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We establish a class of new nonlinear retarded weakly singular integral inequality. Under several practical assumptions, the
inequality is solved by adopting novel analysis techniques, and explicit bounds for the unknown functions are given clearly. An
application of our result to the fractional differential equations with delay is shown at the end of the paper.

1. Introduction

Integral inequalities play increasingly important roles in the
study of existence, uniqueness, boundedness, oscillation, sta-
bility, invariant manifolds, and other qualitative properties of
solutions of ordinary differential equations and integral equa-
tions. One of the best known and widely used inequalities
in the study of nonlinear differential equations is Gronwall-
Bellman inequality [1, 2], which can be stated as follows. If
𝑢 and 𝑓 are nonnegative continuous functions on an interval
[𝑎, 𝑏] satisfying 𝑢(𝑡) ≤ 𝑐+∫

𝑡

𝑎
𝑓(𝑠)𝑢(𝑠)𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏], then 𝑢(𝑡) ≤

𝑐 exp(∫

𝑡

𝑎
𝑓(𝑠)𝑑𝑠), 𝑡 ∈ [𝑎, 𝑏]. Many papers are devoted to dif-

ferent generalizations of Bellman-Gronwall inequality. Very
well-known generalization of Bellman-Gronwall inequality
to the nonlinear case is the Bihari inequality [3]. In 1956,
Bihari [3] discussed the integral inequality

𝑢 (𝑡) ≤ 𝑎 + ∫

𝑡

0

𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠, 𝑡 > 0, (1)

where 𝑎 > 0 is a constant. In recent years, many researchers
have devoted much effort to investigating weakly singular
integral inequalities. For example, Henry [4] proposed a
linear integral inequality with singular kernel to investigate

some qualitative properties for a parabolic differential equa-
tion, and Sano and Kunimatsu [5] gave a modified version
of Henry type inequality. However, such results are expressed
by a complicated power series which are sometimes incon-
venient for their applications. To avoid the shortcomings of
these results, Medved’ [6] presented a newmethod to discuss
nonlinear singular integral inequalities of Henry type and
their Bihari version is as follows:

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠, (2)

and the estimates of solutions are given. From then on, more
attention has been paid to such inequalities with singular
kernel; see [7–24] and the references cited therein. Ye andGao
[20] considered the integral inequality of Henry-Gronwall
type with delay

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

𝑡0

[𝑏 (𝑠) 𝑢 (𝑠) + 𝑐 (𝑠) 𝑢 (𝑠 − 𝑟)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
)

(3)
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and Henry-Gronwall type retarded integral inequality with
singular kernel

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

[𝑏 (𝑠) 𝑢 (𝑠) + 𝑐 (𝑠) 𝑢 (𝑠 − 𝑟)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) .

(4)

In this paper, motivated by [6, 20], we discuss the nonlinear
integral inequality of Henry-Gronwall type with delay

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

𝑡0

[𝑏 (𝑠) 𝑤 (𝑢 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝑢 (𝑠 − 𝑟))] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
)

(5)

and Henry-Gronwall type nonlinear retarded integral
inequality with singular kernel

𝑢 (𝑡)

≤ 𝑎 (𝑡) + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

[𝑏 (𝑠) 𝑤 (𝑢 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝑢 (𝑠 − 𝑟))] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) .

(6)

2. Main Results

Throughout this paper, R denotes the set of real numbers,
R
+

= [0, +∞). For convenience, before giving our main
results, we cite some useful lemmas and definitions in the
discussion of our proof as follows.

Definition 1 (see [6]). Let 𝑞 > 0 be a real number and 0 < 𝑇 ≤

∞. We say that a function 𝑤 : R
+

→ R
+
satisfies a condition

(𝑞), if

𝑒
−𝑞𝑡

[𝑤 (𝑢)]
𝑞

≤ 𝑅 (𝑡) 𝑤 (𝑒
−𝑞𝑡

𝑢
𝑞
) , ∀𝑢 ∈ R

+
, 𝑡 ∈ [0, 𝑇) , (7)

where 𝑅(𝑡) is a continuous, nonnegative function.

