
→ 𝑥) and so on.

Let 𝜉
𝑥
0

= 𝜉
𝑁
(𝑖
0
, 𝑖
1
, . . . 𝑖

𝑁
; 𝑥

0
, 𝑥

1
, . . . 𝑥

𝑁
) be some random

variable which is defined by the set of trajectory Markov
chains. The mathematical expectations of random variable
will be

𝐸𝜉
𝑥
0

=

∞

∑
𝑘=0

𝑛

∑
𝑖
0
,..𝑖
𝑘
=1

∫ ⋅ ⋅ ⋅ ∫
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

𝜋
𝑖
0

𝛼
𝑖
0
,𝑖
1

(𝑥
0
) 𝑝

𝑖
0
,𝑖
1

(𝑥
0
𝑥
1
) ⋅ 𝛼

𝑖
1
,𝑖
2

(𝑥
1
)

𝑝
𝑖
1
,𝑖
2

(𝑥
1
, 𝑥

2
) ⋅ ⋅ ⋅ 𝛼

𝑖
𝑘−1

,𝑖
𝑘

(𝑥
𝑘−1
)

× 𝑝
𝑖
𝑘−1

−1,𝑖
𝑘

(𝑥
𝑘−1
, 𝑥

𝑘
) 𝑔

𝑖
𝑘

(𝑥
𝑘
)

𝜉
𝑘
(𝑖
0
, . . . 𝑖

𝑘
, 𝑥

0
, . . . 𝑥

𝑘
) 𝑑𝑥

1
⋅ ⋅ ⋅ 𝑑𝑥

𝑘
.

(19)

Let us consider calculation of the functional (Φ , 𝐹), where
𝐹
𝑇
= (𝑓

1
(𝑥), ..., 𝑓

𝑛
(𝑥)) column vector. Let us compute the

functional (Φ, 𝐹) = ∑
𝑛

𝑖=1
𝜑
𝑖
(𝑥)𝑓

𝑖
(𝑥). For doing this task we

introduce twowell-known estimators according to theMonte
Carlo theory. First of them is analog of absorption estimator

𝜉
1
(𝑥

0
) =

𝑓
𝑖
0

(𝑥
0
)

𝜋
𝑖
0

(𝑥
0
)

𝑘
𝑖
0
𝑖
1

(𝑥
0
, 𝑥

1
)

𝛼
𝑖
0
,𝑖
1

(𝑥
0
) 𝑝

𝑖
0
,𝑖1
(𝑥

0
, 𝑥

1
)

⋅ ⋅ ⋅
𝑘
𝑖
𝑛−1

,𝑖
𝑛

(𝑥
𝑛−1
, 𝑥

𝑛
)

𝛼
𝑖
𝑛−1

,𝑖
𝑛

(𝑥
𝑛−1
) 𝑝

𝑖
𝑛−1

,𝑖
𝑛

(𝑥
𝑛−1
, 𝑥

𝑛
)
⋅
ℎ
𝑖
𝑛

(𝑥
𝑛
)

𝑔
𝑖
𝑛

(𝑥
𝑛
)

(20)

and the second one is analog of collision estimator

𝜉
2
(𝑥

0
) =

𝑁

∑
𝑗=1

𝑓
𝑖
0

(𝑥
0
)

𝜋
𝑖
0

(𝑥
0
)

𝐾
𝑖
0
𝑖
1

(𝑥
0
, 𝑥

1
)

𝛼
𝑖
0
,𝑖
1

(𝑥
0
) 𝑝

𝑖
0
,𝑖
1

(𝑥
0
, 𝑥

1
)

⋅ ⋅ ⋅
𝐾
𝑖
𝑗−1

,𝑖
𝑗

(𝑥
𝑗−1
, 𝑥

𝑗
)

𝛼
𝑖
𝑗−1

,𝑖
𝑗

(𝑥
𝑗−1
) 𝑝

𝑖
𝑗−1

,𝑖
𝑗

(𝑥
𝑗−1
, 𝑥

𝑗
)
⋅ ℎ

𝑖
𝑗

(𝑥
𝑗
) .

(21)
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Theorem 1. If 𝑓
𝑖
0

(𝑥
𝑖
0

) ̸= 0 then 𝜋
𝑖
0

(𝑥
𝑖
0

) ̸= 0 and if
𝑘
𝑖
𝑖
𝑖
𝑗

(𝑥
𝑖
, 𝑥

𝑗
) ̸= 0 then

𝛼
𝑖,𝑗
(𝑥

𝑖
) 𝑝

𝑖
𝑖
𝑖
𝑗

(𝑥
𝑖
, 𝑥

𝑗
) ̸= 0, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (22)

In this case 𝐸𝜉
1,2
= (Φ, 𝐹).

The proof of the theorem is similar to the theorem
Ermakov [23], and therefore proof is omitted. Now we will
apply the obtained results to the solution system of parabolic
equations.

3. Application to System of
Parabolic Equations

In this section we consider initial boundary problem for
system of parabolic equations. Let 𝐷 be bounded domain in
𝑅
𝑚 with enough smooth boundary 𝜕𝐷 of Ω = 𝐷 × [0, 𝑇]

and Ω is the cylinder in 𝑅𝑚+1 with parallel spin axis 𝑡. The
basement is the domain 𝐷 on the surface 𝑡 = 0 and 𝑇 is the
fixed constant. The functions

𝑦
0𝑖 (𝑥) ∈ 𝐶 (𝐷) , 𝑦

𝑖 (𝑥, 𝑡) ∈ 𝐶 (𝜕𝐷 × [0, 𝑇]) ,

𝑓
𝑖 (𝑥, 𝑡) ∈ 𝐶 (Ω) ,

(23)

where 𝐶(𝐷) stands for a continuous function on the closed
domain𝐷.

Now consider the following initial boundary value prob-
lem (BVP) for system of parabolic equations:
𝜕𝑢

1 (𝑥, 𝑡)

𝜕𝑡
− 𝑎

1
Δ𝑢

1 (𝑥, 𝑡) + 𝑐11𝑢1 (𝑥, 𝑡)

− 𝑐
12
𝑢
2 (𝑥, 𝑡) − ⋅ ⋅ ⋅ − 𝑐1𝑛𝑢𝑛 (𝑥, 𝑡) = 𝑓1 (𝑥, 𝑡)

𝜕𝑢
2 (𝑥, 𝑡)

𝜕𝑡
− 𝑎

2
Δ𝑢

2 (𝑥, 𝑡) + 𝑐22𝑢2 (𝑥, 𝑡)

− 𝑐
21
𝑢
1 (𝑥, 𝑡) − ⋅ ⋅ ⋅ − 𝑐2𝑛𝑢𝑛 (𝑥, 𝑡) = 𝑓2 (𝑥, 𝑡)

...

𝜕𝑢
𝑛 (𝑥, 𝑡)

𝜕𝑡
− 𝑎

𝑛
Δ 𝑢

𝑛 (𝑥, 𝑡) + 𝑐𝑛𝑛𝑢𝑛 (𝑥, 𝑡) − 𝑐𝑛1𝑢1 (𝑥, 𝑡)

− ⋅ ⋅ ⋅ − 𝑐
(𝑛−1)𝑛

𝑢
𝑛−1 (𝑥, 𝑡) = 𝑓𝑛 (𝑥, 𝑡) ,

(24)

where the coefficients 𝑎
𝑖
> 0, 𝑐

𝑖𝑗
> 0, (𝑖 = 1, . . . , 𝑛, 𝑗 =

1, . . . , 𝑛), and (𝑥, 𝑡) ∈ Ω with initial and boundary conditions

𝑢
𝑖 (𝑥, 𝑡) = 𝑦𝑖 (𝑥, 𝑡) , 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 𝑛

𝑢
𝑖 (𝑥, 0) = 𝑦𝑜𝑖 (𝑥) , 𝑥 ∈ 𝐷, 𝑖 = 1, 𝑛.

(25)

Further suppose 𝑓
𝑖
(𝑥, 𝑡), 𝑦

𝑜𝑖
(𝑥), 𝑦

𝑖
(𝑥, 𝑡), and coefficients

𝑎
𝑖
, 𝑐

𝑖𝑗
(𝑖, 𝑗 = 1, 𝑛) are given such that there exists unique

solution Ladyzhenskaya et al. [18] and Lions [19] of the initial
BVR (24)-(25) and

𝑢
𝑖 (𝑥, 𝑡) ∈ 𝐶 (𝐷 × [0, 𝑇])

∩ 𝐶
2,1
(𝐷 × [0, 𝑇]) (𝑖 = 1, 𝑛) ,

(26)

where 𝐶2,1 is the set of continuous functions in the given
region with continuous derivatives 𝑢

𝑥
, 𝑢

𝑥𝑥
, and 𝑢

𝑡
.

