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We establish an SEIQRS epidemic model with periodic transmission rate to investigate the spread of seasonal HFMD inWenzhou.
The value of this study lies in two aspects. Mathematically, we show that the global dynamics of the HFMDmodel can be governed
by its reproduction number 𝑅

0
; if 𝑅

0
< 1, the disease-free equilibrium of the model is globally asymptotically stable, which means

that the disease will vanish after some period of time; while if 𝑅
0
> 1, the model has at least one positive periodic solution and

is uniformly persistent, which indicates that HFMD becomes an endemic disease. Epidemiologically, based on the statistical data
of HFMD in Wenzhou, we find that the HFMD becomes an endemic disease and will break out in Wenzhou. One of the most
interesting findings is that, for controlling the HFMD spread, we must increase the quarantined rate or decrease the treatment
cycle.

1. Introduction

Hand, foot, and mouth disease (HFMD) was first reported
in New Zealand in 1957 and is caused by Coxsackievirus A16
(CVA16) and human enterovirus 71 (HEV71) and occasion-
ally byCoxsackie virusA4-A7, A9, A10, B1-B3, andB5.HFMD
is an acute viral illness that usually affects infants and children
younger than 5 years old, and, however, it can sometimes
occur in adults. HFMD is characterized by fever, intraoral
vesicles and erosions, and papulovesicles that favor the palms
and soles. HFMD is spread from person to person through
nose and throat secretions (such as saliva, sputum, or nasal
mucus), blister fluid, or stool of infected persons [1, 2].

HFMD is moderately contagious and usually not a seri-
ous illness among the infected population; however, recent
outbreak of HFMD in countries such as China, Singapore,
and Finland has brought the world attention to HFMD due
to complications of death related cases [3–10]. In 2008, there
were 488,955 cases reported, with a morbidity of 37/100,000,
mortality of 0.0095/100,000, and ill-death rate of 0.26/1000;
while, in 2009, there were 1,155,525 cases reported [11]. Due
to the severity of this disease, the Ministry of Health of

the People’s Republic of China upgraded HFMD to a Class
C communicable disease on May 2, 2008.

It is obvious that HFMD not only causes health problems
but also has great social and economic impacts which are not
easily quantifiable. So it is important to understand the spread
dynamics of HFMD among the susceptible populations and
to enable policy makers to take effective measures to curb the
disease spread and reduce the adverse impact of the disease
[12, 13].

There are several types of analytical models that are
valuable to understand and predict transmission of HFMD.
One is the statistical models which can help us find novel
information concerning pathogen detection and some prob-
able coinfection factors in HFMD and have been applied
to understand HFMD’s spatiotemporal transmission and
discover the relationship between HFMD occurrence and
climate [2–11, 14, 15]. The other is compartmental differential
equation model [12, 13, 16–20]. Of them, Tiing and Labadin
[16] were the first to propose a simple SIR epidemic model
to predict the number of the infected and the duration of
an outbreak when HFMD occurs and found that the disease
spread quite rapidly and the parameter that may be able to
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be controlled would be the number of susceptible persons.
Roy and Haider [12] and Roy [13] established a simple SEIR
model to understand the dynamics of HFMD among young
children and found that disease transmission dependedmore
on the number of actively infected people in the population
at the initial time and could be controlled by quarantine
of more actively infected individuals. Wang and Xue [18]
and Yang et al. [19] established SEIQR (susceptible-exposed-
infectious-quarantined-recovered) model, respectively, and
estimated the basic reproduction number for the HFMD
transmission in Mainland China and predicted that HFMD
was an endemic disease in China.

After a susceptible individual is infected, he/she firstly
enter the incubation period of HFMD, which period is
about 3 to 7 days. After the incubation period, the infected
will show some clinical symptoms, such as having a fever,
poor appetite, malaise, and sore throat, and few people may
develop dehydration, febrile seizures, encephalitis, meningi-
tis, cardiomyopathy, and so forth. And the infected people
will fully recover after 7 to 10 days [1]. The occurrence of
HFMD has seasonal characteristics and is often associated
with climate changes [11, 21]. Periodic changing in the birth
rate [22] and seasonally changing in the contact rate [23] are
often regarded as sources of periodicity.

In the sense of seasonally changing in the contact rate,
Liu [17] and Ma et al. [20] established HFMD with periodic
transmission rate, respectively. In [17], Liu constructed a
periodic SEIQR epidemic model to simulate the dynamics
of HFMD transmission and showed that quarantine in the
children population had a positive impact on controlling the
spread of HFMD. And Ma et al. [20] proposed a SEIIeQR
HFMD model, and found that the recessive subpopulation
played an important role in the spread of HFMD, and only
quarantining the infected is not an effective measure in
controlling the disease.

Wenzhou is a prefecture-level city in southeastern Zhe-
jiang, province in China. At the time of the 2010 Chinese cen-
sus, 9,122,100 people lived in Wenzhou [24]. Since Wenzhou
has a humid subtropical climate zone with an annual average
18.08∘C (64.5∘F), it is of particular public health significance
to update molecular epidemiology of HFMD in Wenzhou. It
is reported that, in 2012, there were 147,941 HFMD cases and
17 deaths in Zhejiang province, and it is the first of the “ten
legal infectious diseases”; there were 41,438 HFMD cases and
4 deaths in Wenzhou [25]. The numbers of weekly reported
HFMD cases in Wenzhou from March 5, 2010, to December
27, 2013, are listed in Table 1.

The aim of this study is to use mathematical modeling to
gain some insights into the transmission dynamics of HFMD
in Wenzhou and to assess the aforementioned preventive
strategies. In particular, we aim to answer the following
questions through our analytic and numerical results of the
HFMDmodel.

(1) What is the disease dynamics of the HFMD in
Wenzhou?

(2) How can we control the HFMD spread in Wenzhou?
The paper is organized as follows. In Section 2, we derive

a SEIQRS HFMD model. In Section 3, we give the main

theoretical results of theHFMDmodel. In Section 4, based on
the HFMD data of the Wenzhou Center for Disease Control
and Prevention, we perform some simulation results of the
model and sensitivity analysis. In Section 5, we give a brief
discussion.

