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Nowadays, low frequency oscillation has become a major problem threatening the security of large-scale interconnected power
systems.According to generationmechanism, active power oscillation of electric power systems can be classified into two categories:
free oscillation and forced oscillation. The former results from poor or negative damping ratio of power system and external
periodic disturbance may lead to the latter.Thus control strategies to suppress the oscillations are totally different. Distinction from
each other of those two different kinds of power oscillations becomes a precondition for suppressing the oscillations with proper
measures. This paper proposes a practical approach for power oscillation classification by identifying real-time power oscillation
curves. Hilbert transform is employed to obtain envelope curves of the power oscillation curves. Twenty sampling points of the
envelope curve are selected as the feature matrices to train and test the supporting vector machine (SVM). The tests on the 16-
machine 68-bus benchmark power system and a real power system in China indicate that the proposed oscillation classification
method is of high precision.

1. Introduction

Damping ratio is a key factor in electric power oscillations.
With the interconnection of large-scale power grids via high
voltage long distance transmission lines, coupling between
synchronous generators becomes weaker which leads to poor
or negative damping ratio of power systems [1, 2]. Power
oscillation has become a major problem threatening the
security of large-scale interconnected power systems [3, 4]. In
order to safely operate the power system, monitoring classi-
fication and suppression of the electric power oscillations in
power grids has captured exponentially increasing attention
in power engineering community in the past decade.

This paper focuses on the active power oscillation prop-
erty classification problem. According to generation mecha-
nism, active power oscillations of electric systems can be clas-
sified into two categories [2]. One is free oscillation resulted
by negative damping ratio of power systems. It could also be
called negative damping oscillation. Worldwide accepted
explanation mechanism of this kind of power oscillation is

based on the complex torque analysis method proposed by
DeMello and Concordia in 1969 [5]. When the reactance of
transmission system is large or power output of generators is
high, the negative damping torque produced by lagging phase
of quick excitation circuit counteracts the original positive
damping of generators’ damping windings. This will lead to
negative damping ratio of power grids and cause a power
oscillation with increasing amplitude [6, 7]. Reducing trans-
mission power of tie lines or installing PSS equipment which
enhances damping torque through phase compensation has
been proved to be important measure for suppressing nega-
tive damping power oscillation [8, 9].

The other kind of active power oscillation is forced power
oscillation, which is explained by the resonance mechanism
[10, 11]. Power resonance of generators will be provokedwhen
the frequency of a small periodic disturbance occurring at the
power system is equal or close to the system’s natural fre-
quency. This kind of power oscillation is characterized by
fast oscillation start and rapid decay after losing oscillation
source. Some researchers have demonstrated that periodic
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disturbances of excitation circuit, turbine speed governor
system, and active power load could stimulate forced power
oscillation [12–14]. Separating the periodic disturbance
sources from the system is the most effective countermeasure
to eliminate its influence quickly [15].

Thus negative damping oscillation and forced oscillation
have different generation mechanisms with different cop-
ing measures. It is extremely important and necessary to
distinguish them from each other. However, both of them
have similar oscillation forms with increasing amplitudes at
initial stage and probably develop into a constant amplitude
oscillation in the end. Correct and rapid identification of the
oscillation property becomes a difficult problem to be solved.
Nowadays, researches on power oscillation classification
mostly concentrate on simulation after oscillation accidents.
System response curves of simulation under negative damp-
ing oscillation condition and forced oscillation condition
are compared with the actual oscilloscope records of power
systems to judge the oscillation property of power oscillation
accidents [16, 17]. An online oscillation property classification
method based on difference analysis of the oscillation curves
is proposed in [18], but there is a certain error of the dif-
ferential calculation. A fundamental theory of forced power
oscillation in a power system has been recommended in [19],
which has proved that the forced power oscillation has dif-
ferent envelop curve from the negative damping oscillation.
Thus the active power oscillation property could be identified
online by distinguishing their envelop curves.

Statistical learning theory and support vector machine
(SVM) have given a systemic theoretical explanation about
pattern recognition under circumstances of finite samples.
Many problems, like model-choosing, overfitting, nonlinear,
disaster of dimensionality, and local minimum, which have
long hindered the development of machine learning are now
solved to a great extent [20, 21]. So far, SVM has successfully
been applied tomany fields like fault diagnosis, speech recog-
nition, image recognition and text classification [22–24]. In
[25], two types of SVM were implemented to effectively
classify different kinds of power quality disturbances.