Now we construct unbiased estimator for the problem
(24)-(25) in the arbitrary point (𝑥, 𝑡) ∈ Ω on the trajectory
some random process. For that we use mean value formula
and construct some special system of integral equations for
𝑢
𝑖
(𝑥, 𝑡) in special constructed domains (spheroid or balloid

with the center (𝑥, 𝑡)).
According to Section 2 below we will propose a new

nonstationary Markov chain on which trajectory will con-
struct unbiased estimators for the obtained system of integral
equations.

In our algorithm we do not used matrix weight; it means
the computational complexity of new algorithm is much
better. The basis for the constructing of algorithms will be
the formula of parabolic mean for the heat conductivity
equations. As we know the fundamental solution𝑍(𝑥, 𝑡, 𝑦, 𝜏)
for heat equation 𝑢

𝑡
− 𝑎Δ𝑢 = 0 is given by

𝑍 (𝑥, 𝑡; 𝑦, 𝜏)

= (4𝜋𝑎 (𝑡 − 𝜏))
−𝑚/2 exp(−

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2

4𝑎 (𝑡 − 𝜏)
) .

(27)

Firstly, we define a special domain using a fundamental
solution of the heat equation𝑄

𝑟
(𝑥, 𝑡)which depends on 𝑟 > 0

and points (𝑥, 𝑡) ∈ 𝑅𝑚+1as

𝑄
𝑟 (𝑥, 𝑡) = {(𝑦, 𝜏) : 𝑍 (𝑥, 𝑡; 𝑦, 𝜏) > (4𝜋𝑎𝑟)

−𝑚/2
, 𝜏 < 𝑡} .

(28)

The domain 𝑄
𝑟
(𝑥, 𝑡), we call balloid and 𝜕𝑄

𝑟
(𝑥, 𝑡), spheroid

with the center in the point (𝑥, 𝑡). From the definition balloid
𝑄
𝑟
(𝑥, 𝑡), described by following inequality (Kupcov [20]):

𝑄
𝑟 (𝑥, 𝑡) = {(𝑦, 𝜏) :

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2
< 2𝑚𝑎 (𝑡 − 𝜏) ln 𝑟

𝑡 − 𝑟
, 𝜏 < 𝑡} .

(29)

Each section with the sectional plain of balloid when 𝜏 =
constant will be 𝑚-dimensional ball 𝐵(𝑥, 𝑅(𝑡 − 𝜏)) with the
center 𝑥 and with the radius

𝑅 (𝑡 − 𝜏) = √2𝑚𝑎 (𝑡 − 𝜏) ln 𝑟

𝑡 − 𝑟
. (30)

Let (𝑥, 𝑡) ∈ Ω and

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑅
2

1
(𝑥) 𝑒

2𝑎𝑚
, 𝑡} , (31)

where 𝑅
1
(𝑥) is the minimum distance from point 𝑥 until the

boundary; that is,

𝑅
1 (𝑥) = inf {󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
, 𝑥 ∈ 𝜕𝐷, 𝑥

󸀠
∈ 𝐷} . (32)

In this case 𝑄
𝑟
(𝑥, 𝑡) ⊂ Ω. By further using Greens function

and fundamental solution we will transfer from the system of
differential equations into the system of integral equations.
In the book [21] special balance equation analogies were
constructed as in [22], which connected the value of function
𝑢(𝑥, 𝑡)with its integral from the spheroid and balloid with the
center in the point (𝑥, 𝑡).
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Lemma 2 (Kurbanmuradov [22]). Let the function 𝑢(𝑥, 𝑡)
satisfy the following equation:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
− 𝑎Δ𝑢 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω. (33)

Then the following formula of mean is true (mean value
formula):

𝑢 (𝑥, 𝑡) = 𝑎∬
𝜕𝑄
𝑟
(𝑥,𝑡)

(1 −
𝑡 − 𝜏

𝑟
)

× (−
𝜕𝑍 (𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛
𝑦

)𝑢 (𝑦, 𝜏) 𝑑𝑠 𝑑𝜏

+
1

𝑟
∬

𝑄
𝑟
(𝑥,𝑡)

𝑍
𝑟
(𝑥, 𝑡; 𝑦, 𝜏) 𝑢 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏 + 𝐹

𝑟 (𝑥, 𝑡) ,

(34)

where

𝐹
𝑟 (𝑥, 𝑡) =

1

𝑟
∬

𝑄
𝑟
(𝑥,𝑡)

(𝑟 − (𝑡 − 𝜏)) 𝑍𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑓 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏,

𝑍
𝑟
(𝑥, 𝑡; 𝑦, 𝜏) = 𝑍 (𝑥, 𝑡; 𝑦, 𝜏) − (4𝜋𝑎𝑟)

−𝑚/2
,

(35)

here ds is the element of small area of sphere 𝜕𝐵(𝑥, 𝑅(𝑡 −
𝜏)). In further using these results we will get special integral
representation.

3.1. Transforming a System and Obtaining Integral Represen-
tation. Let us define the family of domains 𝑄(𝑖)

𝑟
(𝑥, 𝑡), which

depends on positive parameters 𝑟 > 0 and point (𝑥, 𝑡) ∈ 𝑅𝑚+1,
where

𝑄
(𝑖)

𝑟
(𝑥, 𝑡) = {(𝑦, 𝜏) : 𝑍

𝑖

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) > 0, 𝜏 < 𝑡} , (36)

where 𝑍𝑖
𝑟
(𝑥, 𝑡; 𝑦, 𝜏) defined analogous 𝑍

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) changing

a for 𝑎
𝑖
(see above Lemma 2).The domain𝑄𝑖

𝑟
(𝑥, 𝑡)wewill call

a balloid with radius 𝑟 which a center in a point (𝑥, 𝑡) and a
boundary 𝜕𝑄(𝑖)

𝑟
(𝑥, 𝑡) = {(𝑦, 𝜏) : 𝑍

𝑖

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) = 0, 𝜏 ≤ 𝑡} is

spheroid. Here

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑅
2

1
(𝑥) 𝑒

2𝑎
1
𝑚
, . . . ,

𝑅
2

1
(𝑥) 𝑒

2𝑎
𝑛
𝑚
, 𝑡} . (37)

Let (𝑥, 𝑡) ∈ Ω and 𝐷 : 𝑅
1
(𝑥) = inf{|𝑥 − 𝑥󸀠|, 𝑥 ∈ 𝜕𝐷, 𝑥󸀠 ∈

𝐷} where 𝑅
1
(𝑥) is the distance from the point (𝑥, 𝑡) to the

boundary of domain. In this case 𝑄𝑖

𝑟
(𝑥, 𝑡) ⊂ Ω. Appling

the expression (34) to each of the equations we will get the
following system of integral equations (𝑖 = 1, 2, . . . , 𝑛):

𝑢
𝑖 (𝑥, 𝑡)

=𝑎
𝑖
∬

𝜕𝑄
𝑖

𝑟
(𝑥,𝑡)

(1−
𝑡 − 𝜏

𝑟
)(−

𝜕𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛
𝑦

)𝑢
𝑖
(𝑦, 𝜏) 𝑑𝑠 𝑑𝜏

+
1

𝑟
∬

𝜕𝑄
𝑖

𝑟
(𝑥,𝑡)

(1 − (𝑟 − (𝑡 − 𝜏) 𝑐𝑖𝑖))

× 𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) 𝑢

𝑖
(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

+
1

𝑟
∬

𝜕𝑄
𝑖

𝑟
(𝑥,𝑡)

(𝑟 − (𝑡 − 𝜏)) 𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏)

× ∑
𝑗=1,𝑛;𝑖 ̸=𝑗

𝑐
𝑖𝑗
𝑢
𝑗
(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

+
1

𝑟
∬

𝑄
𝑖

𝑟
(𝑥,𝑡)

(𝑟 − (𝑡 − 𝜏)) 𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) 𝑓

𝑖
(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏,

𝑖 = 1, . . . , 𝑛,

(38)

where

𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏) = (4𝜋𝑎

𝑖 (𝑡 − 𝜏))
−𝑚/2 exp (−

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
2

4𝑎
𝑖 (𝑡 − 𝜏)

) ,

𝑍
𝑖

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) = 𝑍

(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏) − (4𝜋𝑎

𝑖 (𝑡 − 𝜏))
−𝑚/2

.