2. Model Derivation

In order to establish an HFMD model in Wenzhou, we
classify the population into five compartments according to
their states: susceptible, exposed, infected, quarantined, and
recovered, which are denoted by 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), and
𝑅(𝑡), respectively. We denote the total population by 𝑁(𝑡),
that is 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). And the
nonautonomous differential equations for HFMDmodel are

𝑑𝑆

𝑑𝑡
= Λ − 𝑑𝑆 −

𝛽 (𝑡) 𝑆𝐼

𝑆 + 𝛼𝐼
+ 𝜂𝑅,

𝑑𝐸

𝑑𝑡
=

𝛽 (𝑡) 𝑆𝐼

𝑆 + 𝛼𝐼
− (𝑑 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝑑 + 𝛿

1
+ 𝑘 + 𝛾

1
) 𝐼,

𝑑𝑄

𝑑𝑡
= 𝑘𝐼 − (𝑑 + 𝛿

2
+ 𝛾

2
) 𝑄,

𝑑𝑅

𝑑𝑡
= 𝛾

1
𝐼 + 𝛾

2
𝑄 − (𝑑 + 𝜂) 𝑅,

(1)

and the meaning and units of each variable and constant in
model (1) are as follows:

Λ: the recruitment rate of susceptible (week−1),
𝑑: the per capita natural mortality rate (week−1),
𝛽(𝑡): the periodic transmission rate coefficient, which
is a continuous, positive 𝜔-periodic function,
𝛼 (0 < 𝛼 ≤ 1): the “psychological” effect, which can
be interpreted as follows: when an infectious disease
appears and spreads in a region, people deter from
risky behavior or from taking precautionarymeasures
in relation to the disease outbreak; human behavior
change consequently leads to reduction in number of
real susceptible individuals or effective contact rates
[26],
1/𝜎: the mean incubation period (week),
𝑘: the quarantined rate (week−1); this means that
some of the infected people will be hospitalized
for treatment, and, thus, these quarantined 𝑄(𝑡) are
isolated from other subpopulations,
𝛾
1
: the infectious recover rate, which means that the

infectious individuals recover and return to recovered
compartment 𝑅 from compartments 𝐼 (week),
𝛾
2
: the quarantined rate, which means that the quar-

antined individuals recover and return to recovered
compartment 𝑅 from compartments 𝑄 (week),
𝛿
1
: the disease-induced mortality for the infective

individuals (week−1),
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Table 1: The numbers of weekly reported HFMD cases in Wenzhou.

Week Data Week Data Week Data Week Data Week Data Week Data Week Data Week Data
1 368 26 331 51 46 76 366 101 164 126 469 151 238 176 749
2 380 27 320 52 47 77 371 102 193 127 413 152 189 177 794
3 457 28 475 53 136 78 317 103 234 128 413 153 145 178 708
4 615 29 415 54 153 79 291 104 226 129 467 154 141 179 600
5 581 30 339 55 197 80 441 105 264 130 429 155 131 180 518
6 694 31 352 56 366 81 549 106 456 131 439 156 118 181 505
7 924 32 201 57 322 82 395 107 478 132 676 157 223 182 523
8 1124 33 254 58 401 83 478 108 743 133 861 158 268 183 520
9 1200 34 226 59 460 84 410 109 876 134 793 159 351 184 446
10 1539 35 243 60 549 85 565 110 1035 135 765 160 455 185 510
11 1744 36 182 61 574 86 508 111 1403 136 645 161 517 186 714
12 1706 37 173 62 767 87 543 112 1660 137 491 162 596 187 917
13 1528 38 187 63 1165 88 538 113 1908 138 542 163 577 188 672
14 1329 39 214 64 1247 89 787 114 2240 139 600 164 517 189 589
15 1252 40 186 65 1168 90 689 115 1974 140 644 165 552 190 482
16 1447 41 166 66 1060 91 854 116 2163 141 579 166 546 191 369
17 1663 42 192 67 1388 92 785 117 1545 142 691 167 668 192 326
18 1346 43 190 68 1686 93 618 118 1611 143 777 168 874 193 366
19 1247 44 181 69 1532 94 476 119 1868 144 783 169 1068 194 491
20 1094 45 171 70 1323 95 414 120 1683 145 732 170 1266 195 402
21 794 46 95 71 819 96 365 121 1631 146 561 171 1001 196 439
22 673 47 66 72 743 97 308 122 1228 147 636 172 1037 197 371
23 584 48 55 73 636 98 206 123 758 148 441 173 1363 198 358
24 448 49 37 74 602 99 162 124 502 149 345 174 1051 199 382
25 420 50 42 75 478 100 161 125 519 150 225 175 995

𝛿
2
: the disease-induced mortality for the quarantined

individuals (week−1),
𝜂: the progression rate of the recovered individual 𝑅.

3. Dynamics Analysis of the HFMD Model

3.1. Preliminaries. Let (R𝑛
,R𝑛

+
) be the standard ordered 𝑛-

dimensional Euclidean space with a norm ‖ ⋅ ‖. For 𝑢, V ∈ R𝑛,
we denote 𝑢 ≥ V, if 𝑢 − V ∈ R𝑛

+
; 𝑢 > V, if 𝑢 − V ∈ R𝑛

+
0; and

𝑢 ≫ V, if 𝑢 − V ∈ Int(R𝑛

+
).

We briefly present some main results of Floquet theory.
Consider the following linear periodic system:

𝑑u
𝑑𝑡

= 𝐴 (𝑡) u, (2)

where u is an 𝑛 × 1 vector and 𝐴(𝑡) is an 𝑛 × 𝑛 matrix of
principal periodic 𝜔 > 0, such that 𝐴(𝑡 + 𝜔) = 𝐴(𝑡).

Let Φ
𝐴(⋅)

(𝑡) be a fundamental solution matrix of (2); that
is, a nonsingular matrix each of the columns of which is
a solution of equation such that Φ

𝐴(⋅)
(0) = I, the identify

matrix. Floquet theory show that the fundamental matrix
has the form Φ

𝐴(⋅)
(𝑡) = 𝑃(𝑡)𝑒

𝐵𝑡, where 𝑃(𝑡) = 𝑃(𝑡 + 𝜔) is
a periodic matrix with initial values 𝑃(0) = I and 𝐵 is a
constant matrix. The matrix Φ

𝐴(⋅)
(𝑇) = 𝑒

𝐵𝑇 is the so-called

principle or monodromy or Floquet transition matrix of (2).
Let 𝑟(Φ

𝐴(⋅)
(𝜔)) be the spectral radius of Φ

𝐴(⋅)
(𝜔). It then

follows from [27, 28] thatΦ
𝐴(⋅)

(𝜔) is a matrix with all entries
positive for each 𝑡 > 0. By the Perron-Frobenius theorem
[29], 𝑟(Φ

𝐴(⋅)
(𝜔)) is the principal eigenvalue ofΦ

𝐴(⋅)
(𝜔) in the

sense that it is simple and admits an eigenvector 𝑢
∗

≫ 0.
The following result is useful for our subsequent comparison
arguments.