This paper proposes a practical approach for power oscil-
lation classification by recognition of real-time power oscil-
lation curves utilizing SVM. Hilbert transform is employed
to obtain envelope curves of the power oscillation curves.
Twenty sampling points on the envelope curve of power oscil-
lation are selected for feature extraction. Then, forty power
oscillation curves are employed as samples to train the sup-
porting vector machine. At last, three tests on the 16-machine
68-bus benchmark system and a real power system in China
indicate that the proposed oscillation classification method
possesses good precision.

The rest of this paper is organized as follows. In Section 2,
a Hilbert transform based oscillation feature extraction
scheme is proposed. Section 3 introduces a power oscillation
property classification method utilizing SVM. Case study
is undertaken on the 16-machine 68-bus benchmark sys-
tem and a practical simplified power system of China to
verify the effectiveness of the proposed oscillation property
classification method in Section 4. Conclusions are given in
Section 5.

2. Feature Extraction of Power Oscillations

2.1. Introduction of Power Oscillations. When a free oscilla-
tion happens in a power system, the rotor angle, rotation
speed of synchronous generators, and relevant electric vari-
ables (such as the power flow of transmission lines and bus
voltages) will oscillate accordingly, among which the power
flow of transmission line 𝑃

𝑖𝑗
can be expressed as follows:

𝑃
𝑖𝑗
=

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝑖0
𝑒
𝜆𝑖𝑡, (1)

where 𝑘
𝑖
denotes the participation factor of oscillation pattern

𝑖; 𝑥
𝑖0
is the initial value of state variable according to oscil-

lation pattern 𝑖; 𝜆
𝑖
denotes the eigenvalue of the oscillation

pattern 𝑖. Generally 𝜆
𝑖
can be expressed as

𝜆
1,2
= 𝛼 ± 𝑗𝜔. (2)

In (2), 𝛼 indicates the damping performance of the oscilla-
tion;𝜔 denotes the frequency characteristic of the oscillation;
the damping ratio of the oscillation is defined as

𝜉 =
−𝛼

√𝛼2 + 𝜔2
. (3)

The oscillation curve of any free oscillation mode can be
expressed as

𝑃
𝑖𝑗
= 𝐵
1
𝑒
𝛼𝑡 sin (𝜔𝑡 + 𝜙

1
) . (4)

Therefore, when any oscillation mode with 𝜉 < 0 (i.e.,
𝛼 > 0) exists in the power system, any small disturbance
would stimulate thismode and result in a power oscillation of
the tie line with increasing amplitude as shown in Figure 1(a).
That is the so-called negative damping oscillation. If all the
damping ratios of oscillation patterns are larger than zero,
the small disturbance occurring at the power system would
be restrained by the positive damping.

For any forced oscillation in the power system with an
extreme disturbance like ℎ sin(𝜔

𝑑
𝑡), it can be expressed as a

second-order system:

𝑥̈ + 2𝜉𝜔𝑥̇ + 𝜔
2
𝑥 = ℎ sin (𝜔

𝑑
𝑡) . (5)

Solving (5), the oscillation curve of forced oscillation is

𝑃
𝑖𝑗
= 𝐵
1
𝑒
𝛼𝑡 sin (𝜔𝑡 + 𝜙

1
) + 𝐵
2
sin (𝜔

𝑑
𝑡 + 𝜙
2
) . (6)

Under the circumstance of 𝜉 > 0 (i.e., 𝛼 < 0), the free
oscillation part 𝐵

1
𝑒
𝛼𝑡 sin(𝜔𝑡+𝜙

1
) in (6) will decay. But power

resonance would be motivated and large oscillation would
follow as shown in Figure 1(b) if the oscillation frequency 𝜔

𝑑

of the extreme disturbance is equal or close to the system’s
natural frequency 𝜔.