(39)

The derived system (38) is similar to system IEs which was
considered in Section 2. That is way we can use the method
which was given in Section 2.

3.2. The Probabilistic Representation of the Solution. After
some transformation we will get for separate terms of the
system (38) as follows:

𝐼
(𝑖)

1
(𝑥, 𝑡)

=𝑎
𝑖
∬

𝜕𝑄
𝑖

𝑟
(𝑥,𝑡)

(1 −
𝑡 − 𝜏

𝑟
)(−

𝜕𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛
𝑦

)𝑢
𝑖
(𝑦, 𝜏) 𝑑𝑠 𝑑𝜏

= (1 − 𝑞
𝑚
) ∫

∞

0

𝑞
1
(𝜌) 𝑑𝜌∫

𝑆
1
(0)

𝑞
2 (𝜔) 𝑢𝑖 (𝑦

(𝑖)
(𝜌, 𝜔) , 𝜏 (𝜌)) 𝑑𝑠

= (1 − 𝑞
𝑚
) 𝐸𝑢

𝑖
(𝑦

(𝑖)
(𝜉, 𝜔) , 𝜏 (𝜉)) ,

(40)

where

𝑞
1
(𝜌) = 𝜌

𝑚/2 exp (−𝜌) (1 − exp (−
2𝜌

𝑚
))

× ((1 − 𝑞
𝑚
) Γ (1 +

𝑚

2
))

−1

,

𝑞
2 (𝜔) =

1

𝜎
𝑚

= Γ (
𝑚

2
) (2𝜋

𝑚/2
)
−1

,

𝑞
𝑚
= (1 +

2

𝑚
)
−(1+𝑚/2)

,
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𝑦
(𝑖)
(𝜉, 𝜔) = 𝑥 + √4𝑟𝜉𝑎𝑖 exp(−

2𝜉

𝑚
)𝜔,

𝜏 (𝜉) = 𝑡 − 𝑟 exp(−2𝜉
𝑚
) ,

(41)

𝜉 is a random variable with density functions 𝑞
1
(𝜌), 𝜔

random point on the surface 𝑆
1
(0), which has a density

function 𝑞
2
(𝑤), 𝑆

1
(0) unit sphere, ds element of surface, 𝜎

𝑚

square of the surface unit sphere, and Γ(⋅) Gamma function.
Let us consider the second terms of (38)

𝐼
(𝑖)

2
(𝑥, 𝑡) =

1

𝑟
∬

𝑄
𝑖

𝑟
(𝑥,𝑡)

(𝑟 − (𝑡−𝜏)) 𝑍
𝑖

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) 𝑓

𝑖
(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

= 𝑟𝑞
𝑚
∫
1

0

𝑞
3 (]) 𝑑]∫

∞

0

𝑞
4 (𝑧) 𝑑𝑧

⋅ ∫
𝑆
1
(0)

(1 − ]2/𝑚 exp( −2𝑧
𝑚 + 2

))

× 𝑓
𝑖
(𝑦

(𝑖)

1
(𝑧, ], 𝑤) , 𝜏1 (𝑧, ])) 𝑑𝑆𝑤

= 𝑟𝑞
𝑚
𝐸{(1 − V2/𝑚 exp( −2𝜉1

𝑚 + 2
))

× 𝑓
𝑖
(𝑦

(𝑖)

1
(𝜉

1,
V, 𝜔) , 𝜏

1
(𝜉

1
, V)) } ,

(42)

where 𝑞
3
(]) = (1 − ])]2/𝑚−1(𝐵(2, 2/𝑚))−1. Then the density

of Beta distribution with parameters (2, 2/𝑚)

𝑞
4 (𝑧) = exp (−𝑧) 𝑧𝑚/2−1(Γ (𝑚

2
))

−1

, (43)

and the density of Gamma distribution with parameters𝑚/2,
𝜔—unit random vector,

𝑦
𝑖

1
(𝜉

1
, V, 𝜔)=𝑥 + [

4𝑚

𝑚+2
𝑟𝑎

𝑖
𝜉
1
V2/𝑚 exp(− 2𝜉1

𝑚+ 2
)]

1/2

𝜔,

𝜏
1
(𝜉

1
, V) = 𝑡 − 𝑟V2/𝑚 exp(− 2𝜉1

𝑚 + 2
) ,

(44)

where 𝜉
1
is the random variable with density function 𝑞

4
(𝑧)

and V is another random variable with the density function
𝑞
3
(]).
Let

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑒𝑅

2

1
(𝑥)

2𝑚𝑎
1

, . . . ,
𝑒𝑅

2

1
(𝑥)

2𝑚𝑎
𝑛

;
1

𝑐
11

, . . . ,
1

𝑐
𝑛𝑛

; 𝑡} ,

(45)

then 𝑄(𝑖)

𝑟 (𝑥, 𝑡) ∈ Ω and the function

𝑝
(𝑖)

1
(𝑥, 𝑡; 𝑦, 𝜏) =

[1 − (𝑟 − (𝑡 − 𝜏)) 𝑐𝑖] 𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏)

𝑟𝑞
𝑚
(1 − 𝑟𝑞

1𝑚
𝑐
𝑖𝑖
)

× 𝐼
𝑄
(𝑖)

𝑟
(𝑥,𝑡)
(𝑦, 𝜏)

(46)

is the transition density in 𝑄𝑖

𝑟
(𝑥, 𝑡) with fixed point (𝑥, 𝑡),

where

𝑞
1𝑚
= 1 −

1

2
(
𝑚 + 2

𝑚 + 4
)
1+𝑚/2

. (47)

Let (𝑦(𝑖)
2
, 𝜏

(𝑖)

2
) be a random point of balloid𝑄𝑖

𝑟
(𝑥, 𝑡) which has

the following density function 𝑝(𝑖)
1
(𝑥, 𝑡; 𝑦, 𝜏) (𝑖 = 1, . . . , 𝑛) in

the fixed point (𝑥, 𝑡).
In this case

1

𝑟
∬

𝑄
(𝑖)

𝑟
(𝑥,𝑡)

(1 − (𝑟 − (𝑡 − 𝜏)) 𝑐𝑖𝑖) 𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏) 𝑢

𝑖
(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

= 𝑞
𝑚
(1 − 𝑟𝑐

𝑖𝑖
𝑞
1𝑚
) 𝐸𝑢

𝑖
(𝑦

(𝑖)

2
, 𝜏

(𝑖)

2
) , 𝑖 = 1, ..., 𝑛.

(48)

The obtained results we will put to (38) and we will get the
probabilistic representation of problem (24)-(25). It follows
there from that we could to following proposition.

Theorem 3. For the solution of initial BVP (24)-(25) the
following probabilistic representation is valid:

𝑢
𝑖 (𝑥, 𝑡) = (1 − 𝑞𝑚) 𝐸𝑢𝑖 (𝑦

(𝑖)
(𝜉, 𝜔) , 𝜏 (𝜉))

+ 𝑞
𝑚
(1 − 𝑟𝑐

𝑖𝑖
𝑞
1𝑚
) 𝐸𝑢

𝑖
(𝑦

(𝑖)

2
, 𝜏

(𝑖)

2
)

+ 𝑞
𝑚
𝑟𝐸
{

{

{

(1 − V2/𝑚 exp(− 2𝜉1
𝑚 + 2

))

×

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝑐
𝑖𝑗
𝑢
𝑗
(𝑦

(𝑖)

1
(𝜉

1
, V, 𝜔, ) , 𝜏

1
(𝜉

1
, V))
}

}

}

+ 𝑞
𝑚
𝑟𝐸((1 − V2/𝑚 exp(− 2𝜉1

𝑚 + 2
))

×𝑓
𝑖
(𝑦

(𝑖)

1
(𝜉

1
, V, 𝜔) , 𝜏

1
(𝜉

1
, V))) , (𝑖 = 1, 𝑛) ,

(49)

where (𝑦
(𝑖)
(𝜉, 𝜔), 𝜏(𝜉)) is defined by (40) and

(𝑦
(𝑖)
(𝜉, V, 𝜔), 𝜏(𝜉, V)) is determined by (41).

The proof of Theorem 3 is the consequence of the above
mentioned reasoning.

By further using the presentation (44) we will construct a
randomprocess inΩ and propose theMonte Carlo algorithm
for the solution of system IEs.