Lemma 1 (see [30, Lemma 2.1]). Let 𝑝 = (1/𝜔) ln 𝑟(Φ
𝐴(⋅)

(𝜔)).
Then there exists a positive, 𝜔-periodic function V(𝑡) such that
𝑒
𝑝𝑡V(𝑡) is a solution of (2).

3.2. Positively Invariant Sets. The study of the dynamics
of model (1) requires the introduction of the following
important sets:

𝑋 = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ R
5

+
} ,

Γ = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ 𝑋, 0 < 𝑆 + 𝐸 + 𝐼 + 𝑄 + 𝑅 ≤
Λ

𝑑
} .

(3)

And we can easily obtain the following theorem of the
positively invariant sets.
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Theorem 2 (positively invariant sets). 𝑋 and Γ are positive
invariant sets for model (1).

Proof. It shows that𝑋 is positively invariant. Frommodel (1),
the total population𝑁(𝑡) satisfies the following equation:

Λ − (𝑑 + 𝛿
1
+ 𝛿

2
)𝑁 ≤

𝑑𝑁

𝑑𝑡

= Λ − 𝑑𝑁 − 𝛿
1
𝐼 − 𝛿

2
𝑄 ≤ Λ − 𝑑𝑁.

(4)

Hence, by integration, we check

Λ

𝑑 + 𝛿
1
+ 𝛿

2

+ (𝑁 (0) −
Λ

𝑑 + 𝛿
1
+ 𝛿

2

) 𝑒
−(𝑑+𝛿

1
+𝛿
2
)𝑡

≤ 𝑁 (𝑡) ≤
Λ

𝑑
+ (𝑁 (0) −

Λ

𝑑
) 𝑒

−𝑑𝑡
.

(5)

Hence,

Λ

𝑑 + 𝛿
1
+ 𝛿

2

≤ lim
𝑡→∞

inf 𝑁(𝑡) ≤ lim
𝑡→∞

sup𝑁(𝑡) ≤
Λ

𝑑
, (6)

which implies that Γ is positively invariant with respect to
model (1).

3.3. The Basic Reproduction Number 𝑅
0
. It is easy to see

that model (1) always has one disease-free equilibrium 𝑃
0
=

(Λ/𝑑, 0, 0, 0, 0). By the definition of Bacaër and Guernaoui
[31] and the general calculation procedure inWang and Zhao
[32], we have

F = (

(

𝛽(𝑡) 𝑆𝐼

𝑆 + 𝛼𝐼

0

0

0

0

)

)

,

V =

(
(
(
(
(
(
(

(

(𝑑 + 𝜎) 𝐸

(𝑑 + 𝛿
1
+ 𝑘 + 𝛾

1
) 𝐼 − 𝜎𝐸

(𝑑 + 𝛿
2
+ 𝛾

2
) 𝑄 − 𝑘𝐼

𝛽 (𝑡) 𝑆𝐼

𝑆 + 𝛼𝐼
+ 𝑑𝑆 − Λ − 𝜂𝑅

(𝑑 + 𝜂) 𝑅 − 𝛾
1
𝐼 − 𝛾

2
𝑄

)
)
)
)
)
)
)

)

,

V
−
=

(
(
(
(
(
(
(

(

(𝑑 + 𝜎) 𝐸

(𝑑 + 𝛿
1
+ 𝑘 + 𝛾

1
) 𝐼

(𝑑 + 𝛿
2
+ 𝛾

2
) 𝑄

𝛽 (𝑡) 𝑆𝐼

𝑆 + 𝛼𝐼
+ 𝑑𝑆

(𝑑 + 𝜂) 𝑅

)
)
)
)
)
)
)

)

,

V
−
= (

0

𝜎𝐸

𝑘𝐼

Λ + 𝜂𝑅

𝛾
1
𝐼 + 𝛾

2
𝑄

).

(7)

It follows that

𝐹 (𝑡) = (

0 𝛽 (𝑡) 0

0 0 0

0 0 0

) , 𝑀 = (
−𝑑 𝜂

0 − (𝑑 + 𝜂)
) ,

𝑉 (𝑡) = (

𝑑 + 𝜎 0 0

−𝜎 𝑑 + 𝛿
1
+ 𝑘 + 𝛾

1
0

0 −𝑘 𝑑 + 𝛿
2
+ 𝛾

2

) .

(8)

Furthermore, 𝐹(𝑡) is nonnegative, and −𝑉(𝑡) is coopera-
tive in the sense that the off-diagonal elements of −𝑉(𝑡) are
nonnegative.

It is obvious that −𝑑 and −(𝑑+𝜂) are the eigenvalues of𝑀
and are negative.Thus𝑀 is stable; namely, 𝑟(𝜙

𝑀
(𝜔)) < 1. We

can see that the eigenvalues of −𝑉 are the diagonal elements
and are negative. So −𝑉 is stable; namely, 𝑟(𝜙

−𝑉
(𝜔)) < 1.

Let 𝑌(𝑡, 𝑠), 𝑡 ≥ 𝑠, be the evolution operator of the linear
𝜔-periodic system. Consider

𝑑𝑦

𝑑𝑡
= −𝑉 (𝑡) 𝑦. (9)

That is, for each 𝑠 ∈ R, the 3 × 3matrix 𝑌(𝑡, 𝑠) satisfies

𝑑𝑌 (𝑡, 𝑠)

𝑑𝑡
= −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠, 𝑌 (𝑠, 𝑠) = I, (10)

where I is the 3 × 3 identity matrix. Thus, the monodromy
matrixΦ

−𝑉
(𝑡) of (9) equals 𝑌(𝑡, 0), 𝑡 ≥ 0.