From the analysis above, it can be concluded that the
envelope curve of negative damping oscillation increases as
𝐵
1
𝑒
𝛼𝑡.The envelope curve of forced oscillationwill increase at

the initial stage. Then it transits to an oscillation as (ℎ/2(𝜔 −
𝜔
𝑑
)𝜔)𝑒
𝛼𝑡 sin((𝜔−𝜔

𝑑
)𝑡+𝜙
2
)+𝐵
2
at the transitory stage. At last it

will die down to a constant as𝐵
2
at stable stage [19].Thus there

is obvious distinction between the envelope curves of the two
kinds of power oscillations.
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Figure 1: Power oscillation curve of tie line.

2.2. Hilbert Transform. Hilbert transform (HT) [26] offers an
effective approach to extract envelope curves as oscillation
features for different kinds of power oscillations. For the fol-
lowing power oscillation signal in a power grid:

𝑢 (𝑡) = 𝐴 (𝑡) cos𝜑 (𝑡) . (7)

HT could be applied to acquire its complex conjugate signal

V (𝑡) = 𝐻 [𝑢 (𝑡)] =
1

𝜋
∫

+∞

−∞

𝑢 (𝜏)

𝑡 − 𝜏
𝑑𝜏. (8)

V(𝑡) is a sinusoidal signal similar to 𝑢(𝑡). It could be
expressed as V(𝑡) = 𝐴(𝑡) sin𝜑(𝑡). 𝑢(𝑡) and V(𝑡) constitute aHT
pair which makes up the following HT analytic signal:

𝑤 (𝑡) = 𝐴 (𝑡) cos𝜑 (𝑡) + 𝑗𝐴 (𝑡) sin𝜑 (𝑡) . (9)

Namely,

𝑤 (𝑡) = 𝐴 (𝑡) 𝑒
𝑗𝜑(𝑡)

,

𝐴 (𝑡) = √𝑢
2
(𝑡) + V2 (𝑡).

(10)

Therefore, the amplitude 𝐴(𝑡) of HT analytic signal
reflects global change trend of the signal. 𝐴(𝑡) represents the
envelope of the oscillation signal and could be calculated by
using (8) when the analytic signal is a signal with intrinsic
oscillation mode.

2.3. Feature Extraction. The envelope curve of power oscil-
lation will be obtained by HT after the power oscillation in
power grid is detected by the wide area measurement system
(WAMS). Then the envelope curve is normalized according
to the steady value before oscillation happens. Finally, twenty
evenly spaced points on the envelope curve are selected in
every 2𝑇 interval (𝑇 is oscillation period of the power oscil-
lation) to constitute a group of feature matrices as shown in
Figure 2.

It is well known that the power oscillation in a power sys-
tem generally combines various swing modes. If there is only
one dominant oscillation mode, the oscillation amplitude of
other oscillationmodes is small compared with the dominant
oscillationmode.The influence of other oscillationmodes on
dominant oscillation mode can be neglected. If there are two
or more than two dominant oscillation modes, the dominant
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Figure 2: Extraction of the elements in the feature matrices.

oscillation mode with positive damping ratio will decay after
seconds or minutes. Then only the oscillation mode with
negative damping ratio retains. Meanwhile, the data used for
power oscillation feature extraction contains 40 cycles of the
oscillation curve. After several cycles, only the oscillation
mode with negative damping ratio will retain and be used for
the oscillation property classification.

However, the power oscillation with two negative damp-
ing oscillation modes has similar expression with forced
power oscillation. The beat-frequency oscillation will also be
perceived in the power oscillationwith two negative damping
oscillation modes. It is hard to distinguish the forced power
oscillation and the power oscillationwith two negative damp-
ing oscillation modes. However, the power oscillation with
two negative damping oscillation modes is very unusual in
power system; thus the negative damping power oscillation in
this paper is the power oscillation with only one negative
damping oscillation mode. Under this premise, the feature
matrices can represent the power oscillation property of the
system.

Difference of adjacent points of the feature matrices
denotes the change direction of the envelope curve and the
second-order difference denotes its change tendency. As for
negative damping oscillation, the variation rate of the enve-
lope curves is generally positive with oscillation amplitude
growing more and more rapidly. This means that the first-
order and second-order difference of adjacent points from the
feature matrices should also be positive. However, for forced
oscillations, the envelope curve hasminimum andmaximum
points. This indicates that the first-order or second-order
difference of adjacent points could be zero or negative.
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Figure 3: A classification example in a two-dimensional space based
on SVM [27, 28].