3.3. Description Random Process and the Algorithm Simula-
tion. Let

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑒𝑅

2

1
(𝑥)

2𝑚𝑎
1

, . . . ,
𝑒𝑅

2

1
(𝑥)

2𝑚𝑎
𝑛

;
1

𝑐
11

, . . . ,
1

𝑐
𝑛𝑛

; 𝑡} ,

(50)
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The functions

𝑝
(𝑖)

0
(𝑥, 𝑡; 𝑦, 𝜏) =

1

1 − 𝑞
𝑚

(1 −
𝑡 − 𝜏

𝑟
)(−

𝜕𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛
𝑦

)

× 𝐼
𝜕𝑄
(𝑖)

𝑟
(𝑥,𝑡)
(𝑦, 𝜏) ,

𝑝
(𝑖)

1
(𝑥, 𝑡; 𝑦, 𝜏) =

(1 − (𝑟 − (𝑡 − 𝜏)) 𝑐𝑖𝑖) 𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏)

𝑟𝑞
𝑚
(1 − 𝑟𝑞

1𝑚
𝑐
𝑖𝑖
)

× 𝐼
𝜕𝑄
(𝑖)

𝑟
(𝑥,𝑡)
(𝑦, 𝜏) ,

𝑝
(𝑖)

2
(𝑥, 𝑡; 𝑦, 𝜏) =

𝑍
(𝑖)

𝑟
(𝑥, 𝑡; 𝑦, 𝜏)

𝑟𝑞
𝑚

𝐼
𝜕𝑄
(𝑖)

𝑟
(𝑥,𝑡)
(𝑦, 𝜏) ,

(51)

are the transition density functions in𝑄(𝑖)

𝑟 (𝑥, 𝑡) at a fixed point
(𝑥, 𝑡) (𝑖 = 1, 𝑛). We will define in Ω a random process as was
proposed in Section 2.

Let us define a transition matrix as

𝐴 (𝑥, 𝑡) =

[
[
[
[
[

[

𝛼
11
𝛼
12
. . . 𝛼

1(𝑛+1)

𝛼
21
𝛼
22
. . . 𝛼

2(𝑛+1)

. . . . . . . . . . . .

𝛼
𝑛1
𝛼
𝑛2
. . . 𝛼

𝑛(𝑛+1)

0 0 . . . 1

]
]
]
]
]

]

, (52)

where 𝛼
𝑖𝑖
= 1 − 𝑞

𝑚
𝑐
𝑖𝑖
𝑞
1𝑚
𝑟(𝑥, 𝑡), and let

𝛽
𝑖
=
𝑞
𝑚
𝑐
𝑖𝑖
𝑞
1𝑚
𝑟 (𝑥, 𝑡) (𝑛 − 1)

𝑛
,

𝛼
𝑖𝑗
=
𝛽
𝑖
𝑐
𝑖𝑗

𝑀
𝑖

, (𝑖, 𝑗 = 1, 𝑛; 𝑖 ̸= 𝑗) ,

𝑀
𝑖
= ∑

𝑗=1,𝑛; 𝑗 ̸=𝑖

𝑐
𝑖𝑗
, (𝑖 = 1, 𝑛) ,

𝛼
𝑖(𝑛+1)

=
𝑞
𝑚
𝑞
1𝑚
𝑟 (𝑥, 𝑡) 𝑐𝑖𝑖

𝑛
, (𝑖 = 1, 𝑛) .

(53)

Now we will define the density function of transition matrix
𝑃(𝑥, 𝑡; 𝑦, 𝜏):

𝑃 (𝑥, 𝑡; 𝑦, 𝜏)

=

[
[
[
[
[
[
[
[

[

𝑝
11
(𝑥, 𝑡; 𝑦, 𝜏) 𝑝

12
(𝑥, 𝑡; 𝑦, 𝜏) ... 𝑝

1(𝑛+1)
(𝑥, 𝑡; 𝑦, 𝜏)

𝑝
21
(𝑥, 𝑡; 𝑦, 𝜏) 𝑝

22
(𝑥, 𝑡; 𝑦, 𝜏) ... 𝑝

2(𝑛+1)
(𝑥, 𝑡; 𝑦, 𝜏)

... ... ... ...

𝑝
𝑛1
(𝑥, 𝑡; 𝑦, 𝜏) 𝑝

𝑛2
(𝑥, 𝑡; 𝑦, 𝜏) ... 𝑝

𝑛(𝑛+1)
(𝑥, 𝑡; 𝑦, 𝜏)

0 0 ... 1

]
]
]
]
]
]
]
]

]

,

(54)

where

𝑝
𝑖𝑗
(𝑥, 𝑡; 𝑦, 𝜏) = 𝑝

(𝑖)

2
(𝑥, 𝑡; 𝑦, 𝜏) ,

(𝑖 = 1, 𝑛; 𝑗 = 1, 𝑛 + 1; 𝑖 ̸= 𝑗) ,

𝑝
𝑖𝑖
(𝑥, 𝑡; 𝑦, 𝜏)

=
(1 − 𝑞

𝑚
) 𝑝

(𝑖)

0
(𝑥, 𝑡; 𝑦, 𝜏) + 𝑞

𝑚
(1 − 𝑟𝑞

1𝑚
𝑐
𝑖𝑖
) 𝑝

(𝑖)

1
(𝑥, 𝑡; 𝑦, 𝜏)

1 − 𝑟 (𝑥, 𝑡) 𝑞1𝑚𝑐𝑖𝑖𝑞𝑚
.

(55)

Then we will fix the initial point (𝑥
0
, 𝑡
0
) = (𝑥, 𝑡) and the

number of equations 𝑖
0
∈ {1, . . . , 𝑛}. Let an initial moment

at the point (𝑥
0
, 𝑡
0
) = (𝑥, 𝑡); we will have one particle.

For one step a particle 𝑖
𝑘
→ 𝑖

𝑘+1
moves from its position

according to the transition matrix 𝐴(𝑥
𝑘
, 𝑡
𝑘
) and moves with

probability 𝛼
𝑖
𝑘
,𝑖
𝑘+1

(𝑥
𝑘
, 𝑡
𝑘
) from the point (𝑥

𝑘
, 𝑡
𝑘
) to the point

(𝑥
𝑘+1
, 𝑡
𝑘+1
).The next (𝑥

𝑘+1
, 𝑡
𝑘+1
) point will be simulated using

the density function 𝑝
𝑖
𝑘
𝑖
𝑘+1

(𝑥
𝑘
, 𝑡
𝑘
; 𝑦, 𝜏).

The probability of breaking of trajectory in the point
(𝑥

𝑛
, 𝑡
𝑛
) is

𝑔 (𝑥
𝑛
, 𝑡
𝑛
) = {

1, (𝑥
𝑛
, 𝑡
𝑛
) ∈ Ω;

𝛼
𝑖
𝑛
,𝑛+1
(𝑥

𝑛−1
, 𝑡
𝑛−1
) , (𝑥

𝑛
, 𝑡
𝑛
) ∈ Ω.

(56)

The next coordinate of the particle will be defined in the
following way.

(1) If the density function of the point (𝑥
𝑛+1
, 𝑡
𝑛+1
) equals

𝑝
(𝑖)

0
(𝑥

𝑛
, 𝑡
𝑛
; 𝑦, 𝜏) in the fixed point (𝑥

𝑛
, 𝑡
𝑛
) then

𝑥
𝑛+1
= 𝑥

𝑛
+ 2(𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝜉

𝑛
𝑎
𝑖
)
1/2 exp(−

𝜉
𝑛

𝑚
)𝜔

𝑛
,

𝑡
𝑛+1
= 𝑡

𝑛
− 𝑟 (𝑥

𝑛
, 𝑡
𝑛
) exp(−

2𝜉
𝑛

𝑚
) ,

(57)

where {𝜉
𝑛
}
∞

𝑛=0
, {𝜔

𝑛
}
∞

𝑛=0
the sequence of independent random

variables with the density function 𝑞
1
(𝜌) and independent

isotropic vectors. The value 𝑟(𝑥
𝑛
, 𝑡
𝑛
) will be defined as (50).