Following the method inWang and Zhao [32], we let 𝜙(𝑠)
be 𝜔-periodic in 𝑠 and the initial distribution of infectious
individuals. So𝐹(𝑠)𝜙(𝑠) is the rate of new infections produced
by the infected individuals who are introduced at time 𝑠.
When 𝑡 ≥ 𝑠, 𝑌(𝑡, 𝑠)𝐹(𝑠)𝜙(𝑠) gives the distribution of those
infected individuals who are newly infected by 𝜙(𝑠) and
remain in the infected compartments at time 𝑡. Naturally,

∫

𝑡

−∞

𝑌 (𝑡, 𝑠) 𝐹 (𝑠) 𝜙 (𝑠) 𝑑𝑠

= ∫

∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎

(11)

is the distribution of accumulative new infections at time 𝑡

produced by all those infected individuals 𝜙(𝑠) introduced at
time previous to 𝑡.

Let 𝐶
𝜔
be the ordered Banach space of all 𝜔-periodic

functions from R to R3, which is equipped with the maxi-
mum norm ‖ ⋅ ‖ and the positive cone 𝐶

+

𝜔
:= {𝜙 ∈ 𝐶

𝜔
: 𝜙(𝑡) ≥

0, ∀𝑡 ∈ R}. Then we can define a linear operator. Consider

(𝐿𝜙) (𝑡) = ∫

∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,

∀𝑡 ∈ R, 𝜙 ∈ 𝐶
𝜔
.

(12)
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𝐿 is called the next infection operator and the spectral radius
of 𝐿 is defined as the basic reproduction number. Consider

𝑅
0
:= 𝑟 (𝐿) , (13)

for the periodic epidemic model.

Lemma 3 (see [32]). The following statements are valid:

(i) 𝑅
0
= 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) = 1;

(ii) 𝑅
0
> 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) > 1;

(iii) 𝑅
0
< 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) < 1.

Thus, the disease-free equilibrium 𝑃
0

= (Λ/𝑑, 0, 0, 0, 0) of
model (1) is asymptotically stable if 𝑅

0
< 1 and unstable if

𝑅
0
> 1.

Now we introduce the linear 𝜔-periodic system

𝑑𝑤

𝑑𝑡
= (−𝑉 (𝑡) +

𝐹 (𝑡)

𝜆
)𝑤, 𝑡 ∈ R

+
(14)

with parameter 𝜆 ∈ R. Let 𝑊(𝑡, 𝑠, 𝜆), 𝑡 ≥ 𝑠, be the evolu-
tion operator of system (14) on R4. Clearly, Φ

𝐹−𝑉
(𝑡) =

𝑊(𝑡, 0, 1), 𝑡 ≥ 0. Moreover,

− 𝑉 (𝑡) +
𝐹 (𝑡)

𝜆

= (

− (𝑑 + 𝜎)
𝛽 (𝑡)

𝜆
0

𝜎 − (𝑑 + 𝛿
1
+ 𝑘 + 𝛾

1
) 0

0 𝑘 − (𝑑 + 𝛿
2
+ 𝛾

2
)

) .

(15)

Hence, we derive

Φ
𝐹/𝜆−𝑉

(𝑡) = 𝑊 (𝑡, 0, 𝜆) . (16)

Following the general calculation procedure in Wang and
Zhao [32], the basic reproduction number 𝑅

0
is the unique

solution of 𝑟(𝑊(𝜔, 0, 𝜆)) = 1.

3.4. Extinction of the Disease

Theorem 4. The disease-free equilibrium 𝑃
0
= (Λ/𝑑, 0, 0, 0, 0)

of model (1) is globally asymptotically stable if 𝑅
0

< 1 and
unstable if 𝑅

0
> 1.

Proof. If 𝑅
0

< 1, according to Lemma 3, we have 𝑟(Φ
𝐹−𝑉

(𝜔)) < 1. From model (1), for 𝑡 ≥ 0, we know that

𝑑𝐸

𝑑𝑡
≤ 𝛽 (𝑡) 𝐼 − (𝑑 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝑑 + 𝛿

1
+ 𝑘 + 𝛾

1
) 𝐼,

𝑑𝑄

𝑑𝑡
= 𝑘𝐼 − (𝑑 + 𝛿

2
+ 𝛾

2
) 𝑄.

(17)

Consider the following comparison system:

𝑑𝐸

𝑑𝑡
= 𝛽 (𝑡) 𝐼 − (𝑑 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝑑 + 𝛿

1
+ 𝑘 + 𝛾

1
) 𝐼,

𝑑𝑄

𝑑𝑡
= 𝑘𝐼 − (𝑑 + 𝛿

2
+ 𝛾

2
) 𝑄;

(18)

that is,

𝑑𝑔

𝑑𝑡
= (𝐹 (𝑡) − 𝑉 (𝑡)) 𝑔 (𝑡) , 𝑔 (𝑡) = (𝐸 (𝑡) , 𝐼 (𝑡) , 𝑄 (𝑡))

𝑇

.

(19)

By Lemma 1, there exists a positive 𝜔-periodic function 𝑔(𝑡)

such that 𝑔(𝑡) = 𝑒
𝑝𝑡
𝑔(𝑡) is a solution of (18), where 𝑝 =

(1/𝜔) ln 𝑟(Φ
𝐹−𝑉

(𝜔)) < 0. Then we conclude that 𝑔(𝑡) → 0 as
𝑡 → ∞, which implies that the zero solution of model (18)
is globally asymptotically stable. Applying the comparison
principle, we known that 𝐸(𝑡) → 0, 𝐼(𝑡) → 0, and 𝑄(𝑡) →

0 as 𝑡 → ∞. It follows that 𝑅(𝑡) → 0, and 𝑆(𝑡) →

Λ/𝑑 as 𝑡 → ∞. Therefore, the disease-free equilibrium
𝑃
0

= (Λ/𝑑, 0, 0, 0, 0) is globally asymptotically stable. This
completes the proof.

Remark 5. From Theorem 4, one can know that if 𝑅
0

< 1,
then 𝑃

0
= (Λ/𝑑, 0, 0, 0, 0) is globally asymptotically stable,

which means that the disease will vanish after some period
of time. Therefore, it is interesting to study the disease-free
equilibrium for controlling infectious disease.

3.5. Uniform Persistence of the Disease. Define

Γ
0
:= {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ Γ : 𝐸 > 0, 𝐼 > 0} (20)

and 𝜕Γ
0
= Γ \ Γ

0
= {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ Γ : 𝐸(𝑡) ≡ 0 or 𝐼(𝑡) ≡ 0}.

