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We present novel Gauss integration schemes with radial basis point interpolation method (RPIM). These techniques define
new Gauss integration scheme, researching Gauss points (RGD), and reconstructing Gauss domain (RGD), respectively. The
developments lead to a curtailment of the elapsed CPU time without loss of the accuracy. Numerical results show that the schemes
reduce the computational time to 25% or less in general.

1. Introduction

In the past two decades, the development and application of
meshfree methods have attracted much attention. One of the
reasons is the versatility of meshfree methods for complex
geometry of solids and flexibility for different engineering
problems [1]. Element-free Galerkin (EFG) method, which is
originated by Belytschko et al. [2–5], is one of themost widely
usedmeshfreemethods.The key advantage of EFGmethod is
that only nodal data is required and no element connectivity
is needed, when moving least-squares (MLS) interpolation is
used to construct trial and test functions. It is currentlywidely
used in computational mechanics and other areas, such as by
Sarboland andAminataei [6] for nonlinear nonhomogeneous
Burgers Equation and Pirali et al. [7] for crack discontinuities
problem. In the meantime, some new techniques are used
to improve the performance of the MLS, complex variable
moving least-squares [8–10] and improved complex variable
moving least-squares [11], the moving least-squares with sin-
gular weight function [12], and so forth. But shape functions
constructed by MLS interpolation do not possess Kronecker
delta function property; the treatment of essential boundary
conditions is one of the typical drawbacks.Thus,many special
techniques have been proposed to impose essential boundary
conditions [13–15], such as point collocation [13], Lagrange
multipliers [2], singular weighting functions [14], and penalty
method [15]. None of these methods is fully satisfactory, as

they still need additional efforts to enforce essential boundary
conditions.

In order to totally eliminate the drawback associated with
EFG method for imposing essential boundary conditions,
Liu and Gu have developed the point interpolation meth-
ods (PIM) by using polynomial basis or/and radial basis
function (RBF) [16–19]. However, singularity may occur if
arrangement of the nodes is not consistent with the order of
polynomial basis, while the inverse of moment matrix always
exists for arbitrarily scattered nodes with radial basis [20]. In
this paper, wemainly care about the radial point interpolation
method (RPIM) studied by Wang and Liu in [21], which is
based on the global weak form.

On the other hand, high computational cost is still one
of the main drawbacks in meshfree method with Galerkin
weak form. In the RPIM method for a given computational
point, an 𝑛 × 𝑛 linear system (the coefficient matrix is called
the moment matrix) should be solved to construct shape
functions if radial basis functions are selected, where 𝑛 is the
number of nodes in the support domain. Furthermore, if 𝑚
monomial basis functions are added, the linear systemwill be
extended to (𝑛 + 𝑚) × (𝑛 + 𝑚). This is very time-consuming
especially for the meshless methods based on weak forms,
where integration should be employed and the number of
computational points is much bigger than the number of
nodes.
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In fact, commonmeshlessmethod is based on the numer-
ical integration for Gauss domains with RPIM. It is a tedious
process when the integration points are extremely more than
the nodes. In practical work, some Gauss point has the same
nodes as some neighboring computational points. Thus, they
only need one shape function with them. A process will be
needed to find these nodes.This scheme is called researching
Gauss points method (RGP). But the storage of searching
program will increase quickly with the increasing number of
nodes and Gauss points. Thus, more computational time is
spent. To avoid this, reconstructing Gauss domains (RGD) is
presented. All computational points share one same influence
domain (the same nodes) in the domain. This scheme offsets
the RGP’s disadvantage without the searching program. The
reason why we call it researching Gauss points method is
that the RGPmethod needs a searching nodes program same
as in the RPIM. The two techniques are collectively named
reordering Gauss domain (RG) method.

The remainder of the paper is arranged as follows.
In Section 2, the radial basis point interpolation method
(RPIM) is presented to get the shape functions. In Section 3,
a Galerkin weak form and its numerical algorithm are
studied for 2D solid mechanics problems. The reordering
Gauss domains methods are then constructed in Section 4.
In Section 5, several examples are presented to show the
effectiveness of the proposed method and some parameters’
performances of the proposed method are also investigated.
Finally, we end this paper with some conclusions in Section 6.

2. Radial Basis Point Interpolation
Method (RPIM)

The RPIM interpolation 𝑢ℎ(𝑥) of 𝑢, for all 𝑥 ∈ Ω𝑥, can be
defined by

𝑢
ℎ
(𝑥) =

𝑛

∑

𝑖=1

𝑅𝑖 (𝑥) 𝑎𝑖 +

𝑚

∑

𝑗=1

𝑝𝑗 (𝑥) 𝑏𝑗 (1)

with the constraint condition
𝑛

∑

𝑖=1

𝑝𝑗 (𝑥𝑖) 𝑎𝑖 = 0, 𝑗 = 1, 2, . . . , 𝑚, (2)

where𝑅𝑖(𝑥) is the radial basis function (RBF), 𝑛 is the number
of nodes in the neighborhood of 𝑥, 𝑝𝑗(𝑥) is the monomial
in the space coordinates pT(𝑥) = [1, 𝑥, 𝑦], 𝑚 is the number
of polynomial basis functions, and coefficients 𝑎𝑖 and 𝑏𝑗 are
interpolation constants. The variable 𝑥 of the radial basis
function𝑅𝑖(𝑥) is the distance between the interpolation point
𝑥 and a node 𝑥𝑖. It is necessary to construct the interpolation
function here to solve the equations.