(2) If the density function of the point (𝑥
𝑛+1
, 𝑡
𝑛+1
) is equal

to 𝑝(𝑖)
1
(𝑥

𝑛
, 𝑡
𝑛
; 𝑦, 𝜏) at a fixed (𝑥

𝑛
, 𝑡
𝑛
) then

𝑥
𝑛+1
= 𝑥

𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
)

× 𝜉
󸀠

𝑛
(V󸀠

𝑛
)
2/𝑚

𝑎
𝑖
exp(−

2𝜉
󸀠

𝑛

𝑚 + 2
))

1/2

𝜔
𝑛
,

𝑡
𝑛+1
= 𝑡

𝑛
− 𝑟 (𝑥

𝑛
, 𝑡
𝑛
) (V󸀠

𝑛
)
2/𝑚

exp(−
2𝜉

󸀠

𝑛

𝑚 + 2
) ,

(58)

where {𝜉󸀠
𝑛
}
∞

𝑛=0
, {V󸀠

𝑛
}
∞

𝑛=0
is a sequence of independent random

variables, which will be obtained from the algorithm below
(Algorithm 4) (Neumann acceptance rejection method).

Algorithm 4. (a) We firstly simulate 𝜉, Gamma distributed
random variable with the parameters (𝑚/2), secondly sim-
ulate 𝛾, uniformly distributed random variable on (0, 1), and
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thirdly simulate ], Beta distributed random variable with the
parameters (2, 2/𝑚).

(b) If 𝛾 > 1− 𝑐
𝑖𝑖
𝑟(1 − V 2/𝑚 exp(−2𝜉/(𝑚+ 2))) then we will

go to (a) and so on; otherwise V󸀠 = V, 𝜉󸀠 = 𝜉.
(3) If the density function at the point (𝑥

𝑛+1
, 𝑡
𝑛+1
) equals

𝑝
(𝑖)

2
(𝑥

𝑛
, 𝑡
𝑛
; 𝑦, 𝜏) under fixed point (𝑥

𝑛
, 𝑡
𝑛
), then

𝑥
𝑛+1
= 𝑥

𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝜉

𝑛
(V

𝑛
)
2/𝑚

× 𝑎
𝑖
exp(−

2𝜉
𝑛

𝑚 + 2
))

1/2

𝜔
𝑛
,

𝑡
𝑛+1
= 𝑡

𝑛
− 𝑟 (𝑥

𝑛
, 𝑡
𝑛
) (V

𝑛
)
2/𝑚 exp(−

2𝜉
𝑛

𝑚 + 2
) ,

(59)

where {𝜉
𝑛
}
∞

𝑛=0
, {V

𝑛
}
∞

𝑛=0
, {𝜔

𝑛
}
∞

𝑛=0
is sequence of independent

Gammadistributed randomvariableswith parameters (2/𝑚),
Beta distributed random variables with parameters (2, 2/𝑚),
and independent isotropic vectors, respectively.

If at the moment 𝑛 was held break, then we will put
(𝑥

𝑛+𝑘
, 𝑡
𝑛+𝑘
) = (𝑥

𝑛
, 𝑡
𝑛
), 𝑘 = 0, 1, 2, ... obviously the sequence

of coordinate of the particle forms Markov chains. The
random process which was described above was considered
in Ermakov et al. [23] for the solution of initial BVP for the
heat equation and adapted in Kurbanmuradov [22] for the
heat equation with variable coefficients.

Now we prove the auxiliary Lemma 5.

Lemma 5. With the probability one Markov chain {𝑥
𝑛
, 𝑡
𝑛
}
∞

𝑛=0

converges when 𝑛 → ∞ to the random point of boundary
(𝑥

∞
, 𝑡
∞
) ∈ 𝜕Ω, or it is absorbed inside of the domain.

Proof. Since {𝑡
𝑛
} is decreasing sequence and 𝑡

𝑛
≥ 0, it has a

limit 𝑡
∞
= lim

𝑛→∞
𝑡
𝑛
. Let R

𝑛
− 𝜎 be algebra, which was

generated by random variables

{𝜔
𝑘
}
𝑛−1

𝑘=0
, {V

𝑘
}
𝑛−1

𝑘=0
,

{𝜉
𝑘
}
𝑛−1

𝑘=0
, {V󸀠

𝑘
}
𝑛−1

𝑘=0
, {𝜉

󸀠

𝑘
}
𝑛−1

𝑘=0
.

(60)

From the definition R
𝑛
and (57)–(59) it follows that 𝑥

𝑛

is measurable relatively R
𝑛
. It is obvious that the coordi-

nates of vector process formed limited martingale relatively
{R

𝑚
}
∞

𝑚=1
:

𝐸(
𝑥
𝑛+1

R
𝑛

)

= 𝐸{ (1 − 𝑞
𝑚
)

× [𝑥
𝑛
+ 2(𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝜉

𝑛
𝑎
𝑖
𝑛

)
1/2

exp(−
𝜉
𝑛

𝑚
)𝜔

𝑛
]

+ 𝑞
𝑚
(1 − 𝑞

1𝑚
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑐

𝑖
𝑛
𝑖
𝑛

)

× [𝑥
𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑎

𝑖
𝑛

𝜉
󸀠

𝑛
V󸀠
𝑛

2/𝑚

)
1/2

× exp(−
𝜉
󸀠

𝑛

𝑚 + 2
)𝜔

𝑛
]

+ 𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
) 𝑞

𝑚
𝑞
1𝑚

𝑛 − 1

𝑛

× [𝑥
𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑎

𝑖
𝑛

𝜍
𝑛
V2/𝑚
𝑛
)
1/2

× exp(− 𝜍

𝑚 + 2
)𝜔

𝑛
]

+
𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
) 𝑞

𝑚
𝑞
1𝑚

𝑛

𝑥
𝑛

R
𝑛

}

= (1 − 𝑞
𝑚
) [𝑥

𝑛
+ 2(𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑎

𝑖
𝑛

)
1/2

× 𝐸(𝜉
1/2

𝑛
exp(−

𝜉
𝑛

𝑚
)𝜔

𝑛
)]

+ 𝑞
𝑚
(1 − 𝑞

1𝑚
𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
))

× [𝑥
𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑎

𝑖
𝑛

)
1/2

× 𝐸((𝜉
󸀠

𝑛
V󸀠
𝑛

2/𝑚

) exp(−
𝜉
𝑛

𝑚 + 2
)𝜔

𝑛
)]

+ 𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
) 𝑞

𝑚
𝑞
1𝑚

𝑛 − 1

𝑛

× [𝑥
𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑎

𝑖
𝑛

)
1/2

× 𝐸((𝜉
󸀠

𝑛
V󸀠
𝑛

2/𝑚

) exp(−
𝜉
𝑛

𝑚 + 2
)𝜔

𝑛
)]

+ 𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
) 𝑞

𝑚
𝑞
1𝑚

𝑛 − 1

𝑛

× [𝑥
𝑛
+ 2(

𝑚

𝑚 + 2
𝑟 (𝑥

𝑛
, 𝑡
𝑛
) 𝑎

𝑖
𝑛

)
1/2

× 𝐸((𝜍
𝑛
V
𝑛

2/𝑚
)
1/2

exp(−
𝜍
𝑛

𝑚 + 2
)𝜔

𝑛
) ]

+
𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
) 𝑞

𝑚
𝑞
1𝑚

𝑛
𝑥
𝑛

= (1 − 𝑞
𝑚
) 𝑥

𝑛
+ 𝑞

𝑚
(1 − 𝑞

1𝑚
𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
)) 𝑥

𝑛

+ 𝑐
𝑖
𝑛
𝑖
𝑛

𝑟 (𝑥
𝑛
, 𝑡
𝑛
) 𝑞

𝑚
𝑞
1𝑚
𝑥
𝑛
= 𝑥

𝑛
,

(61)
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where {𝑥
𝑛
} are limited martingale; it converges with the

probability one Shiryaev [24].
Let (𝑥

∞
, 𝑡
∞
) = lim

𝑛→∞
(𝑥

𝑛
, 𝑡
𝑛
) be the limit vector. We

show that (𝑥
∞
, 𝑡
∞
) ∈ 𝜕Ω. If 𝑡

∞
= 0 then the process is broken

inside the domain. Let 𝑡
∞
> 0. As far as the process converges,

according to the formulas (50)–(58) we have

𝐸
(𝑥
0
,𝑡
0
)

󵄨󵄨󵄨󵄨𝑥𝑛+1 − 𝑥𝑛
󵄨󵄨󵄨󵄨 󳨀→ 0,

𝐸
(𝑥
0
,𝑡
0
)

󵄨󵄨󵄨󵄨𝑥𝑛+1 − 𝑥𝑛
󵄨󵄨󵄨󵄨 = 𝐸(𝑥0 ,𝑡0) {

√𝑟 (𝑥
𝑛
, 𝑡
𝑛
)ℎ (𝑟 (𝑥

𝑛
, 𝑡
𝑛
))} ,

(62)

where ℎ(𝑟) is strictly positive. Applying Lebesque Theorem
(about the limited convergence) we get

𝐸
(𝑥
0
,𝑡
0
)
(𝑟 (𝑥

∞
, 𝑡
∞
))
1/2
= 0. (63)

It means 𝑟(𝑥
∞
, 𝑡
∞
) = 0. Then from the definition of 𝑟(𝑥, 𝑡)

and using the formulae (49) we obtain

𝑅
1
(𝑥

∞
) = 0, (𝑥

∞
, 𝑡
∞
) ∈ 𝜕Ω. (64)

Lemma is proven.