Denote 𝑢(𝑡, 𝑥
0
) as the unique solution of model (1) with the

initial value 𝑥
0
:= (𝑆

0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
). Let 𝑃 : Γ → Γ be the

Poincaré map associated with model (1); that is,

𝑃 (𝑥
0
) = 𝑢 (𝜔, 𝑥

0
) , ∀𝑥

0
∈ Γ, (21)

where𝜔 is the period. By applying the fundamental existence-
uniqueness theorem [33], we know that 𝑢(𝑡, 𝑥

0
) is the unique

solution of model (1) with 𝑢(0, 𝑥
0
) = 𝑥

0
. From Theorem 2,

we know that 𝑃 is dissipative point. We then introduce the
following lemma.

Lemma 6. If 𝑅
0
> 1, then there exists a 𝜖 > 0 such that when

‖𝑥
0
− 𝑃

0
‖ ≤ 𝜖, for any 𝑥

0
∈ Γ

0
, one has

lim sup
𝑚→∞

𝑑 [𝑃
𝑚
(𝑥

0
) − 𝑃

0
] ≥ 𝜖. (22)

Proof. We proceed by contradiction to prove that

lim sup
𝑚→∞

𝑑 [𝑃
𝑚
(𝑥

0
) − 𝑃

0
] ≥ 𝜖. (23)
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If not, then

lim sup
𝑚→∞

𝑑 [𝑃
𝑚
(𝑥

0
) − 𝑃

0
] < 𝜖, (24)

for some 𝑥
0
∈ Γ

0
. Without loss of generality, we can assume

that 𝑑(𝑃𝑚
(𝑥

0
), 𝑃

0
) < 𝜖, for all 𝑚 ≥ 0. By the continuity of the

solutions with respect to the initial values, for all 𝜀 ∈ (0, Λ/𝑑),
we obtain

𝑢 (𝑡, 𝑃
𝑚
(𝑥

0
)) − 𝑢 (𝑡, 𝑃

0
)
 ≤ 𝜀, ∀𝑡 ∈ [0, 𝜔] . (25)

For any 𝑡 ≥ 0, let 𝑡 = 𝑚𝜔+𝑡
1
, where 𝑡

1
∈ [0, 𝜔] and𝑚 = [𝑡/𝜔],

which is the greatest integer less than or equal to 𝑡/𝜔.Thenwe
have
𝑢 (𝑡, 𝑃

𝑚
(𝑥

0
)) − 𝑢 (𝑡, 𝑃

0
)
 =

𝑢 (𝑡
1
, 𝑃

𝑚
(𝑥

0
)) − 𝑢 (𝑡

1
, 𝑃

0
)


≤ 𝜀, ∀𝑡 ≥ 0.

(26)

It follows that Λ/𝑑 − 𝜀 ≤ 𝑆(𝑡) ≤ Λ/𝑑 + 𝜀, 0 ≤ 𝐼(𝑡) ≤ 𝜀, for
𝑡 ≥ 0. Then 𝑆/(𝑆 + 𝛼𝐼) ≥ 1 − 𝛼𝜀/(Λ/𝑑 + (𝛼 − 1)𝜀) := 1 − 𝜃 > 0.
Thus, for ‖𝑥

0
− 𝑃

0
‖ ≤ 𝜖, we have

𝑑𝐸

𝑑𝑡
≥ 𝛽 (𝑡) (1 − 𝜃) 𝐼 − (𝑑 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝑑 + 𝛿

1
+ 𝑘 + 𝛾

1
) 𝐼,

𝑑𝑄

𝑑𝑡
= 𝑘𝐼 − (𝑑 + 𝛿

2
+ 𝛾

2
) 𝑄.

(27)

We consider the following comparison system

𝑑𝐸

𝑑𝑡
= 𝛽 (𝑡) (1 − 𝜃) 𝐼 − (𝑑 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝑑 + 𝛿

1
+ 𝑘 + 𝛾

1
) 𝐼,

𝑑𝑄

𝑑𝑡
= 𝑘𝐼 − (𝑑 + 𝛿

2
+ 𝛾

2
) 𝑄.

(28)

Set𝑀
𝜀
= (

0 𝜃 0

0 0 0

0 0 0

). Then, model (28) can be rewritten as

𝑑𝑔

𝑑𝑡
= (𝐹 (𝑡) − 𝑉 (𝑡) − 𝑀

𝜀
) 𝑔 (𝑡) ,

𝑔 (𝑡) = (𝐸 (𝑡) , 𝐼 (𝑡) , 𝑄 (𝑡))
𝑇

.

(29)

If 𝑅
0
> 1, we obtain 𝑟(Φ

𝐹−𝑉
(𝜔)) > 1 by Lemma 3. Then we

can choose 𝜀 > 0 small enough such that 𝑟(Φ
𝐹−𝑉−𝑀

𝜀

(𝜔)) > 1.
Once again by Lemma 1, it follows that there exists a positive
𝜔-periodic 𝑔(𝑡) such that 𝑔(𝑡) = 𝑒

𝑝
1
𝑡
𝑔(𝑡) is a solution of

model (28), where 𝑝
1

= (1/𝜔) ln 𝑟(Φ
𝐹−𝑉

(𝜔)) > 0, which
implies that 𝑔(𝑡) → ∞ as 𝑡 → ∞. By applying the
comparison principle, we have 𝐸(𝑡) → ∞, 𝐼(𝑡) → ∞, and
before 𝑄(𝑡) → ∞ as 𝑡 → ∞. This is a contraction.

By using Lemma 6, we can obtain the following theorem.

Theorem 7. If 𝑅
0

> 1, model (1) has at least one positive
periodic solution and is uniformly persistent.

Proof. We first prove that {𝑃
𝑚
}
𝑚≥0

is uniformly persistent
with respect to (Γ

0
, 𝜕Γ

0
). First of all, we show that Γ

0
and 𝜕Γ

0

are positively invariant, for any (𝑆
0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
) ∈ Γ

0
. From

the first equation of model (1), we derive that

𝑑𝑆

𝑑𝑡
≥ Λ − (𝑑 +

𝛽 (𝑡)

𝛼
) 𝑆 + 𝜂𝑅. (30)

So, we have

𝑆 (𝑡) ≥ 𝑒
−∫
𝑡

0
(𝑑+𝛽(𝑠)𝛼

−1
)𝑑𝑠

× (𝑆
0
+ ∫

𝑡

0

𝑒
∫
𝜏

0
(𝑑+𝛽(𝑠)𝛼

−1
)𝑑s

(Λ + 𝜂𝑅 (𝜏)) 𝑑𝜏)

> 0, ∀𝑡 > 0.