Therefore, the feature matrices obtained in this paper at least
contain the oscillation characteristic of the power oscillation
which could be utilized for power oscillation property clas-
sification. Besides, the feature matrices extraction of power
oscillation curves will be the foundation of the following
work.

3. Oscillation Property Classification
Based on SVM

3.1. Basic Theory of SVM. SVM-based classification method
is established on the basis of structural risk minimization
principle and VC theory (Vapnik and Chervonenkis theory)
[27]. In order to obtain excellent capability of generalization
according to a certain amount of samples, the SVM-based
classificationmethod seeks the best compromise between the
complication of themodel and its learning capacity.The prin-
ciple idea of SVM is as follows: it firstlymaps the input vectors
in sample space into some high or even infinite dimensional
feature space through some nonlinear mapping function
𝜙(𝑥). And then the nonlinear and nonclassifiable problem
in the original sample space is transformed into a linear and
classifiable problem in the high dimensional feature space. At
last, in this feature space, a linear decision surface is con-
structed with special properties that possess the largest sep-
aration margin between the two classes just as shown in
Figure 3.

For the given linear and separable training patterns
{(𝑥
𝑖
, 𝑑
𝑖
)}
𝑙

𝑖=1
, 𝑥
𝑖
∈ 𝑅
𝑛, 𝑑
𝑖
∈ {1, −1}, 𝑥

𝑖
denotes the 𝑛-

dimensional input vector and 𝑑
𝑖
denotes the class of the sam-

ple. For further explanation, 1 denotes the positive class and
−1 denotes the negative class. These two sets are linearly sep-
arable on the condition that there are a vector 𝜔 and scalar 𝑏
which satisfy

𝜔 ⋅ 𝑥
𝑖
+ 𝑏 ≥ 1,

if 𝑥
𝑖
∈ positive sample set, namely 𝑦

𝑖
= 1,

𝜔 ⋅ 𝑥
𝑖
+ 𝑏 ≤ −1,

if 𝑥
𝑖
∈ negative sample set, namely 𝑦

𝑖
= −1.

(11)

If the vector 𝜔 has the minimum norm, then the hyper-
plane 𝑦 = 𝜔 ⋅ 𝑥 + 𝑏 separates the training data with a maxi-
mal margin. It is the unique and optimal hyper plane for
classification of the train data.

If the training data in the input space is nonlinear, in order
to construct a hyper plane to classify the nonlinear samples,
one first has tomap the input vector𝑥 into a higher dimension
feature space by function 𝜙(𝑥) and then takes the sign of the
function

𝑦 = 𝜔 ⋅ 𝜙 (𝑥) + 𝑏. (12)

Consider the casewhen the training data cannot be classi-
fied without error. Penalty constant 𝐶 and some nonnegative
variables 𝜉

𝑖
are introduced to punish the incorrect classi-

fication. Then this idea can be expressed formally as an
optimization problem as follows:

min 1

2
‖𝜔‖
2
+ 𝐶

𝑙

∑

𝑖=1

𝜉
𝑖

s.t. 𝑑
𝑖
[𝜔 ⋅ 𝜙 (𝑥

𝑖
) + 𝑏] + 𝜉

𝑖
≥ 1

𝜉
𝑖
≥ 0.

(13)

The Lagrange function for this problem is

𝐿 (𝜔, 𝑏, 𝜉, Λ,R)

=
1

2
‖𝜔‖
2

+ 𝐶

𝑙

∑

𝑖=1

𝜉
𝑖
−

𝑙

∑

𝑖=1

𝛼
𝑖
(𝑑
𝑖
[𝜔 ⋅ 𝜙 (𝑥

𝑖
) + 𝑏] + 𝜉

𝑖
− 1)

−

𝑙

∑

𝑖=1

𝑟
𝑖
𝜉
𝑖
,

(14)

where the nonnegative multipliers Λ𝑇 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑙
) and

𝑅
𝑇
= (𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑙
) arise from the constraint in (13).