There are a number of types of radial basis functions.
Characteristics of radial basis functions have been widely
investigated in [20, 22]. In this paper, the following multi-
quadrics (MQ) radial basis function is used:

𝑅𝑖 (𝑥) = (𝑟
2

𝑖
+ 𝐶
2
)

𝑞

, (3)

where 𝑟𝑖 = √(𝑥 − 𝑥𝑖)
2
+ (𝑦 − 𝑦𝑖)

2 and 𝐶 and 𝑞 are two
parameters. 𝐶 is defined as

𝐶 = 𝛼0𝑑𝑖, (4)

where 𝛼0 is a dimensionless coefficient and 𝑑𝑖 is a parameter
of the nodal distance. For regularly distributed nodal case, 𝑑𝑖
is the shortest distance between the node 𝑥𝑖 and its neighbor
nodes. Effects of 𝛼0 and 𝑞 have been studied in detail in [22].
In static analysis of 2D solid problems, it has been found that
𝛼0 = 1.0 and 𝑞 = 1.03 lead to good results. Hence, these
numbers are used in this paper.

The second term in (1) consists of polynomials. To ensure
invertible interpolation matrix of RBF, the polynomial added
into the RBF cannot be arbitrary. A low-degree polynomial is
often needed to augment RBF to guarantee the nonsingularity
of the moment matrix. In addition, the linear polynomial
added into the RBF can also ensure linear consistency and
improve the interpolation accuracy [22]. Thus, the linear
polynomial is added into the MQ RBF in the following
discussion.

Coefficients 𝑎𝑖 and 𝑏𝑗 in (1) can be determined by enforc-
ing that (1) and (2) be satisfied at the 𝑛 nodes surrounding
point 𝑥. Equations (1) and (2) can be rewritten in the matrix
form:

Ga0 ≜ [
R0 P0
PT
0 0

] [

a
b] = [

u𝑠
0
] , (5)

where

aT
0
= [aT bT]

T
= {𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, 𝑏3} ,

uT
𝑠
= {𝑢1, 𝑢2, . . . , 𝑢𝑛} ,

R0 =
[

[

[

[

[

𝑅1(𝑟1) 𝑅2(𝑟1) ⋅ ⋅ ⋅ 𝑅𝑛(𝑟1)

𝑅1(𝑟2) 𝑅2(𝑟2) ⋅ ⋅ ⋅ 𝑅𝑛(𝑟2)

.

.

.

.

.

. d
.
.
.

𝑅1(𝑟𝑛) 𝑅2(𝑟𝑛) ⋅ ⋅ ⋅ 𝑅𝑛(𝑟𝑛)

]

]

]

]

]𝑛×𝑛

,

PT
0 =

[

[

1 1 ⋅ ⋅ ⋅ 1

𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛

𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑛

]

]3×𝑛

.

(6)

The matrix R0 is symmetric, and thus the matrix G is
symmetric. Then, the interpolation equation (1) is finally
expressed as

𝑢
ℎ
(𝑥) = [RT

(𝑥) pT (𝑥)]G−1u𝑠 = Φ
𝑅
(𝑥) u𝑠, (7)

where the shape functionΦ(𝑥) is defined by

Φ (𝑥) = [𝜙1 (𝑥) , 𝜙2 (𝑥) , . . . , 𝜙𝑛 (𝑥)] = [RT
(𝑥) pT (𝑥)]G−1.

(8)

And RT
(𝑥) = [𝑅1(𝑥), 𝑅2(𝑥), . . . , 𝑅𝑛(𝑥)], pT(𝑥) = [1, 𝑥, 𝑦]. It

can be found from the above discussion that RPIM passes
through the nodal values. Therefore, RPIM shape functions
given in (8) satisfy the Kronecker delta condition. Thus,

𝜙𝑖 (𝑥𝑗) = 𝛿𝑖𝑗 = {

1, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.

(9)
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3. Variational Form of 2D Plane Problem

Consider the 2Dproblemof the deformation of a linear elastic
medium from an undeformed domainΩ, enclosed by Γ:

∇ ⋅ 𝜎 + b = 0, in Ω, (10)

where 𝜎 is the stress tensor corresponding to the displace-
ment field u and b is a body force vector, and boundary
conditions are as follows:

𝜎 ⋅ n = t on Γ𝑡,

u = u on Γ𝑢,

(11)

in which t and u are prescribed tractions and displacements,
respectively, on the traction boundary Γ𝑡 and on the displace-
ment boundary Γ𝑢 and n is the unit outward normal matrix
to the boundary Γ𝑡.

Using the standard principle of minimum potential
energy for (10)-(11), that is, to find u ∈ (𝐻1(𝜔))3 such that

Π =
1

2

∫

Ω

𝜀
TD𝜀 𝑑Ω − ∫

Ω

uT ⋅ b 𝑑Ω − ∫
Γ
𝑡

uT ⋅ t 𝑑Γ (12)

is stationary, where𝐻𝑖(𝜔) denotes the Sobolev space of order
𝑖, 𝜀 and 𝜎 = D𝜀 are strain-stress vectors, and D is the strain-
stress matrix. RPIM equation (1) is used to approximate the
displacements in the Galerkin procedure. Then we can get

u = {𝑢𝑥
𝑢𝑦

} =

𝑘

∑

𝑖=1

[

𝜙𝑖 0

0 𝜙𝑖

]

{

{

{

𝑢
𝑖

𝑥

𝑢
𝑖

𝑦

}

}

}

=

𝑘

∑

𝑖=1

Φ𝑖u𝑖. (13)