Lemma 2 (discrete Jensen inequality [25]). Let 𝐴
1
, 𝐴
2
, . . . ,

𝐴
𝑛
be nonnegative real numbers, 𝑙 > 1 is real numbers, and 𝑛

is a natural number. Then

(𝐴
1

+ 𝐴
2

+ ⋅ ⋅ ⋅ + 𝐴
𝑛
)
𝑙

≤ 𝑛
𝑙−1

(𝐴
𝑙

1
+ 𝐴
𝑙

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑙

𝑛
) . (8)

Lemma 3 (see [6]). (1) Let 𝛽 > 1/2; then

∫

𝑡

𝑡0

(𝑡 − 𝑠)
2𝛽−2

𝑒
2𝑠

𝑑𝑠 ≤

2𝑒
2𝑡

4
𝛽

Γ (2𝛽 − 1) , 𝑡
0
, 𝑡 ∈ R

+
, (9)

where Γ(𝛽) := ∫

∞

0
𝜏
𝛽−1

𝑒
−𝜏

𝑑𝜏 is the gamma function.

(2) Let 𝛽 ∈ (0, 1/2], 𝑝 = 1 + 𝛽; then

∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑝(𝛽−1)

𝑒
𝑝𝑠

𝑑𝑠 ≤

𝑒
𝑝𝑡

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)) ,

𝑡
0
, 𝑡 ∈ R

+
.

(10)

Proof. (1) Using a change of variables 𝜏 = 𝑡 − 𝑠 and 𝜉 = 2𝜏

successively, we have the estimate

∫

𝑡

𝑡0

(𝑡 − 𝑠)
2𝛽−2

𝑒
2𝑠

𝑑𝑠 = ∫

𝑡−𝑡0

0

𝜏
2𝛽−2

𝑒
2𝑡−2𝜏

𝑑𝜏

= 𝑒
2𝑡

∫

𝑡−𝑡0

0

𝜏
2𝛽−2

𝑒
−2𝜏

𝑑𝜏

=

2𝑒
2𝑡

4
𝛽

∫

2𝑡−2𝑡0

0

𝜉
2𝛽−2

𝑒
−𝜉

𝑑𝜉

≤

2𝑒
2𝑡

4
𝛽

Γ (2𝛽 − 1) .

(11)

Since 𝛽 > 1/2, 2𝛽 − 1 > 0 and Γ(2𝛽 − 1) ∈ R
+
.

(2) Using a change of variables 𝜏 = 𝑡 − 𝑠 and 𝜉 = 𝑝𝜏

successively, we have the estimate

∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑝(𝛽−1)

𝑒
𝑝𝑠

𝑑𝑠 = ∫

𝑡−𝑡0

0

𝜏
𝑝(𝛽−1)

𝑒
𝑝𝑡−𝑝𝜏

𝑑𝜏

= 𝑒
𝑝𝑡

∫

𝑡−𝑡0

0

𝜏
𝑝(𝛽−1)

𝑒
−𝑝𝜏

𝑑𝜏

=

𝑒
𝑝𝑡

𝑝
1+𝑝(𝛽−1)

∫

𝑝𝑡−𝑝𝑡0

0

𝜉
𝑝(𝛽−1)

𝑒
−𝜉

𝑑𝜉

≤

𝑒
𝑝𝑡

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)) .

(12)

Since 0 < 𝛽 ≤ 1/2, 𝑝 < 1/(1 − 𝛽), 1 + 𝑝(𝛽 − 1) > 0, and
Γ(1 + 𝑝(𝛽 − 1)) ∈ R

+
.

Theorem 4. Suppose that 𝑎, 𝑏, 𝑐 are nonnegative continuous
functions on [𝑡

0
, 𝑇), 𝜙 is a nonnegative continuous function on

[𝑡
0

− 𝑟, 𝑡
0
), 𝑎(𝑡
0
) = 𝜙(𝑡

0
), and 𝑡

0
≥ 0, 𝑟 > 0, 𝑇 > 0 are

constants. Suppose that the function 𝑤 satisfies the following
conditions:

(1) (𝑞) condition, that is, 𝑤 satisfies inequality (7);

(2) subadditivity, that is, for all 𝑡, 𝑠 ∈ R
+
, 𝑤(𝑡 + 𝑠) ≤ 𝑤(𝑡) +

𝑤(𝑠).
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If 𝑢 satisfies (5), then

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑊
−1

[𝑊 (∫

𝑡

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑊
−1

× {𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠)

+ ∫

𝑡

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠] + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(13)

where

𝑊 (𝑡) := ∫

𝑡

𝑐

𝑑𝑠

𝑤 (𝑠)

, 𝑡 ∈ (0, ∞) , 𝑐 > 0, 𝑊 (∞) = ∞, (14)

𝐺 (𝑡) := 𝑏 (𝑡) 𝑤 (𝑎 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝜙 (𝑡 − 𝑟)) , 𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

(15)

𝐻 (𝑡) := 𝑏 (𝑡) 𝑤 (𝑎 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝑎 (𝑡 − 𝑟)) , 𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) .