Using the conditions for the minimum of this function at
the extreme point

𝜕𝐿

𝜕𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝜔0

= 𝜔
0
−

𝑙

∑

𝑖=1

𝛼
𝑖
𝑑
𝑖
𝜙 (𝑥
𝑖
) = 0, (15)

𝜕𝐿

𝜕𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑏=𝑏0

=

𝑙

∑

𝑖=1

𝛼
𝑖
𝑑
𝑖
= 0,

𝜕𝐿

𝜕𝜉
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉𝑖=𝜉𝑖0

= 𝐶 − 𝛼
𝑖
− 𝑟
𝑖
= 0.

(16)

From (15), 𝜔
0
can be obtained as

𝜔
0
=

𝑙

∑

𝑖=1

𝛼
𝑖
𝑑
𝑖
𝜙 (𝑥
𝑖
) . (17)

Thus the decision function in (12) is transformed into the
following form:

𝑦 =

𝑙

∑

𝑖=1

𝑑
𝑖
𝛼
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏. (18)
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Substituting the expressions for 𝜔
0
, 𝑏
0
, and 𝜉

𝑖0
to the

Lagrange function (13),

𝐹 (Λ) =

𝑙

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑙

∑

𝑖=1

𝑙

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑑
𝑖
𝑑
𝑗
𝐾(𝑥
𝑖
, 𝑥
𝑗
) . (19)

The original convex optimization problem is also trans-
formed into a quadratic optimization problem:

min
Λ

𝐹 (Λ) =

𝑙

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑙

∑

𝑖=1

𝑙

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑑
𝑖
𝑑
𝑗
𝐾(𝑥
𝑖
, 𝑥
𝑗
)

s.t.
𝑙

∑

𝑖=1

𝛼
𝑖
𝑑
𝑖
= 0,

0 ≤ 𝛼
𝑖
≤ 𝐶.

(20)

Under this circumstance, the optimal Lagrange’smultipli-
cator 𝛼0

𝑖
can be obtained by using the Kuhn-Tucker condition

in quadratic programming problem. As for the optimal hyp-
erplane algorithm, the vector 𝜔 can be written as a combina-
tion of the training data

𝜔
0
=

𝑙

∑

𝑖=1

𝑑
𝑖
𝛼
0

𝑖
𝜙
𝑇
(𝑥
𝑖
) . (21)

According to (21) and (18), the classification function of
the training data can be obtained as

𝑦 = sgn[
𝑙

∑

𝑖=1

𝑑
𝑖
𝛼
0

𝑖
𝜙
𝑇
(𝑥
𝑖
) 𝜙 (𝑥) + 𝑏] . (22)

From (12)–(22), 𝜉
𝑖
denotes the slack variable and

𝐾(𝑥
𝑖
, 𝑥
𝑗
) is the kernel function. 𝐾(𝑥

𝑖
, 𝑥
𝑗
) is the convolution

of dot product by 𝜙(𝑥
𝑖
) and 𝜙(𝑥

𝑗
) in the feature space:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝜙
𝑇
(𝑥
𝑖
) 𝜙 (𝑥

𝑗
) . (23)

The input parameters of the kernel function are the
training data 𝑥

𝑖
of power system, and the kernel function for

the SVM is independent of the power system. Any function
that satisfies Mercer’s condition can be used as kernel func-
tion [27]. By employing different kinds of kernel functions,
different learning machines with arbitrary types of decision
surface can be constructed. The most commonly used three
kernel function will be employed in this paper [28]:

linear function:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = (𝑥

𝑖
⋅ 𝑥
𝑗
+ 1)
𝑑

, (24)

sigmoid function:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = tanh (𝑥

𝑖
⋅ 𝑥
𝑗
− 𝜃) , (25)

radial basis function:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp(−

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖
− 𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨

2

2𝜎2
) . (26)

Start

Input historical data and
oscillation future extraction

Parameter initialization for the
SVM model

Obtain the optimal parameter of
the SVM model

End

Oscillation incidence detection

Classify the oscillation properties
of the power oscillation curves

Property classification of the
oscillation incident

No

Yes

Figure 4: Flow chart of the oscillation property classification.

3.2. Procedures of the Oscillation Property Classification.
When power oscillation happens, active power oscillations at
substation, tie line, and generator terminal will be detected by
WAMS. The oscillation property can be well classified by
training historical data with SVM algorithm. Figure 4 gives
the flow chart of the oscillation property classification. The
following procedures will be employed.