Substituting (13) into (12) leads to the following total potential
energy in the matrix form:

Π =
1

2

uT ⋅ K ⋅ u − uT ⋅ f , (14)

and invoking 𝛿Π = 0 results in the following linear system of
u:

Ku = f , (15)

in which the stiffness matrixK is built from 2×2matricesK𝑖𝑗
and the right-hand side vector f is built from the 2×1 vectors
f𝑖. These matrices and vectors are defined by

K𝑖𝑗 = ∫
Ω

BT
𝑖
DB𝑗 𝑑Ω, 𝑖, 𝑗 = 1, 2, . . . , 𝑘,

f𝑖 = ∫
Ω

𝜙𝑖b 𝑑Ω + ∫
Γ
𝑡

𝜙𝑖t 𝑑Γ, 𝑖 = 1, 2, . . . , 𝑘,

(16)

where

B𝑖 = [
[

𝜙𝑖,𝑥 0

0 𝜙𝑖,𝑦

𝜙𝑖,𝑦 𝜙𝑖,𝑥

]

]

,

D =

𝐸

1 − ]2
[

[

[

1 ] 0

] 1 0

0 0

1 − ]
2

]

]

]

(for plane stress problem) .

(17)

Whether the RPIM method or other meshless methods
based on global weak form, background cells are necessary
to obtain the numerical integration of (16). Different from
the finite element method (FEM), which uses the same
nodes for both interpolation and numerical integration,
background cells in meshless methods are independent of
the interpolations. In this paper, quadrilateral cells and Gauss
quadrature are used for the numerical integration.

4. Reconstructing Gauss Domains Methods

A weak form, in contrast to a strong form (collocation
method in general), requires weaker consistency on the
assumed field functions. The consistency requirement on
the assumed functions for field variables is very different
from the strong form. For a 2𝑘th-order differential gov-
erning system equation, the strong formulation requires a
consistency of the 2𝑘th order, while the weak formulation
requires a consistency of only the 𝑘th order. But the meshfree
method usually uses the integral representation of field
variable functions for solving strong form system equations
and the numerical integration is extremely time-consuming.
Numerical accuracy mainly depends on the number of Gauss
points in the corresponding domain; the more the Gauss
points, the better the results in general. Thus, one of the
most time-consuming steps in the meshless method is the
construction of shape functions, since for every point of
interest a linear system should be computed. As discussed
in Section 2, using radial basis functions to construct shape
functions, an 𝑛 × 𝑛 linear system should be computed for
every computational point. If 𝑚 monomials are added, an
(𝑛 + 𝑚) × (𝑛 + 𝑚) linear system should be solved. This is
very time-consuming especially for meshless methods based
on weak form, where a large number of integration points are
used. In this section, we propose the researchingGauss points
(RGP) and reconstructing Gauss domains (RGD) methods,
which are together named reordering Gauss domains (RG)
methods and can partly reduce the computation cost for the
meshless methods compared with the RPIM.

4.1. Researching Gauss Points (RGP) with the Same Nodes.
In the RPIM approximation, shape function consists of two
parts: [RT

(𝑥) pT(𝑥)] and G−1 (8). The time consumption
of [RT

(𝑥) pT(𝑥)] is less than that of G−1, because the
computational complexities are 𝑜(𝑛 + 𝑚) and 𝑜((𝑛 + 𝑚)3),
respectively.

Every Gauss point has its own [RT
(𝑥) pT(𝑥)] and is

different from the rest, but it may have the same G−1 as the
other. Thus, we need a storage place, containing the public
nodes and theGauss points’ information.Thedata is obtained
by searching the Gauss points. Thus, the method is called
researching Gauss points (RGP) method.

The red area represents the nodes set (involved red nodes
∘) and the blue area represents the Gauss points set (involved
blue gauss points ∗) in Figure 1(a). It should be pointed out
that one-to-one mapping exists between the Gauss points
sets and the nodes points sets (can be verified by logical
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The corresponding nodes and Gauss points

Nodes
Gauss points

𝛼

(a)

The role of the center of the Gauss domain

𝛼

Nodes
Gauss points
The center of the Gauss domain

(b)

Figure 1: The distribution of the nodes and the Gauss points: find the 1-1 mapping (a); assign the 1-1 mapping (b).

deduction).Thus, the key work is how to get the relationship.
First of all, we construct 𝑁𝑛 ∗ 𝑁𝑔 matrix 𝑆 = [𝑠𝑖𝑗], where
𝑁𝑛, 𝑁𝑔 denote the number of the nodes and the number of the
Gauss points, respectively.The element 𝑆 = [𝑠𝑖𝑗] is 𝛿 function:

𝑠𝑖𝑗 =

{
{

{
{

{

1 the 𝑖th nodes locate in the support domain
of the 𝑗th gauss point;

0 otherwise.
(18)

Thus, 𝑆 is written as

S =
[

[

[

[

[

[

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 1 1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 1 1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

]

]

]

]

]

]𝑁
𝑛
∗𝑁
𝑔

. (19)

If the 𝑗th row elements are the same as the 𝑘th row
elements, we confirm the 𝑗th and 𝑘th Gauss points have
the same basis functions 𝑅(𝑥𝑗) 𝑅(𝑥𝑘). It is a rule, which
gives one-to-one mappings between the two types of sets by
comparing the rows of 𝑆. Some codes (isequal.m, unqiue.m,
etc.) could be used to find these mappings in MATLAB. The
process of one-to-one mapping is also called the searching
program distinguishing the searching nodes program in
advance. For the sake of simplicity, the RGP method is
divided into two parts: Part I (the researching program) and
the rest.