4. Construction Unbiased and
𝜀-Biased Estimators

Let (𝑥
𝑘
, 𝑡
𝑘
)
∞

𝑘=0
be the trajectories of random process which

was described above. We will define on it the sequence of the
random variables {𝜂

𝑛
(𝑖
0
)}
∞

𝑛=0
. Let

Θ
0
= 1, Θ

𝑛
= Θ

𝑛−1
× 𝑉

𝑖
𝑛−1

𝑖
𝑛

(𝑥
𝑛−1
, 𝑡
𝑛−1
; 𝑥

𝑛
, 𝑡
𝑛
) , (65)

where 𝑉
𝑖𝑗
(𝑥

𝑛−1
, 𝑡
𝑛−1
; 𝑥

𝑛
, 𝑡
𝑛
) is defined as follows:

𝑉
𝑖𝑗
(𝑥

𝑛−1
, 𝑡
𝑛−1
; 𝑥

𝑛
, 𝑡
𝑛
)

=
𝑛𝑀

𝑖

(𝑛 − 1) 𝑐𝑖𝑖𝑞1𝑚
(1 − V2/𝑚

𝑛
exp(−

2𝜍
𝑛

𝑚 + 2
)) ,

(𝑖, 𝑗 = 1, 𝑛; 𝑖 ̸= 𝑗) ,

𝑉
𝑖𝑖
(𝑥

𝑛−1
, 𝑡
𝑛−1
; 𝑥

𝑛
, 𝑡
𝑛
) = 1; (𝑖 = 1, 𝑛) ;

𝑉
𝑖(𝑛+1)

(𝑥
𝑛−1
, 𝑡
𝑛−1
; 𝑥

𝑛
, 𝑡
𝑛
)

=
𝑛

𝑐
𝑖𝑖
𝑞
1𝑚

(1 − V2/𝑚
𝑛

exp(−
2𝜍

𝑛

𝑚 + 2
)) ; (𝑖 = 1, 𝑛) .

(66)

Here {𝜍
𝑛
}
∞

𝑛=0
, {V

𝑛
}
∞

𝑛=0
are the sequences of independent

Gamma function with the parameters (𝑚/2) and Beta func-
tion with parameters (2, 2/𝑚) distributed random variables,
respectively. We will define the sequence

𝜂
𝑛
(𝑖
0
) = Θ

𝑛
× 𝐹 (𝑥

𝑛
, 𝑡
𝑛
)

= Θ
𝑛
{
𝑢
𝑗
(𝑥

𝑛
, 𝑡
𝑛
) , 𝑖

𝑛
= 𝑗, 𝑗 ̸= 𝑛 + 1,

𝑓
𝑖
𝑛−1

(𝑥
𝑛
, 𝑡
𝑛
) , 𝑖

𝑛
= 𝑛 + 1.

(67)

If at the moment 𝑛 happen break 𝑛, we will put

𝜂
𝑛+𝑘

(𝑖
0
) = 𝜂

𝑛
(𝑖
0
) ,

(𝑥
𝑛+𝑘
, 𝑡
𝑛+𝑘
) = (𝑥

𝑛
, 𝑡
𝑛
) ,

𝑘 = 1, 2, . . . ,

(68)

where algebraR
𝑛
− 𝜎 generated until the moment 𝑛.

Theorem 6. Let the sequence be form martingale {𝜂
𝑛
(𝑖
0
)}
∞

𝑛=1

withR
𝑛
, respectively. If

∑
𝑗=1,...,𝑛; 𝑗 ̸=𝑖

𝑐
𝑖𝑗
<
(𝑛 − 1) 𝑐𝑖𝑖𝑞1𝑚

𝑛
, (𝑖 = 1, 𝑛) ,

max
(𝑥,𝑡)∈Ω

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑐0, (𝑐

0
= const, 𝑖 = 1, 𝑛) .

(69)

Then the sequence will be {𝜂
𝑛
(𝑖
0
)} uniformly integrable martin-

gale.

Proof. From the definition 𝜂
𝑛
(𝑖
0
) theR

𝑛
ismeasurable. In this

case

𝐸(𝜂
𝑛+1

(𝑖
0
)

𝑅
𝑛

)

= 𝐸(Θ
𝑛+1
×
𝐹 (𝑥

𝑛+1
, 𝑡
𝑛+1
)

R
𝑛

)

= 𝐸(Θ
𝑛
× 𝑉

𝑖
𝑛
𝑖
𝑛+1

(𝑥
𝑛
, 𝑡
𝑛
; 𝑥

𝑛+1
, 𝑡
𝑛+1
) ×
𝐹 (𝑥

𝑛+1
, 𝑡
𝑛+1
)

R
𝑛

)

= Θ
𝑛
𝐸 (𝑉

𝑖
𝑛
𝑖
𝑛+1

(𝑥
𝑛
, 𝑡
𝑛
; 𝑥

𝑛+1
, 𝑡
𝑛+1
) × 𝐹 (𝑥

𝑛+1
, 𝑡
𝑛+1
))

= Θ
𝑛
[

[

∑
𝑗=1,𝑛

𝛼
𝑖
𝑛
𝑗
∬

𝑄
(𝑖𝑛)

𝑟 (𝑥𝑛,𝑡𝑛)
𝑝
𝑖
𝑛
𝑗
(𝑥

𝑛
, 𝑡
𝑛
; 𝑦, 𝜏) 𝑢

𝑗
(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

+𝛼
𝑖
𝑛
𝑛+1
∬

𝑄
(𝑖𝑛)

𝑟 (𝑥𝑛 ,𝑡𝑛)
𝑝
𝑖
𝑛
𝑛+1
(𝑥

𝑛
, 𝑡
𝑛
; 𝑦, 𝜏) 𝑓

𝑖
𝑛

(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏]

]

= 𝜂
𝑛
(𝑖
0
) .

(70)

As far as the sequence is martingale {𝜂
𝑛
(𝑖
0
)}. We can show

the uniformly integrability of 𝜂
𝑛
(𝑖
0
). To do that it is enough

to show |𝜂
𝑛
(𝑖
0
)| < ∞.

Since

𝑢
𝑖 (𝑥, 𝑡) ∈ 𝐶 (𝐷 × [0, 𝑇]) ∩ 𝐶

2,1
(𝐷 × [0, 𝑇]) , (71)

andΩ is bounded domain |𝑢
𝑖
(𝑥, 𝑡)| ≤ const, for any (𝑥, 𝑡) ∈

Ω. From the condition of theorem |Θ
𝑛
| ≤ 1, it is followed

|𝜂
𝑛
(𝑖
0
)| ≤ const. It means {𝜂

𝑛
(𝑖
0
)} is uniformly integrable.

The theorem is proved.

Now we will construct computable (realizable) estimator
𝜂
𝑛
(𝑖
0
). We will take 𝜀-neighborhoods of the domain (𝜕Ω)

𝜀
=

{𝐷 × [0, 𝜀]} ∪ {(𝜕𝐷)
𝜀
× [0, 𝑇]}.
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Let𝑁
1
be a breakingmoment of process inside of domain.

𝑁
𝜀
is the first passage moment (𝜕Ω)

𝜀
. 𝑁 = min{𝑁

1
, 𝑁

𝜀
},

stopping moment of process {(𝑥
𝑛
, 𝑡
𝑛
)}. In this case the

probability of absorbing will be

𝑔 (𝑥
𝑛
, 𝑡
𝑛
) = {

1, (𝑥
𝑛
, 𝑡
𝑛
) ∈ (𝜕Ω)𝜀

𝛼
𝑖
𝑛
,(𝑛+1)

(𝑥
𝑛−1
, 𝑡
𝑛−1
) , (𝑥

𝑛
, 𝑡
𝑛
) ∈ Ω \ (𝜕Ω)𝜀.