(16)

Proof. Define a function 𝑧(𝑡) by the right side of (5), that is,

𝑧 (𝑡) = ∫

𝑡

𝑡0

[𝑏 (𝑠) 𝑤 (𝑢 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝑢 (𝑠 − 𝑟))] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) .

(17)

Then 𝑧(𝑡
0
) = 0, 𝑢(𝑡) ≤ 𝑎(𝑡) + 𝑧(𝑡), and 𝑧(𝑡) is a nonneg-

ative, nondecreasing, and continuous function with 𝑧
󸀠
(𝑡) =

𝑏(𝑡)𝑤(𝑢(𝑡)) + 𝑐(𝑡)𝑤(𝑢(𝑡 − 𝑟)), 𝑡 ∈ [𝑡
0
, 𝑇).

For 𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟), by the subadditivity satisfied by 𝑤, we
conclude

𝑧
󸀠

(𝑡) ≤ 𝑏 (𝑡) 𝑤 (𝑎 (𝑡) + 𝑧 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝜙 (𝑡 − 𝑟))

≤ 𝑏 (𝑡) 𝑤 (𝑎 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝜙 (𝑡 − 𝑟)) + 𝑏 (𝑡) 𝑤 (𝑧 (𝑡)) .

(18)

Letting 𝑠 = 𝑡 in (18) and integrating both sides of inequality
(18) from 𝑡

0
to 𝑡, we obtain

𝑧 (𝑡) ≤ ∫

𝑡

𝑡0

[𝑏 (𝑠) 𝑤 (𝑎 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝜙 (𝑠 − 𝑟))] 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑤 (𝑧 (𝑠)) 𝑑𝑠

≤ ∫

𝜉

𝑡0

[𝑏 (𝑠) 𝑤 (𝑎 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝜙 (𝑠 − 𝑟))] 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑤 (𝑧 (𝑠)) 𝑑𝑠, 𝑡
0

≤ 𝑡 ≤ 𝜉,

(19)

where 𝑡
0

≤ 𝜉 ≤ 𝑡
0

+ 𝑟 is chosen arbitrarily.

Define a function 𝑧
1
(𝑡) by the right side of (19), that is,

𝑧
1

(𝑡) = ∫

𝜉

𝑡0

[𝑏 (𝑠) 𝑤 (𝑎 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝜙 (𝑠 − 𝑟))] 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑤 (𝑧 (𝑠)) 𝑑𝑠, 𝑡
0

≤ 𝑡 ≤ 𝜉.

(20)

Then, the function 𝑧
1
is a nonnegative, nondecreasing, and

continuous function with

𝑧
1

(𝑡
0
) = ∫

𝜉

𝑡0

[𝑏 (𝑠) 𝑤 (𝑎 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝜙 (𝑠 − 𝑟))] 𝑑𝑠,

𝑧 (𝑡) ≤ 𝑧
1

(𝑡) , 𝑡
0

≤ 𝑡 ≤ 𝜉.

(21)

Differentiating 𝑧
1
, we have

𝑧
󸀠

1
(𝑡) ≤ 𝑏 (𝑡) 𝑤 (𝑧

1
(𝑡)) , 𝑡

0
≤ 𝑡 ≤ 𝜉. (22)

From (22), we obtain
𝑑𝑧
1

(𝑡)

𝑤 (𝑧
1

(𝑡))

≤ 𝑏 (𝑡) 𝑑𝑡, 𝑡
0

≤ 𝑡 ≤ 𝜉. (23)

Using (21), from (23) we obtain

𝑊 (𝑧
1

(𝑡)) ≤ 𝑊 (𝑧
1

(𝑡
0
)) + ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑑𝑠

≤ 𝑊 (∫

𝜉

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑑𝑠, 𝑡
0

≤ 𝑡 ≤ 𝜉,

(24)

where 𝑊, 𝐺 are defined by (14) and (15), respectively. From
(24), we observe

𝑧
1

(𝑡) ≤ 𝑊
−1

[𝑊 (∫

𝜉

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑑𝑠] , 𝑡
0

≤ 𝑡 ≤ 𝜉.