4.2. Reconstructing Gauss Domains (RGD). The searching
program saves the time consumption in Gauss integration,
but it needs extra time and storage for the searching process.
With the rapid increase of the nodes and the Gauss points,
the searching process costs also grow exponentially. Then,

we present the reconstructingGauss domains (RGD)method
without the searching process. In the fixed Gauss domain,
all Gauss points are mandatorily contacted with some neigh-
bouring nodes. These nodes lie in the support domain of the
Gauss domain’s centroid. That is, every Gauss domain has its
own basis functions or G−1 corresponding to the centroid.

A center point (×) of the Gauss domain is added in
Figure 1(b) comparedwith Figure 1(a).Without the searching
process, wemandatorily consider that the center point is seen
by not only the barycentre of the Gauss domain, but also
the barycentre of the domain involving some nodes. These
nodes locate in the support domain with 𝛼 on the barycentre
point. Thus, the one-to-one mappings are ascertained by the
corresponding barycentre points.

5. Numerical Experiments

In this section, several numerical examples are selected to
demonstrate the applicability of the RG meshless methods.
The numerical results for these examples are compared
with the analytical solutions and the RPIM solution. Square
support domains are used for calculations in the present
paper. 𝑑𝑐 stands for the average node distance.TheMQ radial
basis function and the linear polynomial are used to construct
shape functions. All runs are performed in MATLAB 7.0 on
an Intel Pentium 4 (2GB RAM)Windows XP system.

5.1. Patch Test. The first numerical example is the standard
patch test shown in Figure 2. The patch test consists of thir-
teen nodes including five interior nodes. A 2 × 2 rectangular
background mesh is used for numerical integration and 4 × 4
Gauss points are used in each mesh. In this patch test, the
displacements are prescribed on all outside boundaries by a
linear function of 𝑥 and 𝑦 on the patches of the dimension.
The parameters are taken as 𝐸 = 1.0 and ] = 0.3. The linear
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Table 1: Results at interior nodes located irregularly in the 13 nodes’ patch.

Internal node Coordinates Exact RGP/RPIM RGD

5 (1.0, 1.0) (𝑢
𝑥
, 𝑢
𝑦
) (0.600, 0.600) (0.601, 0.599) (0.601, 0.599)

(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) (0.857, 0.857, 0) (0.853, 0.853, 0) (0.853, 0.853, 0)

10 (0.65, 1.0) (𝑢𝑥, 𝑢𝑦) (0.390, 0.600) (0.391, 0.599) (0.391, 0.599)
(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) (0.857, 0.857, 0) (0.861, 0.853, 0.002) (0.861, 0.853, 0.002)

11 (0.70, 1.5) (𝑢𝑥, 𝑢𝑦) (0.420, 0.900) (0.422, 0.897) (0.421, 0.897)
(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) (0.857, 0.857, 0) (0.856, 0.855, 0.001) (0.856, 0.855, 0.001)

12 (1.3, 1.2) (𝑢𝑥, 𝑢𝑦) (0.780, 0.720) (0.779, 0.718) (0.779, 0.718)
(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) (0.857, 0.857, 0) (0.846, 0.852, −0.002) (0.846, 0.852, −0.002)

13 (1.2, 0.6) (𝑢𝑥, 𝑢𝑦) (0.720, 0.360) (0.720, 0.359) (0.720, 0.359)
(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) (0.857, 0.857, 0) (0.854, 0.856, 0) (0.854, 0.856, 0)

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 2: A patch with 13 nodes.

y

H

L

x

P

Figure 3: Cantilever beam.

displacement functions are 𝑢𝑥 = 0.6𝑥 and 𝑢𝑦 = 0.6𝑦. RG
methods of the patch test require that the displacement of
any interior node be given by the same linear function and
that the strains and stresses be constant in the patch. The
RG methods pass the patch test when linear polynomials
are added (𝑚 = 3). However, when polynomial term is not
included (𝑚 = 0), the patch test does not easily pass. The
same is for the RPIM method; see [21]. Computed results at
interior nodes for the RGmethods and the RPIMmethod and
the exact results are listed in Table 1.

5.2. Cantilevered Beam. The second example is a cantilever
beam problem; see Figure 3. Consider a beam of length 𝐿
and height 𝐻 subjected to traction at the free end. The

beam has a unit thickness, and thus a plane stress problem
is considered here. The closed-form solution is available for
parabolic traction of force 𝑃:

𝑢𝑥 =

𝑃𝑦

6𝐸𝐼

[(6𝐿 − 3𝑥) 𝑥 + (2 + ]) (𝑦2 −
𝐻
2

4

)] ,

𝑢𝑦 = −

𝑃

6𝐸𝐼

[3]𝑦2 (𝐿 − 𝑥) + (4 + 5])
𝐻
2
𝑥

4

+ (3𝐿 − 𝑥) 𝑥
2
] ,

(20)

where the moment of inertia 𝐼 of the beam is given by
𝐼 = 𝐻

3
/12. The stresses corresponding to the above

displacements are

𝜎𝑥 =

𝑃 (𝐿 − 𝑥) 𝑦

𝐼

, 𝜏𝑥𝑦 = −

𝑃

2𝐼

(

𝐻
2

4

− 𝑦
2
) , 𝜎𝑦 = 0.

