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A fractional-order system with complex variables is proposed. Firstly, the dynamics of the system including symmetry, equilibrium
points, chaotic attractors, and bifurcations with variation of system parameters and derivative order are studied.The routes leading
to chaos including the period-doubling and tangent bifurcations are obtained. Then, based on the stability theory of fractional-
order systems, the scheme of synchronization for the fractional-order complex system is presented. By designing appropriate
controllers, the synchronization for the system is realized. Numerical simulations are carried out to demonstrate the effectiveness
of the proposed scheme.

1. Introduction

Fractional calculus considered as the generalization of the
integer-order calculus can be dated back to the 17th century.
Recently, it has attracted many researchers’ interest for the
ability to describe practical problems.Moreover, rich dynam-
ics such as chaos and bifurcation exist in many fractional-
order systems [1–3]. Meanwhile, compared with integer-
order chaotic systems, fractional-order chaotic systems with
more complexity dynamics characteristic and more system
parameters can provide higher security for secure commu-
nication [4, 5].

Chaos synchronization has attracted increasing interests
in recent years which was proposed in 1990 [6]. Synchro-
nization of integer-order systems in real space and complex
space has been studied extensively and several methods
are extended to synchronize fractional-order complex sys-
tems [7–9]. It should be noted that fractional-order chaotic
systems with complex variables (doubling the numbers of
variables) can be used to increase the content of trans-
mitting information signals and enhance their security fur-
ther. Therefore, it is an interesting and meaningful topic
for researchers to study the dynamics and synchronization
for fractional-order complex nonlinear systems. Meanwhile,
the chaos and synchronization for discrete fractional-order
systems have been investigated in detail [10–13].

Motivated by the above discussion, a fractional-order
system with complex variables is proposed. The dynamics of
the system including symmetry, equilibrium points, chaotic
attractors, periodic orbits, and bifurcations with variation
of system parameters and derivative orders are studied.
Furthermore, based on the stability theory of fractional-order
systems, the scheme of synchronization for the fractional-
order complex system is presented, and numerical simula-
tions are used to demonstrate the effectiveness and feasibility
of the proposed scheme.

The paper is organized as follows. In Section 2, the
definitions for fractional calculus and numerical algorithms
are introduced. In Section 3, the fractional-order system with
complex variables is proposed. And the dynamic behaviors
of the system are investigated in detail. In Section 4, the
synchronization of the system is investigated. Finally, we
summarize the results in Section 5.

2. Fractional Operators and
Their Approximation

2.1. Definition. There are at least six kinds of definitions for
the fractional derivative.Three of whichmost frequently used
ones are theGrunwald-Letnikov definition and the Riemann-
Liouville and the Caputo definitions [14].
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The Grunwald-Letnikov definition (GL) derivative with
fractional-order 𝑞 is expressed by

GL
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𝐷
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𝑓 (𝑡) = lim
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where the symbol [⋅]means the integer part.
The Riemann-Liouville (RL) definition of fractional de-

rivatives is described by
RL
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(2)
where Γ(⋅) is the gamma function.

The Caputo (𝐶) fractional derivative is defined as follows:
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(3)

It is well known that the initial conditions for the
fractional differential equations with Caputo derivatives take
on the same form as those for the integer-order ones, which
is very suitable for practical problems [15]. Therefore, we will
use the Caputo definition for the fractional derivatives in this
paper.

2.2. Numerical Algorithms. Due to the nature of the nonlocal-
ity, the operator of fractional derivative is more complicated
than the classical ones which cause the difficulty of obtaining
the analytic solution. However, numerical solution can make
us study this kind of derivative better.

Nowadays, there are two approximation methods which
can frequently be used to numerical computation fractional
differential equations. One is an improved version of Adams-
Bashforth-Moulton algorithm [16–18].The other is amethod,
known as frequency domain approximation [19], based
on numerical analysis of fractional-order systems in the
frequency domain. And the reliability of the former has
been widely approved. Therefore, we employ the improved
predictor-corrector algorithm for fractional-order differen-
tial equations in this paper.

In order to get the approximate solution of a fractional-
order chaotic system by the improved predictor-corrector
algorithm, the following equation is considered:

𝑑
𝑞

𝑥

𝑑𝑡𝑞
= 𝑓 (𝑡, 𝑥) , 0 ≤ 𝑡 ≤ 𝑇,
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(0) = 𝑥
(𝑘)

0
, 𝑘 = 0, 1, . . . , ⌈𝑞⌉ − 1,

(4)

where ⌈𝑞⌉ is just the value 𝑞 rounded up to the nearest integer
and 𝑥

(𝑘) is the ordinary 𝑘th derivative of 𝑥. Formula (4) is
equivalent to the Volterra integral equation

𝑥 (𝑡) =
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Now, for the sake of simplicity, we assume that we areworking
on a uniform grid {𝑡