(72)

From Lemma 5 it follows that𝑁 < ∞. It could be proved that
the mathematical expectation of the stopping time {(𝑥

𝑛
, 𝑡
𝑛
)}

of Markov process is finite.

Theorem 7. Let the condition of Theorem 6 be satisfied; then
the estimator 𝜂

𝑛
(𝑖
0
) will be unbiased estimator with finite

variance, where 𝑢
𝑖
0

(𝑥, 𝑡) is 𝑖
0
th component of solution vector

𝑢(𝑥, 𝑡) .

Proof. Since 𝜂
𝑛
(𝑖
0
) is uniformly integrable martingale and𝑁

is Markovmoment, according to the theorem in ([24, 25]) for
the martingale {𝜂

𝑛
(𝑖
0
)} we obtain

𝐸
(𝑥
0
,𝑡
0
)
𝜂
𝑁
(𝑖
0
) = 𝐸

(𝑥
0
,𝑡
0
)
𝜂
1
(𝑖
0
) . (73)

From the definition 𝜂
𝑛
(𝑖
0
)holds𝐸

(𝑥
0
,𝑡
0
)
𝜂
1
(𝑖
0
) = 𝑢

𝑖
0

(𝑥, 𝑡). From
condition of Theorem 6 𝐸(𝜂

𝑁
)
2
(𝑖
0
) < ∞ is valid accordingly

the variance is finite. The theorem is proved.

Further, from 𝜂
𝑁
(𝑖
0
) we could construct biased but

computable (realizable) estimator 𝜂∗
𝑁
(𝑖
0
). Let, for 𝑥 ∈ 𝜕𝐷,

𝑡 ∈ [0, 𝑇] and 𝜓
𝑖
(𝑥, 𝑡) = 𝑦

𝑖
(𝑥, 𝑡) for 𝑥 ∈ 𝐷, 𝜓

𝑖
(𝑥, 0) =

𝑦
0𝑖
(𝑥), (𝑥

∗
, 𝑡
∗
) closed to the point (𝑥, 𝑡) of boundary 𝜕Ω. 𝜂∗

𝑁

will be obtained with changing

𝑢
𝑖
(𝑥

𝑁
, 𝑡
𝑁
) in 𝜂

𝑁
(𝑖
0
) to 𝜓

𝑖
(𝑥

∗

𝑁
, 𝑡
∗

𝑁
) . (74)

Let us evaluate bias 𝜂∗
𝑁
(𝑖
0
). It is clear that

󵄨󵄨󵄨󵄨󵄨
𝐸
(𝑥,𝑡)
𝜂
𝑁
(𝑖
0
) − 𝑢

𝑖
0

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐸

(𝑥,𝑡)

󵄨󵄨󵄨󵄨𝜂
∗

𝑁
(𝑖
0
) − 𝜂

𝑁
(𝑖
0
)
󵄨󵄨󵄨󵄨 . (75)

If 𝑁 = 𝑁
1
, in this case the process is broken when do not

reach the boundary (𝜕Ω)
𝜀
and 𝜂∗

𝑁
(𝑖
0
) = 𝜂

𝑁
(𝑖
0
). If 𝑁 = 𝑁

𝜀

then (𝑥
𝑁
, 𝑡
𝑁
) ∈ (𝜕Ω)

𝜀
.

Let 𝐴
𝑖
(𝜀) be a module of continuity function 𝑢

𝑖
(𝑥, 𝑡). In

this case it is true:
󵄨󵄨󵄨󵄨𝜂
∗

𝑁
(𝑖
0
) − 𝜂

𝑁
(𝑖
0
)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨Θ𝑁

󵄨󵄨󵄨󵄨 𝐴 (𝜀) , (76)

where𝐴(𝜀) = max
𝑖
𝐴
𝑖
(𝜀), since |Θ

𝑁
| ≤ 1 then 𝐸

(𝑥,𝑡)
|𝜂
∗

𝑁
(𝑖
0
) −

𝑢
𝑖
0

(𝑥, 𝑡)| ≤ 𝐴(𝜀). Finiteness of variance followed from
𝐸𝜂

2

𝑁
(𝑖
0
) < ∞. The proposed algorithm we could generalize

for the case with variable coefficients 𝑐
𝑖𝑗
= 𝑐

𝑖𝑗
(𝑥, 𝑡) and one

could get the same results.

5. Computational Example

Let 𝐷 ∈ 𝑅
3 be bounded domains, Ω = 𝐷 × [0, 𝑇]. We will

consider for some mode linitial boundary value problem
𝜕𝑢

𝑖 (𝑥, 𝑡)

𝜕𝑡
− 𝑎

𝑖
Δ𝑢

𝑖 (𝑥, 𝑡) + 𝑐𝑖𝑖𝑢𝑖 (𝑥, 𝑡)

− ∑
𝑗=1,4; 𝑗 ̸=𝑖

𝑐
𝑖𝑗
𝑢
𝑗 (𝑥, 𝑡) = 𝑓𝑖 (𝑥, 𝑡) , (𝑖 = 1, 4)

(77)

for (𝑥, 𝑡) ∈ Ω with the initial boundary conditions

𝑢
𝑖 (𝑥, 𝑡) = 𝑦𝑖 (𝑥, 𝑡) , 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 4,

𝑢
𝑖 (𝑥, 0) = 𝑦0𝑖 (𝑥) , 𝑥 ∈ 𝐷, 𝑖 = 1, 4.

(78)

As domain is chosen as the simple ball,𝐷 = {(𝑥
1
, 𝑥

2
, 𝑥

3
) :

𝑥
2

1
+ 𝑥

2

2
+ 𝑥

2

3
≤ 𝑅

2
}.

The coefficients

(

𝑎
1

𝑎
2

𝑎
3

𝑎
4

) = (

0.5

0.7

0.1

1.0

) ,

{𝑐
𝑖𝑗
}
𝑖,𝑗=1,...,4

=
[
[
[

[

2 0.4 0.5 0.2

0.7 3 0.4 0.6

0.3 0.1 1 0.1

0.2 0.3 0.3 1.5

]
]
]

]

(79)

The initial and boundary conditions

𝑦
01 (𝑥) = 𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3
;

𝑦
1 (𝑥, 𝑡) = 𝑅

2 exp (𝑡) ;

𝑦
02 (𝑥) = (𝑥1𝑥2𝑥3)

2
;

𝑦
2 (𝑥, 𝑡) = exp (𝑡) (𝑥2𝑥3)

2
(𝑅

2
− 𝑥

2

2
− 𝑥

2

3
) ;

𝑦
03 (𝑥) = exp (𝑥

1
+ 𝑥

2
+ 𝑥

3
) ;

𝑦
3 (𝑥, 𝑡) = exp (𝑡 + 𝑥

1
+ 𝑥

2
+ 𝑥

3
) ;

𝑦
04 (𝑥) = 1; 𝑦

4 (𝑥, 𝑡) = exp (𝑡𝑥
1
𝑥
2
𝑥
3
) .

(80)

Left hand sides

𝑓
1 (𝑥, 𝑡) = exp (𝑡) [4 (𝑥2

1
+ 𝑥

2

2
+ 𝑥

2

3
) − 0.3(𝑥

1
𝑥
2
𝑥
3
)
2
− 3]

− 0.2 (𝑥
1
+ 𝑥

2
+ 𝑥

3
+ 𝑡) − 0.5 exp (𝑥

1
𝑥
2
𝑥
3
𝑡) ;

𝑓
2 (𝑥, 𝑡) = exp (𝑡) [3.5(𝑥1𝑥2𝑥3)

2
− 1.4(𝑥

1
𝑥
2
)
2

+(𝑥
2
𝑥
3
)
2
+ (𝑥

1
𝑥
3
)
2
− 0.4 (𝑥

2

1
+ 𝑥

2

2
+ 𝑥

2

3
)]

− 0.3 (𝑥
1
+ 𝑥

2
+ 𝑥

3
+ 𝑡) − 0.2 exp (𝑥

1
𝑥
2
𝑥
3
𝑡) ;
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Table 1: The results of computational experiments.