(21)

The beam parameters are taken as𝐸 = 3.0×107, ] = 0.3, 𝐻 =

12, 𝐿 = 48, and 𝑃 = 1000 in computation.
To evaluate effects of various parameters, we use the two-

norm relative errors 𝑟𝑢 and 𝑟𝜎 for displacement and stress,
respectively. They are defined by

𝑟𝑢 =

‖u − û‖2
‖u‖2

, 𝑟𝜎 =

‖�̂� − 𝜎‖2

‖𝜎‖2

, (22)

where û and u are the approximate and exact solution of
displacements and �̂� and 𝜎 are the approximate and exact
value of stresses.

5.2.1. Effect of IrregularNodeDistribution. Nodedistributions
with 325 irregular nodes and 481 irregular nodes are shown
in Figure 4. A background mesh is necessary to obtain the
numerical integrations of (15). This mesh is independent of
nodes for interpolations, while FEM uses the same nodes
for both interpolation and numerical integration. For this
problem, 10 × 6 and 15 × 6 background cells are used for
the 325 irregular nodes’ problem and 481 irregular nodes’
problem, respectively. In each cell, a 4 × 4 Gauss quadrature
is used to evaluate the stiffness matrix. Figure 5(a) shows a
comparison of the analytical solution and numerical solution
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Figure 4: Meshless models with irregular data points: 325 nodes (a), 481 nodes (b).
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Figure 5: Results for 325 irregular nodes: (a) displacement and (b) shear stress.

of 𝑢𝑦 along 𝑦 = 0 for this problem with 325 irregular
nodes. The plot shows an excellent agreement between the
analytical and numerical results for each method when an
irregular node distribution is used. Figure 5(b) is the sectional
distribution of shear stress 𝜏𝑥𝑦 along the 𝑥 = 24 section
for this problem with 325 irregular nodes. The closed-form
solution is also plotted for comparison.

Computational results including error and computational
cost are listed in Table 2 for the cantilevered beam problem
with 325 irregular nodes and 481 irregular nodes. From
Figure 5 and Table 2, we can find that the RG methods have
better accuracy and are less time-consuming than the RPIM
method.

5.2.2. Effect of the Size of Support Domain of RGD. As
discussed in Section 4.2, the centroid of every Gauss cell has
a support domain. The range of the support domain 𝛼 is
an important parameter. The 325 regular nodes’ distribution
(25 × 13: 25 nodes in the 𝑥 direction and 13 nodes in the 𝑦
direction) is used to study the effect of the size of the support
domain for the RG methods.

In Table 3, we list the numerical results for the RGD
method with different 𝛼. To compare with the RPIMmethod,

Table 2: Computational results for irregular node distribution.

Irregular
nodes RPIM RGP

(Part I + the rest)
RGD

325
𝑟
𝑢

0.0046 0.0013

𝑟
𝜎

0.0793 0.0582

CPU 3.034 2.917 = 1.424 + 1.493 1.162

481
𝑟𝑢 0.0080 0.0019

𝑟𝜎 0.0824 0.0472

CPU 4.521 6.468 = 4.354 + 2.114 1.668

we also list the computational results for the RPIM method
with different radiuses of the support domain. From Table 3,
we can see that the RGD method has better steadiness,
computational efficiency, and computational accuracy than
the RPIM method. Particularly, with 𝛼 = 4.5, the elapsed
CPU time is reduced to 12.7% (see the data in the boxes)
of the previous one. This shows that the size of the support
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Table 3: Effect of the size of support domain of RGD (Example 5.2).

𝛼

RGD RPIM and RGP
𝑟𝑢 𝑟𝜎 CPU 𝑟𝑢 𝑟𝜎 RPIM CPU RGP CPU (Part I + the rest)

2.5 0.0513 0.2033 0.413 0.0074 0.0522 1.808 2.151 = 1.023 + 1.128

3.0 0.0129 0.1000 0.646 0.0031 0.0620 3.003 2.537 = 1.131 + 1.406

3.5 0.0109 0.0945 0.733 0.0031 0.0305 4.752 3.277 = 1.798 + 1.479

4.0 0.0006 0.0285 1.182 0.0002 0.0533 7.135 4.071 = 2.608 + 1.463

4.5 0.0004 0.0274 1.336 0.0021 0.0191 10.303 5.195 = 3.720 + 1.475

5.0 0.0002 0.0202 2.112 0.0004 0.0294 14.599 6.451 = 4.911 + 1.540

Table 4: Convergence study on regular nodes for Example 5.2.

Regular nodes 13 × 4 25 × 7 37 × 10 49 × 13 61 × 16

RGD
𝑟𝑢 0.0384 0.0063 0.0035 0.0025 0.0015
𝑟𝜎 0.1891 0.0399 0.0676 0.0668 0.0182
CPU 0.440 0.839 1.972 2.730 5.420

RGP/RPIM
𝑟𝑢 0.0358 0.0028 0.0024 0.0196 0.0240
𝑟𝜎 0.2057 0.0522 0.0559 0.1434 0.1738
RPIM CPU 1.864 2.450 5.637 5.981 12.302
RGP CPU (Part I + the rest) 0.219 + 0.350 1.404 + 0.168 5.943 + 2.147 9.975 + 3.049 59.036 + 6.468

Table 5: Convergence study on irregular nodes for Example 5.2.