(31)

Similarly,

𝐸 (𝑡) = 𝑒
−(𝑑+𝜎)𝑡

(𝐸
0
+ ∫

𝑡

0

𝛽 (𝜏) 𝑆 (𝜏) 𝐼 (𝜏)

𝑆 (𝜏) + 𝛼𝐼 (𝜏)
𝑒
(𝑑+𝜎)𝜏

𝑑𝜏)

> 0, ∀𝑡 > 0,

𝐼 (𝑡) = 𝑒
−(𝑑+𝛿

1
+𝑘+𝛾
1
)𝑡
(𝐼

0
+ ∫

𝑡

0

𝜎𝐸 (𝜏) 𝑒
(𝑑+𝛿
1
+𝑘+𝛾
1
)𝜏
𝑑𝜏)

> 0, ∀𝑡 > 0,

𝑄 (𝑡) = 𝑒
−(𝑑+𝛿

1
+𝑘+𝛾
1
)𝑡
(𝑄

0
+ ∫

𝑡

0

𝑘𝐼 (𝜏) 𝑒
(𝑑+𝛿
1
+𝑘+𝛾
1
)𝜏
𝑑𝜏)

> 0, ∀𝑡 > 0,

𝑅 (𝑡) = 𝑒
−(𝑑+𝜂)𝑡

(𝑅
0
+ ∫

𝑡

0

(𝛾
1
𝐼 (𝜏) + 𝛾

2
𝑄 (𝜏)) 𝑒

(𝑑+𝜂)𝜏
𝑑𝜏)

> 0, ∀𝑡 > 0.

(32)

Thus, Γ
0
is positively invariant. Clearly, 𝜕Γ

0
is relatively closed

in Γ. Set

𝑀
𝜕
= {(𝑆

0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
) ∈ 𝜕Γ

0
: 𝑃

𝑚
(𝑆

0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
)

∈ 𝜕Γ
0
, ∀𝑚 ≥ 0} .

(33)

We claim that

𝑀
𝜕
= {(𝑆, 0, 0, 𝑄, 𝑅) : 𝑆 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥ 0} . (34)

Note that

{(𝑆, 0, 0, 𝑄, 𝑅) : 𝑆 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥ 0} ⊆ 𝑀
𝜕
. (35)

We only need to prove that

𝑀
𝜕
⊆ {(𝑆, 0, 0, 𝑄, 𝑅) : 𝑆 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥ 0} . (36)

In fact, for any (𝑆
0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
) ∈ 𝜕Γ

0
\ {(𝑆, 0, 0, 𝑄, 𝑅) : 𝑆 ≥

0, 𝑄 ≥ 0, 𝑅 ≥ 0}, in the case where 𝐸
0
= 0, 𝐼

0
> 0, it is clear
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that 𝑆(𝑡) > 0, 𝐼(𝑡) > 0, for all 𝑡 > 0. From the second equation
of model (1), we have

𝐸 (𝑡) = 𝑒
−(𝑑+𝜎)𝑡

(𝐸
0
+ ∫

𝑡

0

𝛽 (𝜏) 𝑆 (𝜏) 𝐼 (𝜏)

𝑆 (𝜏) + 𝛼𝐼 (𝜏)
𝑒
(𝑑+𝜎)𝜏

𝑑𝜏)

> 0, ∀𝑡 > 0.

(37)

In the case where 𝐸
0

> 0, 𝐼
0

= 0, then 𝐸(𝑡) > 0, for any
𝑡 > 0, ̇𝐼(0) = 𝑘𝐸

0
> 0. Therefore, (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡)) ∉

𝜕Γ
0
for sufficiently small 𝑡 > 0. That is to say, for any

(𝑆
0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
) ∉ {(𝑆, 0, 0, 𝑄, 𝑅) : 𝑆 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥

0}, (𝑆
0
, 𝐸

0
, 𝐼

0
, 𝑄

0
, 𝑅

0
) ∉ 𝑀

𝜕
. This implies that 𝑀

𝜕
⊆

{(𝑆, 0, 0, 𝑄, 𝑅) : 𝑆 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥ 0} and 𝑃
0
is the only fixed

point of𝑃 and acyclic in 𝜕Γ
0
. Moreover, Lemma 6 implies that

𝑃
0
is an isolated invariant set in Γ and 𝑊

𝑠
(𝑃

0
) ∩ Γ

0
= ⌀,

where𝑊𝑠
(𝑃

0
) is the stable set of 𝑃

0
. By the acyclicity theorem

on uniform persistence for maps [34], it follows that 𝑃 is
uniformly persistent with respect to (Γ

0
, 𝜕Γ

0
).

Furthermore, taking advantage of Theorem 1.3.6 in Zhao
[34], 𝑃 has a fixed point. Consider

((𝑆
∗
(0) , 𝐸

∗
(0) , 𝐼

∗
(0) , 𝑄

∗
(0) , 𝑅

∗
(0))) ∈ Γ

0
. (38)

Then we see that 𝑆∗(0) ≥ 0, 𝐸∗
(0) > 0, 𝐼∗(0) > 0, 𝑄∗

(0) ≥

0, and 𝑅
∗
(0) ≥ 0. We further prove that 𝑆∗(0) > 0, 𝑄∗

(0) >

0, and 𝑅
∗
(0) > 0. Suppose not, if 𝑆∗(0) = 0, from the first

equation of model (1), we derive that

𝑑𝑆
∗
(𝑡)

𝑑𝑡
≥ Λ − (𝑑 + 𝛽 (𝑡) 𝛼

−1
) 𝑆

∗
(𝑡) + 𝜂𝑅

∗
(𝑡) , (39)

with 𝑆
∗
(0) = 𝑆

∗
(𝑛𝜔) = 0, 𝑛 = 1, 2, 3 . . . .Then we have

𝑆
∗
(𝑛𝜔) ≥ 𝑒

−∫
𝑛𝜔

0
(𝑑+𝛽(𝑠)𝛼

−1
)𝑑𝑠

× (𝑆
∗
(0) + ∫

𝑛𝜔

0

𝑒
∫
𝜏

0
(𝑑+𝛽(𝑠)𝛼

−1
)𝑑𝑠

(Λ + 𝜂𝑅
∗
(𝜏)) 𝑑𝜏)

> 0.