𝑛
= 𝑛ℎ : 𝑛 = 0, 1, . . . ,𝑀} with

some integer 𝑀 and set ℎ = 𝑇/𝑀. Using the standard
quadrature techniques for the integral in (5) and denoting
𝑔(𝜏) = 𝑓(𝜏, 𝑥(𝜏)) the integral is replaced by the trapezoidal
quadrature formula at point 𝑡

𝑛+1
:
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(6)

where𝑔
𝑛+1

is the piecewise linear interpolant for𝑔with nodes
and knots chosen at the 𝑡

𝑗
, (𝑗 = 0, 1, . . . , 𝑛 + 1). After some

elementary calculations, the right hand side of (6) gives
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And if we use the product rectangle rule, the right hand side
of (6) can be written as
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Then the predictor and corrector formulae for solving (5) are
given, respectively, by
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The approximation accuracy of scheme (10)-(11) is
𝑂(ℎ

min{2,1+𝑞}
).

3. Dynamics of a Fractional-Order
Complex System

A three-dimensional chaotic system was proposed in [20],
and the dynamical behaviors of the system were studied in
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Figure 1: The chaotic attractors of the system (14) projected onto different phase plane (a) 𝑥
1
-𝑥
3
phase plane and (b) the chaotic attractor

projected onto 𝑥
1
-𝑥
5
phase plane.

detail.The system can be described by the following differen-
tial equations:

̇𝑦
1
= 𝑎 (𝑦

2
− 𝑦
1
) ,

̇𝑦
2
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1
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,

(12)

where 𝑦 = (𝑦
1
, 𝑦
2
, 𝑦
3
)
𝑇 is the state variable vector of the

system and 𝑎, 𝑏, 𝑐 are parameters. The system possesses an
attractor when the parameters are as follows: 𝑎 = 5, 𝑏 = 16,
𝑐 = 1.

In this paper, we suppose the state variables of system (12)
are defined in the complex field, and the derivate orders are
fractional.Then the corresponding fractional-order system is
defined as
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where 𝑞 is the derivative order and𝑦 = (𝑦
1
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)
𝑇 is the vec-

tor of state variables. 𝑦
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variables, 𝑦
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5
is real variable, and 𝑖 = √−1. Then the

complex variables are separated into the real and imaginary
parts, respectively. Due to the linearity of the Caputo differ-
ential operator, the system (13) can be represented as
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(14)

The system (14) is more convenient than system (13) for anal-
ysis and numerical simulation. When the system parameters

are taken as 𝑎 = 5, 𝑏 = 16, 𝑐 = 1 and order of derivative
𝑞 = 0.99, the maximum Lyapunov exponent by numerical
computation is 𝜆

1
= 0.071, which means that the system

(14) is chaotic. The chaotic attractors in different phase space
projections are shown in Figure 1.

3.1. Symmetry and Equilibrium Points. Firstly, the system (14)
is symmetric because the transformation

𝑆 : (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
) 󳨀→ (−𝑥

1
, −𝑥
2
, −𝑥
3
, −𝑥
4
, 𝑥
5
) , (15)

which permits the system (14), is invariant for all values of
parameters with the transformation. And the transformation
𝑆 also implies that the system is symmetric about 𝑥

5
-axis; that

is, 𝑆(𝜓) is one solution of the system (14) if 𝜓 is one of it.
Now, we turn to investigate the equilibrium points of the

system (14), which can be obtained by solving the equations
𝐷
𝑞

𝑥
𝑗
= 0, (𝑗 = 1, . . . , 5). Therefore, the equilibriums are

𝐸
1
(0, 0, 0, 0, 0)

𝐸
𝜃
(𝑟 cos 𝜃, 𝑟 sin 𝜃, 𝑟 cos 𝜃, 𝑟 sin 𝜃, 1) ,

(16)

where 𝑟 = √𝑏 − 𝑐 and 𝜃 ∈ [0, 2𝜋]. The equilibrium 𝐸
𝜃
exists

when the condition 𝑏 − 𝑐 > 0 is satisfied.

3.2. Bifurcations. Firstly, the order of derivative is taken as
𝑞 = 0.99 and fix the parameters 𝑏 = 16 and 𝑐 = −0.2.
The bifurcation of system (14) as the parameter 𝑎 is varied is
depicted in Figure 2. From the bifurcation diagram, it is clear
that with the decrease of 𝑎 from 7.5 there is one limit cycle
for a long parameter region until period-doubling bifurcation
occurs when 𝑎 = 6.45. For the system, the route leading to
chaos is a series of period-doubling bifurcations.The period-
doubling bifurcations can be observed when 𝑎 belongs to the
intervals [1, 1.5] and [4, 4.5]. Phase portraits are shown in
Figure 3, fromwhichwe can see that the system exists period-
1, period-2 for different values of the parameter 𝑎.

Secondly, the dynamics of system (14) varying the param-
eter 𝑏 will be investigated when 𝑎 = 5, 𝑐 = 1, and 𝑞 = 0.99.
The bifurcation of the system (14) when the parameter 𝑏 is