Irregular nodes 52 175 370 637 976

RGD
𝑟𝑢 0.0413 0.0062 0.0021 0.0055 0.0175
𝑟𝜎 0.1836 0.0399 0.0578 0.0832 0.1138
CPU 0.419 0.831 2.055 2.627 4.387

RGP/RPIM
𝑟𝑢 0.0386 0.0003 0.0020 0.0038 0.0003
𝑟𝜎 0.1758 0.0553 0.0422 0.0610 0.0108
RPIM CPU 1.637 2.486 5.600 6.178 12.814
RGP CPU (Part I + the rest) 0.203 + 0.332 0.832 + 0.734 5.989 + 1.667 10.018 + 2.480 58.798 + 3.672

domain has increased and its CPU time takes up a larger
proportion of the entire time, in which the consumption
surged from 48% to 76% of the entire cost. The searching
process has become the major expenditure of the entire
program. FromTable 3, we can find that the RGDmethod has
a stable convergency with the increase of the 𝛼, but it does not
appear in the RPIM. In this paper, we take the suitable 𝛼 to be
4.

5.2.3. Convergence Study. For convergence studies, five dif-
ferent regular node distributions with 52 (13 × 4: 13 nodes
in the 𝑥 direction and 4 nodes in the 𝑦 direction) nodes, 175
(25 × 7) nodes, 370 (37 × 10) nodes, 637 (49 × 13) nodes,
and 976 (61 × 16) nodes and five different irregular node dis-
tributions are considered. The size of the support domain is
taken as𝛼 = 4.The computational results are listed in Tables 4
and 5. In Tables 4 and 5, we also list the computational results

of the RPIM method. The convergence curves with different
node distributions are plotted in Figure 5. In Figure 5, ℎ
is the maximum size of node arrangement. From Tables
4 and 5 and Figure 5 we can see that the present method
possesses good convergence and less computational times
than the RPIM method in general. However, the searching
process consumption overtakes 88% of the entire process in
the 976 regular/irregular nodes, which become cumbersome.
The oscillatory behavior of the convergence curve of RGD
method exists in regular node, and oscillatory behaviors
appear in the two node distributions of the RPIM method.
Figure 5 shows that RGD method is steadier than the RPIM
method. The reason of oscillatory appearance is that the
accuracy of most meshless methods is closely related to the
integration scheme, the number of Gauss points, the radi-
uses of the support domain and influence domain, and so on.
Thus, it is a difficult task to get the best accuracy for all cases.
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Figure 6: Convergence study with error of displacement: regular nodes (a), irregular nodes (b).
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Figure 7: Displacement 13 × 7 (a) and 36 × 13 (b) regular nodes
distribution (scaled 400).

5.2.4. Discussion on the Computational Results. To further
discuss the effectiveness of the RG methods, we discuss the
computational results of the cantilever beam problem in
this subsection. Figure 6 shows a comparison of analytical
solution and the present RGD numerical solution for the
beam deflection. Two nodal distributions, 91 (13 × 7) regular
nodes and 481 (37 × 13) regular nodes, are used. The stress
results are also obtained. Figures 8 and 9 illustrate the
analytical solution and the RG methods solutions for the
stress 𝜎𝑥 and the shear stress 𝜏𝑥𝑦 of the beamusing 481 regular
nodes, respectively. Figures 6–8 show the RG methods and
RPIM have good performance for the stress 𝜎𝑥 and poor
performance for the stress 𝜏𝑥𝑦. But in terms of time, the RGD
method is better than the RGP method and RPIM method

(Tables 4 and 5 and Figure 6). Thus, the RGP method is not
considered in the next section.

5.2.5. A Special Case of the RD Methods. As a special case of
the RD methods, the vertices of the Gauss domains coincide
with the nodes in regular nodes distribution; see Figure 11.
Figure 11 shows that a 5 ∗ 5 uniform grid and a 4 × 4 Gauss
quadrature in each Gauss domain are used.The Gauss points
∗ in theGauss domain have the samenodes ∘ (red nodes)with
𝛼 = 2. We consider that the process of constructing shape
function has three parts: the [𝑅(𝑥) 𝑃(𝑥)], solving the inverse
ofG, and computing [𝑅(𝑥) 𝑃(𝑥)]∗G−1.These computational
complexities are 𝑂((𝑚 + 𝑛)), 𝑂((𝑚 + 𝑛)

3
), and 𝑂((𝑚 + 𝑛)

2
),

respectively. Table 6 shows the complexity of the integration
for a Gauss domain with 16 Gauss points.

The efficiency ratio is defined as CPURPIM/CPURG. To
discuss the efficiency ratio, two nodal distributions, 325 (25×
13) regular nodes and 629 (37 × 17) regular nodes, are used.
Table 7 shows that the efficiency ratios are 11.832 and 13.362,
respectively. The efficiency ratios are also expressed as
efficiency ratios

= (NG ∗ (16 ∗ 𝑂 ((𝑚 + 𝑛)3) + 16 ∗ 𝑂 ((𝑚 + 𝑛)2)

+16 ∗ 𝑂 (𝑚 + 𝑛))

+ preprocess + postprocess)

× (NG ∗ (𝑂 ((𝑚 + 𝑛)3) + 16 ∗ 𝑂 ((𝑚 + 𝑛)2)

+16 ∗ 𝑂 (𝑚 + 𝑛))

+ preprocess + postprocess)
−1

.

(23)
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Figure 8: Stress 𝜎𝑥: analytical results (a), RGP numerical results (b), and RGD numerical results (c).