(40)

The periodicity of 𝑆
∗
(𝑡) implies 𝑆 ∗ (𝑡) > 0, for all

𝑡 > 0. Similarly, 𝑄
∗
(0) > 0 and 𝑅

∗
(0) > 0. Thus,

𝑢(𝑡, (𝑆
∗
(0), 𝐸

∗
(0), 𝐼

∗
(0), 𝑄

∗
(0), 𝑅

∗
(0))) ∈ IntR5

+
and (𝑆

∗
(𝑡),

𝐸
∗
(𝑡), 𝐼

∗
(𝑡), 𝑄

∗
(𝑡), 𝑅

∗
(𝑡)) is a positive 𝜔-periodic solution of

model (1). This completes the proof.

Remark 8. Theorem 7 tells us that when the basic repro-
duction number 𝑅

0
> 1, model (1) admits at least one

positive periodic solution, and the infectives are ultimately
bounded below by some positive constant 𝜀, which indicates
that HFMD becomes an endemic disease.

Remark 9. From Theorems 4 and 7, we can conclude that
𝑅
0
is the threshold parameter for the extinction and the

uniformpersistence of the disease, which partially answer our
proposed question in the introduction: “what is the disease
dynamics of the HFMD in Wenzhou?”.

4. Simulation Results via Statistical
Data in Wenzhou

In this section, by using model (1), we simulate the reported
data of HFMD in Wenzhou and carry out the sensitivity
analysis based on the parameters.

Thanks to the insightful work of Liu [17], Ma et al. [20],
and Yang et al. [19], we estimate the values of all parameters
of model (1) in details:

(i) the recruitment rate of susceptible Λ: from the statis-
tical data of Wenzhou population [24], one can know
that the average birth number ofWenzhou population
from 2005 to 2010 is 102729; then we adopt the weekly
birth population number Λ = 1975;

(ii) the natural mortality rate 𝑑: in this paper, we take
the average death rate of Wenzhou population as the
natural mortality rate 𝑑 ≈ 0.642% [24];

(iii) the transmission rate 𝛽(𝑡): there are some epidemio-
logical models using sinusoidal function (𝛽(𝑡) = 𝛽

0
+

𝛽
1
sin(𝜔𝑡 + 𝜙)) for the seasonal varying transmission

rate [16, 17, 19, 20]; in this paper, we use the periodic
function𝛽(𝑡) = 𝛽

0
+𝛽

1
sin(𝜔𝑡+𝜙)with period𝜔 (here

𝜔 = 52 weeks) as the transmission rates; by using the
least-square fitting of the numbers of HFMD 𝐼(𝑡), we
can estimate the values of 𝛽

0
, 𝛽

1
, and 𝜙;

(iv) the “psychological” effect 𝛼: in this paper, we adopt
𝛼 = 0.5; it would be likely to note that when 𝛼 = 1, the
transmission rate is the classical standard incidence
rate;

(v) the mean incubation period 1/𝜎: as discussed in the
introduction section, a person who is exposed to
HFMD viruses will exhibit the symptoms after 3 to
7 days, for simplicity; in this paper, we assume that
the average incubating time is 4 days, then the mean
incubation period 1/𝜎 can be determined by 4/7;

(vi) the quarantined rate 𝑘: some of the infected people
will be hospitalized to isolate for treatment; the
ratio of these quarantined in infectious is called the
quarantined rate; based on the statistical data, we can
determine 𝑘 = 0.007177;

(vii) the infected recover rate 𝛾
1
: we assume that the

average recovery time of infectious is 8 days; then the
recovery rate is 7/8 = 0.875;

(viii) the quarantined recover rate 𝛾
2
: we assume that the

average recovery time of quarantined is 16 days; then
the recovery rate is 7/16 = 0.4375;

(ix) the disease-induced mortality 𝛿
1
and 𝛿

2
: we assume

that the death comes from the quarantined; that is,
𝛿
1
= 0; and by using the least-square fitting of HFMD

number 𝐼(𝑡), we can determine 𝛿
2
= 0.024887;

(x) the progression rate 𝜂: by using the least-square fitting
of HFMD number 𝐼(𝑡), we can determine 𝜂 = 0.015.

And the number of the initial susceptible population
at the end of 2010, S(0) = 9, 122, 100, is obtained from
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the Wenzhou City Population and Family Planning Com-
mission [24]. The numbers of the initial infected 𝐼(0) and
quarantined 𝑄(0) can be obtained from the reported data
of HFMD. Because the numbers of the initial exposed
population 𝐸(0) and the recovered population 𝑅(0) cannot
be obtained directly, we derive 𝐸(0) by 𝑘 and 𝑅(0) by 𝛾

1
and

𝑘𝛾
2
.
The numerical simulation results of the model (1) about

the number of HFMD infectious are shown in Figures 2–4.
In Figure 1, we show the spread dynamics of HFMD

in Wenzhou from March 2010 to November 2013, and the
parameters in model (1) undefined in the above are taken as

𝐼 (0) = 368, 𝐸 (0) = 210,

𝑄 (0) = 322, 𝑅 (0) = 323,

𝛽 (𝑡) = 0.91 + 0.39 sin(
𝜋𝑡

26
+ 1.75) .

(41)

In this case, 𝑅
0

≈ 0.9833 < 1; the disease-free equilibrium
𝑃
0
= (307792, 0, 0, 0, 0) ofmodel (1) is globally asymptotically

stable, which means the HFMD disease will vanish after long
time. The HFMD will die out, but is it always true?

For the sake of learning the spread dynamics of HFMD
inWenzhou further, we display the simulation results via the
statistical data 2011-2012 (Figure 2) and 2012-2013 (Figure 4),
respectively. In Figure 2, with parameters

𝐼 (0) = 136, 𝐸 (0) = 78,

𝑄 (0) = 119, 𝑅 (0) = 167,

𝛽 (𝑡) = 0.9335 + 0.5225 sin(
𝜋𝑡

26
+ 1.575) ;

(42)

then 𝑅
0
≈ 1.0259 > 1, which means that HFMD becomes an

endemic disease in Wenzhou. In this case, from Theorems 4
and 7, one can know that model (1) has at least one positive
periodic solution which is uniformly persistent. Figures 3(a)
and 3(b), with the same parameters as in Figure 2, confirm
this conclusion.