(25)

Let 𝑡 = 𝜉 in (25); we have

𝑧
1

(𝜉) ≤ 𝑊
−1

[𝑊 (∫

𝜉

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝜉

𝑡0

𝑏 (𝑠) 𝑑𝑠] . (26)

Since 𝜉 is chosen arbitrarily, from (26), we have the estimation

𝑧 (𝑡) ≤ 𝑧
1

(𝑡)

≤ 𝑊
−1

[𝑊 (∫

𝑡

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝑏 (𝑠) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) .

(27)

For 𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇), using the subadditivity of 𝑤 and
monotony of 𝑤, 𝑧, from (17) we have

𝑧
󸀠

(𝑡) ≤ 𝑏 (𝑡) 𝑤 (𝑎 (𝑠) + 𝑧 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝑎 (𝑡 − 𝑟) + 𝑧 (𝑡 − 𝑟))

≤ 𝑏 (𝑡) 𝑤 (𝑎 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝑎 (𝑡 − 𝑟)) + 𝑏 (𝑡) 𝑤 (𝑧 (𝑡))

+ 𝑐 (𝑡) 𝑤 (𝑧 (𝑡 − 𝑟))

≤ 𝑏 (𝑡) 𝑤 (𝑎 (𝑡)) + 𝑐 (𝑡) 𝑤 (𝑎 (𝑡 − 𝑟)) + (𝑏 (𝑡) + 𝑐 (𝑡))

× 𝑤 (𝑧 (𝑡)) .

(28)
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Letting 𝑠 = 𝑡 in (28) and integrating both sides of inequality
(28) from 𝑡

0
to 𝑡 and using (27) we obtain

𝑧 (𝑡) ≤ 𝑧 (𝑡
0

+ 𝑟) + ∫

𝑡

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑤 (𝑧 (𝑠)) 𝑑𝑠

≤ 𝑊
−1

[𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠]

+ ∫

𝜉

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑤 (𝑧 (𝑠)) 𝑑𝑠,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝜉] ,

(29)

where 𝑡
0

+ 𝑟 ≤ 𝜉 ≤ 𝑇, 𝜉 is seen as a constant, and 𝐻(𝑠) is
defined by (16).

Define a function 𝑧
2
by the right side of (29), that is,

𝑧
2

(𝑡) = 𝑊
−1

[𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠]

+ ∫

𝜉

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑤 (𝑧 (𝑠)) 𝑑𝑠,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝜉] .

(30)
Obviously, 𝑧

2
is a nonnegative, nondecreasing, and continu-

ous function with

𝑧
2

(𝑡
0

+ 𝑟) = 𝑊
−1

[𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠]

+ ∫

𝜉

𝑡0+𝑟

[𝑏 (𝑠) 𝑤 (𝑎 (𝑠)) + 𝑐 (𝑠) 𝑤 (𝑎 (𝑠 − 𝑟))] 𝑑𝑠,

(31)

𝑧 (𝑡) ≤ 𝑧
2

(𝑡) , 𝑡
0

+ 𝑟 ≤ 𝑡 ≤ 𝜉. (32)
Differentiating 𝑧

2
, we have

𝑧
󸀠

2
(𝑡) ≤ (𝑏 (𝑡) + 𝑐 (𝑡)) 𝑤 (𝑧

2
(𝑡)) , 𝑡

0
+ 𝑟 ≤ 𝑡 ≤ 𝜉. (33)

From (33), we have
𝑑𝑧
2

(𝑡)

𝑤 (𝑧
2

(𝑡))

≤ (𝑏 (𝑡) + 𝑐 (𝑡)) 𝑑𝑡, 𝑡
0

+ 𝑟 ≤ 𝑡 ≤ 𝜉. (34)

Using (31), from (34), we have

𝑊 (𝑧
2

(𝑡)) ≤ 𝑊 (𝑧
2

(𝑡
0

+ 𝑟)) + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑑𝑠

≤ 𝑊 {𝑊
−1

[𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠]

+ ∫

𝜉

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠} + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑑𝑠,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝜉] .

(35)

It follows that
𝑧
2

(𝑡) ≤ 𝑊
−1

× {𝑊 {𝑊
−1

[𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠]

+ ∫

𝜉

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠} + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝜉] .

(36)

In (36), let 𝑡 = 𝜉, and then we have

𝑧
2

(𝜉)

≤ 𝑊
−1

{𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠)

+ ∫

𝜉

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠] + ∫

𝜉

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑑𝑠} .