To refine the nodes domain, the NG will be a large
number. The elapsed CPU times of compute shape functions
is far than the rest. Thus,

efficiency ratios → (16 ∗ 𝑂 ((𝑚 + 𝑛)
3
)

+ 16 ∗ 𝑂 ((𝑚 + 𝑛)
2
)

+16 ∗ 𝑂 (𝑚 + 𝑛))

× (𝑂 ((𝑚 + 𝑛)
3
) + 16 ∗ 𝑂 ((𝑚 + 𝑛)

2
)

+16 ∗ 𝑂 (𝑚 + 𝑛))

−1

→ 16.

(24)

The formula of the efficiency ratios fully explains that the
ratio is 11.832 for 325 (25 × 13) regular nodes (NG = 288)
and 13.362 for 629 (37 × 17) regular nodes (NG = 576).
Numerical results show that the rates are 11.832 and 13.362
which gradually close to the theory upper 16 with the increase

of NG (the number of the Gauss domains). If we want to
improve the accuracy of numerical results with refining the
nodes domain, the number of the Gauss points should be
added and the efficiency ratios will be improved further.

5.3. Plate with a Central Circular Hole. Consider now a plate
with a central circular hole subjected to a unidirectional
tensile load of 1.0 in the 𝑥 direction (see Figure 11(a)). This
is a typical plane stress problem.

The closed-form solution of stresses is

𝜎𝑥 = 1 −

𝑎
2

𝑟
2
[

3

2

cos 2𝜃 + cos 4𝜃] + 3𝑎
4

2𝑟
4
cos 4𝜃,

𝜎𝑦 = −

𝑎
2

𝑟
2
[

1

2

cos 2𝜃 − cos 4𝜃] − 3𝑎
4

2𝑟
4
cos 4𝜃,

𝜏𝑥𝑦 = −

𝑎
2

𝑟
2
[

1

2

sin 2𝜃 + sin 4𝜃] + 3𝑎
4

2𝑟
4
sin 4𝜃,

(25)

where (𝑟, 𝜃) are polar coordinates, 𝜃 is the measured coun-
terclockwise from the positive 𝑥-axis, and 𝑎 is the radius of
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Figure 9: Shear stress 𝜏𝑥𝑦: analytical results (a), RGP numerical results (b), and RGD numerical results (c).

the hole.The corresponding displacements, in the plain stress
case, are given by

𝑢𝑟 =

1

4𝐺

{𝑟 [

𝜅 − 1

2

+ cos 2𝜃] + 𝑎
2

𝑟

[1 + (1 + 𝜅) cos 2𝜃]

−

𝑎
4

𝑟
3
cos 2𝜃} ,

𝑢𝜃 =

1

4𝐺

[(1 − 𝜅)

𝑎
2

𝑟

− 𝑟 −

𝑎
4

𝑟
3
] sin 2𝜃,

(26)

where 𝐺 = 𝐸/(2(1 + ])) and 𝜅 = (3 − ])/(1 + ]). The material
properties are 𝐸 = 1.0 × 103 and ] = 0.3.

By taking advantage of its symmetry, only a quarter of
the model is considered in the analysis (see Figure 11(b)).
Symmetry conditions are imposed on the left and the bottom
edges, and the inner boundary of the hole is traction-free.
These boundary conditions include (i) essential boundary
conditions on the bottom and left edges on which displace-
ment 𝑢 is computed from the exact displacement given in
(26) and (ii) natural boundary conditions on the right and
top edges on which traction 𝑡 is computed from the exact
stress given in (25). A typical node distribution with 99 nodes

The Gauss points distribution with 𝛼 = 2 in the 5 ∗ 5 grid

Gauss points
Nodes

Figure 10: The diagram of 5 ∗ 5 domains for the special case.

and the corresponding background mesh constructed for the
numerical integration are shown in Figure 12(a). For each
background cell, a 4 × 4 Gauss quadrature is employed. It
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Table 6: The complexity of the integration for a Gauss domain.

Complexity Part I Part II Part III Sum
𝑂((𝑚 + 𝑛)) 𝑂((𝑚 + 𝑛)

3
) 𝑂((𝑚 + 𝑛)

2
)

RPIM 16 times 16 times 16 times 16 ∗ 𝑂 ((𝑚 + 𝑛)
3
) + 16 ∗ 𝑂 ((𝑚 + 𝑛)

2
) + 16 ∗ 𝑂 (𝑚 + 𝑛)

RG 16 times 1 time 16 times 𝑂((𝑚 + 𝑛)
3
) + 16 ∗ 𝑂 ((𝑚 + 𝑛)

2
) + 16 ∗ 𝑂 (𝑚 + 𝑛)

Table 7: Effect of the size of support domain for the RG method (Example 4.2).

Grid
25 ∗ 13 37 ∗ 17

𝑟𝑢 𝑟𝜎 CPU 𝑟𝑢 𝑟𝜎 CPU
Schemes

RG
4.7796𝑒 − 004 0.0204

1.267
7.3559𝑒 − 005 0.0054

2.373
RPIM 14.991 31.708
Efficiency ratio 11.832 13.362
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Figure 11: Plate with a central circular hole and its model problem: (a) a plate with a hole, (b) a quarter of the plate and boundary conditions.

Table 8: Effect of the size of support domain for the RG methods
for the 99 nodes (Example 5.3).