In Figure 4, with parameters

𝐼 (0) = 234, 𝐸 (0) = 134,

𝑄 (0) = 205, 𝑅 (0) = 206,

𝛽 (𝑡) = 0.908 + 0.47 sin(
𝜋𝑡

26
+ 1.575) ,

(43)

and, hence,𝑅
0
≈ 0.9723 < 1, whichmeans theHFMDdisease

will vanish after long time.
Comparing Figure 1 with Figures 2 and 4, one can see

that with partial or the whole HFMD data in Wenzhou from
2010 to 2013, with different time periodic data, then by using
least-square fitting method, we can obtain different periodic
transmission rate 𝛽(𝑡), and, hence, obtain different 𝑅

0
, so

we can obtain different disease spread dynamics and draw
different conclusions. This difference is induced by different
data and initial values.

For the sake of learning the effects of the quarantined
rate (𝑘) and infected recovery rate (𝛾

1
) on the controlling

0

200

400

600

800

1000

1200

1400

1600

1800

2000

In
fe

ct
io

us
I(
t)

0 20 40 60 80 100 120 140 160 180 200

Time t (week)

The model value
The real data

Figure 1: The solid curve represents the simulation results and the
stars are the weekly data from 2010 to 2013 reported by theWenzhou
CDC.

0

500

1000

1500

2500

In
fe

ct
io

us
I(
t)

0 10 20 30 40 50 60

Time t (week)
70 80

2000

The model value
The real data

Figure 2: The solid curve represents the simulation results and the
stars are the weekly data from 2011 to 2012 reported by theWenzhou
CDC.

of disease spreading, we consider the relations between
the reproduction number 𝑅

0
with 𝑘 and 𝛾

1
, respectively.

Figure 5(a) shows that the larger quarantined rate 𝑘 is, the less
𝑅
0
is; and that is to say, quarantine has a positive impact on

controlling the spread of disease. Figure 5(b) has the similar
tendency with Figure 5(a); that is, the larger quarantined rate
𝛾
1
is, the less 𝑅

0
is. And 𝛾

1
= 7/𝑇 (𝑇 is the cycle of treatment);

hence, we can conclude that the less the cycle of treatment 𝑇
is, the less 𝑅

0
is.
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Figure 3: The population dynamics of model (1) with parameters (43). (a) Time series plots; (b) phase portraits (periodic solution).
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Figure 4: The solid curve represents the simulation results and the
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5. Conclusions and Discussions

In this paper, we construct an SEIQRS epidemic model
with periodic transmission rates to investigate the spread
of seasonal HFMD in Wenzhou. We show that the global
dynamics of the HFMD model (1) can be governed by
its reproduction number 𝑅

0
: if 𝑅

0
< 1; the disease-free

equilibrium 𝑃
0

= (Λ/𝑑, 0, 0, 0, 0) of model (1) is globally
asymptotically stable, which means the disease will die out;
while 𝑅

0
> 1, model (1) has at least one positive periodic

solution and is uniformly persistent, which indicates that
HFMD becomes an endemic disease; that is, the HFMD will
break out.

Epidemiologically, we partially provide answers to the
two questions proposed in the introduction: what is the
spread dynamics of the HFMD in Wenzhou? How can we
control the HFMD spread in Wenzhou?

From Figures 1, 2, and 4, we can obtain different disease
spread dynamics and draw different conclusions based on
the different data and initial values. In fact, a mathematical
model may help to explain a system, to study the effects of
different components, and to make predictions about disease
spreading behaviour. We need to point out that all these
three figures are partly explaining and predicting the spread
dynamics of the HFMD in Wenzhou. Besides, in the cases
of Figures 1, 2, and 4, we obtain different basic reproduction
numbers 𝑅

0
, which can mathematically help us to determine

whether an infectious disease can spread or not.There are two
values of𝑅

0
less than 1, and close to 1. It is worthy to note that,

in theHFMDmodel (1), we assume that thewhole population
of Wenzhou (more than 9 million people) is homogeneously
mixing. If we try to take children under five—17 years old
and their family as the susceptible population (about 1million
people), the value of 𝑅

0
would be larger. All in all, we can

conclude that the HFMD inWenzhou persists under current
circumstances; that is, the HFMD becomes an endemic
disease and will break out in Wenzhou.

From Figure 5, we find that the quarantined rate (𝑘) and
the infected recovery rate (𝛾

1
) are very beneficial to control

the disease outbreak.That is to say, for controlling the HFMD
spread inWenzhou, wemust increase the quarantined rate or
decrease the treatment cycle.

In [20], based on the statistical data HFMD in Shandong
province, China, Ma et al. indicated that the quarantined rate
𝑘 has little effect on controlling the disease spread. This is
very different from our present results. It is reported that the
HFMD incidence strongly depends on the climate [19]. We
think this difference may be induced by different climate:
Shandong province is in north China, and Wenzhou is in
south China.
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Figure 5: The influence of the quarantined rate 𝑘 (a) and infected recover rate 𝛾
1
(b) on 𝑅

0
.

Furthermore, from Figures 1, 2, and 4, one can see that
the fittings have some flaws because of oscillation peak in the
data of summer 2011 and 2012. We think this phenomenon
may represent an alarm for next year prevalence. In addition,
theremay bemore suitable incidence rate𝛽(𝑡) to fit the spread
dynamics of the HFMD in Wenzhou. This is desirable in
future studies.

It is well known that no vaccine currently exists to protect
individuals from infectionwith the viruses that causeHFMD,
but such vaccines are being developed [35]. HFMD is highly
contagious and is transmitted by oropharyngeal secretions
such as saliva or nasal mucus, by direct contact or fecal-oral
transmission. Preventive measures include avoiding direct
contact with infected individuals (including keeping infected
children home from school), proper cleaning of shared
utensils, disinfecting contaminated surfaces, and proper hand
hygiene. These measures have been proved to be effective
in decreasing the transmission of the viruses responsible for
HFMD [1, 35].
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