(1) Input historical data and oscillation future extraction.
Collect the power oscillation data of the power oscil-
lation incidence that has happened. And then extract
the oscillation feature of the power oscillation data by
the proposedmethod in Section 2 as the training data
for the SVM.

(2) Parameter initialization for the SVMmodel: Lagrange
multiplier 𝛼 and threshold 𝑏 are assigned with ran-
dom number.

(3) Obtain the optimal parameter of the SVM model.
Based on training samples, the objective function of
(20) is established and the optimal problem is solved
using Kuhn-Tucker condition to obtain the optimal 𝛼
and 𝑏.

(4) Power oscillation incidence detection: judge whether
the power oscillation amplitude of the fifth cycle is
larger than 50MW or not for any 500 kV tie line and
record the oscillation curve for the oscillation prop-
erty classification.

(5) Classify the oscillation properties of the power oscil-
lation curves. Classify the property of the power oscil-
lation curves recorded by the WAMS from different
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Figure 5: Simulation example of IEEE16-machine 68-bus benchmark system.

buses at the power grid using the trained SVMmodel
in procedure (3). As for the recognized result of the
oscillation curves, 1 represents the negative damping
oscillation and −1 represents the forced oscillation.

(6) Property classification of the oscillation incident: if
the quantity of 1 is muchmore than −1, the oscillation
incident is negative damping oscillation. Else if the
quantity of −1 is much more than 1, the oscillation
incident is forced oscillation.

4. Simulation Verification

4.1. Tests on 16-Machine 68-Bus System. The circuit diagram
of IEEE16-machine 68-bus benchmark system is shown in
Figure 5. Some forced oscillating sources with oscillation
frequency close to the natural oscillation frequency of the
generators are applied at different nodes in the power grid
and ninety-six samples of power oscillation curves are
obtained.Then sixty-four power oscillation curves under the
negative damping condition are obtained by lowering the gain
of power system stabilizer (PSS). Twenty forced power
oscillation curves (represented by C1) and negative damping
power oscillation curves (represented byC2), respectively, are
selected for training and the remaining 120 oscillation curves
are used for testing. Table 1 gives the simulation result for
the oscillation property classification based on the proposed
method. A 2 × 2 confusionmatrix is constructed to show the
classification performance for each case. The diagonal ele-
ments represent the correctly classified power oscillation
types. The off-diagonal elements represent the misclassifica-
tions. As we can see from Table 1, different kernel function
for SVMmodel will bring different classification precision for
power oscillation curves. When sigmoid function is selected
as kernel function, themodel has highest accuracy.Therefore,
this paper adopts this function as kernel function for SVM
model.

Since noise is omnipresent in electrical power system,
Gaussian white noise is considered in the classification of
power oscillations. Different levels of noises with the noise to
signal ratio values ranging from 5% to 10% were considered.
As the noise to signal ratio increases, the adaptability of SVM
model decreases and the precision of the power oscillation
property classification degrades. Table 1 shows that the pre-
cision of the power oscillation property classifycation is still
above 88% even with the noise to signal ratio rising up to
10%. Thus the SVM-based proposed method can effectively
classify different kinds of the power oscillation.

4.2. Analysis of Forced Power Oscillation in a Real Incident. In
2008, a thermal power plant was asynchronously connected
to theCentral China PowerGrid through 110 kV transmission
lines. Power oscillationswere observed inHenan,Hunan, and
Jiangxi power grids.Thewhole oscillation durationwas about
two minutes with 0.7Hz oscillation frequency at initial stage
and then the oscillatory power of the tie line increased
gradually. When the oscillation stabilized, the oscillatory
frequency of the power grid was 0.62Hz and the oscillatory
amplitude of the active power of tie line between Henan and
Hubei was about 250MW. Subsequently, the 110 kV transmis-
sion line in the fault regionwas cut off and the oscillation died
down quickly. This power oscillation incident was classified
as a typical forced power oscillation incident and the thermal
power plant was the oscillation source [29]. The active power
oscilloscope record of Yao-Shao tie line is given in Figure 6.
Eleven additional active power oscilloscope records of differ-
ent tie lines are selected for the oscillation property classifi-
cation. The support vector machine trained at Section 4.1 is
employed to identify the oscillation property of the eleven
active power oscilloscope records and the result is shown in
Table 2. It can be seen that only one power oscillation curve
is misidentified as negative damping oscillation and the other
ten oscillation curves are all identified as forced oscillation.
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Table 1: Testing result of 16-machine 68-bus benchmark system.