𝛼

RGD RPIM
𝑟𝑢 𝑟𝜎 CPU 𝑟𝑢 𝑟𝜎 CPU

1.1 0.0149 0.1101 0.880 0.0219 0.1005 0.968
1.2 0.0097 0.0881 0.963 0.0205 0.1004 1.052
1.5 0.0094 0.0623 1.175 0.0271 0.1526 1.547
1.8 0.0056 0.0886 1.580 0.0133 0.2052 2.383
2.0 0.0054 0.1154 2.043 0.0115 0.2226 3.052
3.0 0.0044 0.0590 4.600 0.0057 01500 9.286

is also of great interest to further study the effect of the
nodal influence domain size and the computational support
domain size. It should be noted that the support domain for
all nodes is a circle with varying radius. They are chosen
such that the support is small for nodes near the hole and
bigger for nodes near the edges. Table 8 presents the relative
errors and elapsed CPU times with different parameters 𝛼 for

Table 9: Convergence study for Example 5.3.

Scheme 99 nodes 289 nodes 625 nodes 1089 nodes
RGD
𝑟𝑢 0.0149 0.0053 0.0025 0.0016
𝑟𝜎 0.1101 0.0534 0.0384 0.0343
CPU 0.880 2.030 3.480 13.516

RPIM
𝑟
𝑢

0.0219 0.0057 0.0031 0.0022
𝑟𝜎 0.1005 0.0541 0.0343 0.0283
CPU 0.968 4.523 17.419 55.530

the 99 nodes. In this case, the computational results show
relatively good accuracy and less elapsed CPU time. For
convergence studies, four different node distributionswith 99
nodes, 289 nodes, 625 nodes, and 1089 nodes are considered
in Table 9. The last three node distributions are taken from
[23]. Due to singular property for RPIM, 𝛼was advised as 1.1
compared with the RGD method. The computational results
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Figure 12: Plate with a central circular hole: (a) 99 nodes’ distribution, (b) analytical and RGD solution of displacement.
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Figure 13: Stress 𝜎𝑥: analytical results (a) and RGD numerical results (b).

are presented in Table 9, which also shows that the RGD
method possesses high convergence. The elapsed CPU times
of the four node distributions fall 9%, 55%, 80%, and 76%,
respectively. The computed displacements and stresses are
also shown for 99 nodes’ distribution problem in Figures
10–13. The displacements computed by the RGD method
at nodes are plotted and compared to the exact solution
(see Figure 12(b)). Figures 13 and 14 compare the analytical
solution and RGD solution of stress 𝜎𝑥 and shear stress 𝜏𝑥𝑦,
respectively. Figure 15(a) compares the stresses 𝜎𝑥 at stations
along the left edge of the plate for theRPIM solution, the RGD
solution, and the closed-form solution. Figure 15(b) plots the
stresses 𝜎𝑦 at stations along the bottom edge of the plate for

these methods. From Figures 11–13, it is shown that the RGD
has a higher accuracy compared with the RPIM solution. In
particular, the RGD solution of stress 𝜎𝑥 at (0, 5) agrees with
the analytical result, but the RPIM result is far away from the
analytical result.

6. Conclusions

In this paper, we have studied researching Gauss points and
reordering Gauss domain technique (GD methods), where
the computational processes are more reasonable. Secondly,
this technique is compatible with most of the common
RPIM methods, and this aspect is worth studying. Finally,
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Figure 14: Shear stress 𝜏𝑥𝑦: analytical results (a) and RGD numerical results (b).
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Figure 15: Comparisons of RGD and analytical solution: stress 𝜎𝑥 at the stations along the left edge of the plate (a) and stress 𝜎𝑦 at the stations
along the bottom edge of the plate (b).

3D problems could be solved with this scheme to save the
computation time.
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[14] I. Kaljević and S. Saigal, “An improved element free Galerkin
formulation,” International Journal for Numerical Methods in
Engineering, vol. 40, no. 16, pp. 2953–2974, 1997.

[15] T. Zhu and S. N. Atluri, “A modified collocation method and a
penalty formulation for enforcing the essential boundary con-
ditions in the element free Galerkin method,” Computational
Mechanics, vol. 21, no. 3, pp. 211–222, 1998.

[16] G. R. Liu and Y. T. Gu, “A point interpolation method for two-
dimensional solid,” International Journal for NumericalMethods
in Engineering, vol. 50, no. 4, pp. 937–951, 2001.

[17] Y. T. Gu and G. R. Liu, “A local point interpolation method for
static and dynamic analysis of thin beams,” Computer Methods
in AppliedMechanics and Engineering, vol. 190, no. 42, pp. 5515–
5528, 2001.

[18] G. R. Liu and Y. T. Gu, “A local radial point interpolation
method (LRPIM) for free vibration analyses of 2-D solids,”
Journal of Sound and Vibration, vol. 246, no. 1, pp. 29–46, 2001.

[19] G. R. Liu, G. Y. Zhang, Y. T. Gu, and Y. Y. Wang, “A
meshfree radial point interpolation method (RPIM) for three-
dimensional solids,” Computational Mechanics, vol. 36, no. 6,
pp. 421–430, 2005.

[20] H. Wendland, “Error estimates for interpolation by compactly
supported radial basis functions of minimal degree,” Journal of
Approximation Theory, vol. 93, no. 2, pp. 258–272, 1998.

[21] J. G. Wang and G. R. Liu, “A point interpolation meshless
method based on radial basis functions,” International Journal
for Numerical Methods in Engineering, vol. 54, no. 11, pp. 1623–
1648, 2002.

[22] J. G. Wang and G. R. Liu, “On the optimal shape parameters
of radial basis functions used for 2-D meshless methods,”
Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 23-24, pp. 2611–2630, 2002.

[23] X. Zhang and Y. Liu, Meshless Method, Tsinghua University
Press, Beijing, China, 2004.