(𝑥
0
, 𝑡
0
) 𝑖

0
𝑁

𝑡
𝜀 𝑈

𝑒
MC 3𝜎 err

(0.1; −0.8; 0.4; 1.2) 1 5000 0.005 2.689294 2.881862 0.2821 0.1925
(0.1; −0.8; 0.4; 1.2) 2 5000 0.005 0.003399 0.018739 0.224699 0.015339
(0.1; −0.8; 0.4; 1.2) 3 5000 0.005 2.459603 2.483835 0.21815 0.02423
(0.1; −0.8; 0.4; 1.2) 4 5000 0.005 0.962327 0.95895 0.03377 0.1598
(−0.5; 0.25; −0.4; 1.3) 1 5000 0.005 1.733942 1.554352 0.32319 0.17939
(−0.5; 0.25; −0.4; 1.3) 2 5000 0.005 0.009173 0.009841 0.215628 0.000668
(−0.5; 0.25; −0.4; 1.3) 3 5000 0.005 1.91554 1.980669 0.18057 0.064528
(−0.5; 0.25; −0.4; 1.3) 4 5000 0.005 1.067159 1.084443 0.162095 0.01728
(𝑥0; 𝑡0) is the point which solved BVP;𝑁𝑡 is the quantity of samples (trajectories); 𝜀 is neighborhood area; 𝑖0 is the number of equation;𝑈𝑒 is exact solution at
the point (𝑥0; 𝑡0). MC is Monte Carlo solutions; 3𝜎 is confidence interval; err is the difference between exact ant MC solutions err = |𝑢𝑖

0

(𝑥0; 𝑡0) −MS|.

𝑓
3 (𝑥, 𝑡) = 4.7 exp (𝑥1 + 𝑥2 + 𝑥3 + 𝑡)

− exp (𝑡) [0.5 (𝑥2
1
+ 𝑥

2

2
+ 𝑥

2

3
) + 0.4(𝑥

1
𝑥
2
𝑥
3
)
2
]

− 0.7 exp (𝑥
1
𝑥
2
𝑥
3
𝑡) ;

𝑓
4 (𝑥, 𝑡) = exp (𝑥

1
𝑥
2
𝑥
3
𝑡)

× [(𝑥
1
𝑥
2
𝑥
3
) + 3.5 − 𝑡

2
((𝑥

1
𝑥
2
)
2

+(𝑥
2
𝑥
3
)
2
+ (𝑥

1
𝑥
3
)
2
)]

− exp (𝑡) [0.3 (𝑥2
1
+ 𝑥

2

2
+ 𝑥

2

3
) − 0.4(𝑥

1
𝑥
2
𝑥
3
)
2
]

− 0.6 (𝑥
1
+ 𝑥

2
+ 𝑥

3
+ 𝑡) .

(81)

The exact solutions are known:

𝑢
1 (𝑥, 𝑡) = exp (𝑡) (𝑥2

1
+ 𝑥

2

2
+ 𝑥

2

3
) ,

𝑢
2 (𝑥, 𝑡) = exp (𝑡) (𝑥1𝑥2𝑥3)

2
,

𝑢
3 (𝑥, 𝑡) = exp (𝑥

1
+ 𝑥

2
+ 𝑥

3
+ 𝑡) ,

𝑢
4 (𝑥, 𝑡) = exp (𝑥

1
𝑥
2
𝑥
3
𝑡) .

(82)

6. Conclusions

It is known that the distinguishing feature of the vector algo-
rithm is that its “weight” appears to be a matrix weight. This
matrix weight is multiplied by the kernel matrix of the system
of integral equations divided by a transition density function
after each transition in the Markov chain simulation. In this
case the computational complexity is higher enough than
simple Monte Carlo method. On the contrary to the vector
algorithmswe proposed a newMonte Carlo algorithm for the
solution of system of integral equations. This method has the
simple structure of the computation algorithm and the errors
do not depend on the dimension of domain and smoothness
of boundary. One can solve the problem at one point and
we do not use matrix weights. Proposed algorithm applied
to the solution of system of the parabolic equations. To do
so we derived corresponding system of integral equations
and construct a special probabilistic representation. This

probabilistic representation uses for simulation the random
process and construction the unbiased and 𝜀-biased estimator
for the solution of systems IEs.

Numerical experiments show that the computational
complexity of our algorithm is reduced. In the future the
proposed algorithm might be generalized for the case with
variable coefficients 𝑐

𝑖𝑗
= 𝑐

𝑖𝑗
(𝑥, 𝑡). The results of numerical

experiments are shown with the probability almost one;
the approximate solution tends to the exact solution of the
problem. In the given example the exact solution is known;
therefore we can make sure that all the estimators really are
in the confidence intervals (see Table 1).
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[5] E. Yusufoğlu, “Numerical solving initial value problem for
Fredholm type linear integro—differential equation system,”



12 Abstract and Applied Analysis

Journal of the Franklin Institute, vol. 346, no. 6, pp. 636–649,
2009.

[6] J. Pour-Mahmoud, M. Y. Rahimi-Ardabili, and S. Shahmorad,
“Numerical solution of the system of Fredholm integro—
differential equations by the Tau method,” Applied Mathematics
and Computation, vol. 168, no. 1, pp. 465–478, 2005.

[7] A. Arikoglu and I. Ozkol, “Solutions of integral and integro—
differential equation systems by using differential transform
method,”Computers andMathematics withApplications, vol. 56,
no. 9, pp. 2411–2417, 2008.

[8] K. Maleknejad, M. Shahrezaee, and H. Khatami, “Numerical
solution of integral equations system of the second kind by
block-pulse functions,” Applied Mathematics and Computation,
vol. 166, no. 1, pp. 15–24, 2005.

[9] K. Maleknejad, F. Mirzaee, and S. Abbasbandy, “Solving linear
integro-differential equations systemby using rationalizedHaar
functions method,”Applied Mathematics and Computation, vol.
155, no. 2, pp. 317–328, 2004.

[10] S. Yüzbaşı, N. Şahin, and M. Sezer, “Numerical solutions of
systems of linear Fredholm integro-differential equations with
Bessel polynomial bases,” Computers and Mathematics with
Applications, vol. 61, no. 10, pp. 3079–3096, 2011.

[11] A. Tahmasbi and O. S. Fard, “Numerical solution of linear
Volterra integral equations system of the second kind,” Applied
Mathematics and Computation, vol. 201, no. 1-2, pp. 547–552,
2008.

[12] M. Rabbani, K. Maleknejad, and N. Aghazadeh, “Numerical
computational solution of the Volterra integral equations sys-
tem of the second kind by using an expansion method,”Applied
Mathematics and Computation, vol. 187, no. 2, pp. 1143–1146,
2007.

[13] P. J. van der Houwen and B. P. Sommeijer, “Euler-Chebyshev
methods for integro-differential equations,” Applied Numerical
Mathematics, vol. 24, no. 2-3, pp. 203–218, 1997.

[14] A. G. Ramm, “Investigation of a class of systems of integral
equations,” Journal of Mathematical Analysis and Applications,
vol. 76, no. 2, pp. 303–308, 1980.

[15] M. C. de Bonis and C. Laurita, “Numerical treatment of
second kind Fredholm integral equations systems on bounded
intervals,” Journal of Computational and Applied Mathematics,
vol. 217, no. 1, pp. 64–87, 2008.

[16] A. R. Vahidi and M. Mokhtari, “On the decomposition method
for system of linear Fredholm integral equations of the second
kind,” Journal of AppliedMathematical Sciences, vol. 2, no. 2, pp.
57–62, 2008.

[17] G. A. Mikhailov, Optimization of Weighted Monte Carlo Meth-
ods, Springer, 1992.

[18] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva,
Linear and Quasilinear Equations of Parabolic Type, American
Mathematical Society, 1968.

[19] J. Lions, Optimal Control of Systems Governed by Partial Differ-
ential Equations, vol. 170 of Grundlehren der Mathematischen
Wissenschaften, 1971.

[20] L. P. Kupcov, “The mean property and the maximum principle
for parabolic equations of second order,” Soviet Mathematics.
Doklady, vol. 19, no. 5, pp. 741–747, 1978.

[21] A. Rasulov, M. Mascagni, and G. Raimova, Monte Carlo Meth-
ods for Solution Linearand Nonlinear Boundary Value Problems,
Monograph, UWED Press, Tashkent, Uzbekistan, 2006.

[22] O. Kurbanmuradov, Random walks for non-stationary problems
of mathematical physics, [PhD thesis], Novosibirsk, Russia, 1984,
(Russian).

[23] S. M. Ermakov, V. V. Nekrutkin, and A. S. Sipin, Random Pro-
cesses for Classical Equations of Mathematical Physics, Kluwer
Academic Publishers, 1989.

[24] A. N. Shiryaev, Probability, Springer, New York, NY, USA, 1995.
[25] P. A. Meyer, Probability and Potentials, Blasdell Publishing,

Waltham, Mass, USA, 1966.