Kernel function Signal type
No noise 5% noise 10% noise

Polynomial kernel function

C1 C2 C1 C2 C1 C2
C1 72 1 C1 70 3 C1 66 4
C2 4 43 C2 6 41 C2 10 40

Precision 95.80% Precision 92.50% Precision 88.30%

RBF kernel function

C1 C2 C1 C2 C1 C2
C1 74 2 C1 71 2 C1 66 4
C2 2 42 C2 5 42 C2 10 40

Precision 96.70% Precision 94.20% Precision 88.30%

Sigmoid kernel function

C1 C2 C1 C2 C1 C2
C1 75 1 C1 72 1 C1 68 3
C2 1 43 C2 4 43 C2 8 41

Precision 98.30% Precision 95.80% Precision 90.80%

Table 2: Identification result of oscilloscope records of forced oscillation incidence.

Oscillation type C1
(forced oscillation)

C2
(negative damping oscillation) Identification result

Number 10 1 C1

Considering identification error, forced oscillation is chosen
as the final identification result, which is consistent with the
analytical result of the incident [29].

4.3. Analysis of Negative Damping Oscillation in a Real
Incident. In 2005, a wide area power oscillation took place in
Central China PowerGrid and thewhole oscillation lasted for
about five minutes. The power oscillation frequency was
about 0.77Hz. Large power fluctuations were detected at the
ThreeGorgesHydroelectric Power Plant and its nearby power
plants in Douli, Jianglin, Longquan, and Wanxian. Then
the operator of the power grid increased the output reactive
power of the Three Gorges Hydroelectric Power Plant and
decreased the active power output of Huanglongtan Power
Plant in northwest Hubei. Subsequently, the oscillation
decayed gradually until it died out.The incident was a typical
negative damping power oscillation [18]. Figure 7 shows the
active power oscilloscope record of the second Long-Dou tie
line during the power oscillation. Twenty active power
oscilloscope records of different tie lines at the power grid
are selected to identify the oscillation property by the SVM
trained in Section 4.1. The identification result is shown in
Table 3. Taking identification error into consideration, the
result in Table 3 indicates that the oscillation incident belongs
to negative damping oscillation, which is also consistent with
the analysis result [18].

5. Conclusions

Active power oscillation in power systems can be classified
into two types: negative damping oscillation and forced
oscillation. Although their oscillation curves are similar, the
adopted suppressing control strategies are totally different.
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Figure 6:The active power oscilloscope record of Yao-Shao tie line.
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Figure 7:The active power oscilloscope record of the second Long-
Dou tie line.

Thus the oscillation property classification is the premise for
suppressing the power oscillation. To properly identify the
oscillation property, the paper proposed an oscillation prop-
erty classification method utilizing the SVM. Through the
simulation analysis, it can be concluded that the envelope
curves of the negative damping oscillation and forced oscil-
lation are different and can be used as the feature for classi-
fication. As noise is omnipresent in electrical power system,
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Table 3: Identification result of oscilloscope records of negative damping oscillation incidence.

Oscillation type C1
(forced oscillation)

C2
(negative damping oscillation) Identification result

Number 2 18 C2

Gaussian white noise is considered in the research of power
oscillation classification. With the increase of the noise to
signal ratio, the adaptability of SVM model decreases and
the precision of the power oscillation property classification
degrades. However, even with the noise to signal ratio reach-
ing up 10%, the precision of the power oscillation property
classification is still above 88%. Moreover, two real incidents
in the real power systems are used to verify the proposed
classification method. Results show that the identified results
from the proposed method is the same with the postincident
analytical identification result, while the postanalytical iden-
tification is an offline time consuming method only applied
after the oscillation happens. The proposed method can be
applied online and provides guidance for the dispatcher to
select the correct suppressing control (the negative damping
one or the forced oscillating one) during the oscillation
period to stop the propagation of oscillations.
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