(37)

Since 𝜉 is chosen arbitrarily, from (32) and (37), we obtain the
estimation

𝑧 (𝑡) ≤ 𝑊
−1

{𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐺 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝑏 (𝑠) 𝑑𝑠)

+ ∫

𝑡

𝑡0+𝑟

𝐻 (𝑠) 𝑑𝑠] + ∫

𝑡

𝑡0+𝑟

(𝑏 (𝑠) + 𝑐 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) .

(38)

Noting that 𝑢(𝑡) ≤ 𝑎(𝑡) + 𝑧(𝑡), from (27) and (38), we obtain
our required estimations (13).

Remark 5. When 𝑤(𝑢(𝑡)) = 𝑢(𝑡). The estimations (13) in
Theorem 4 are reduced to the corresponding estimations in
[20].

Theorem 6. Suppose that 𝑎, 𝑏, 𝑐, 𝑢, 𝑤, 𝜙, 𝑟 satisfy the corre-
sponding conditions inTheorem 4; 𝛽 is a constant. If 𝑢 satisfies
(6), then the following assertions hold.

(1) Suppose 𝛽 > 1/2. Then

𝑧 (𝑡) ≤ 𝐴 (𝑡) + 𝑊
−1

[𝑊 (∫

𝑡

𝑡0

𝐼 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝐵 (𝑠) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝑧 (𝑡) ≤ 𝐴 (𝑡) + 𝑊
−1

× {𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐼 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝐵 (𝑠) 𝑑𝑠)

+ ∫

𝑡

𝑡0+𝑟

𝐽 (𝑠) 𝑑𝑠] + ∫

𝑡

𝑡0+𝑟

(𝐵 (𝑠) + 𝐶 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(39)
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where 𝑊 is defined by (14) in Theorem 4,

𝐼 (𝑠) := 𝐵 (𝑡) 𝑤 (𝐴 (𝑡)) + 𝐶 (𝑡) 𝑤 (Φ (𝑡 − 𝑟)) , 𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

(40)

𝐽 (𝑡) := 𝐵 (𝑡) 𝑤 (𝐴 (𝑡)) + 𝐶 (𝑡) 𝑤 (𝐴 (𝑡 − 𝑟)) , 𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(41)

𝐴 (𝑡) := max {3, 𝑒
2𝑟

} [𝑒
𝑡0

𝑎 (𝑡)]

2

, 𝑡 ∈ [𝑡
0
, 𝑇) , (42)

𝐵 (𝑡) :=

6

4
𝛽

Γ (2𝛽 − 1) 𝑏
2

(𝑡) 𝑅 (𝑡) , 𝑡 ∈ [𝑡
0
, 𝑇) , (43)

𝐶 (𝑡) :=

6

4
𝛽

Γ (2𝛽 − 1) 𝑒
−2𝑟

𝑐
2

(𝑡) 𝑅 (𝑡 − 𝑟) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

(44)

Φ (𝑡) := max {3, 𝑒
2𝑟

} [𝑒
−𝑡0

𝜙 (𝑡)]

2

, 𝑡 ∈ [𝑡
0
, 𝑇) , (45)

and 𝑅(𝑡) is defined in (7) in Definition 1.
(2) Suppose that 𝛽 ∈ (0, 1/2], 𝑝 = 1 + 𝛽. Then

𝑧 (𝑡) ≤ 𝐷 (𝑡) + 𝑊
−1

[𝑊 (∫

𝑡

𝑡0

𝐾 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝐸 (𝑠) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝑧 (𝑡) ≤ 𝐷 (𝑡) + 𝑊
−1

{𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐾 (𝑠) 𝑑𝑠) + ∫

𝑡0+𝑟

𝑡0

𝐸 (𝑠) 𝑑𝑠)

+ ∫

𝑡

𝑡0+𝑟

𝐿 (𝑠) 𝑑𝑠] + ∫

𝑡

𝑡0+𝑟

(𝐸 (𝑠) + 𝐹 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(46)

where
𝐾 (𝑠) := 𝐸 (𝑡) 𝑤 (𝐷 (𝑡)) + 𝐹 (𝑡) 𝑤 (Ψ (𝑡 − 𝑟)) ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

(47)

𝐿 (𝑡) := 𝐸 (𝑡) 𝑤 (𝐷 (𝑡)) + 𝐹 (𝑡) 𝑤 (𝐷 (𝑡 − 𝑟)) ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(48)

𝐷 (𝑡) := 𝜌[𝑒
𝑡0

𝑎 (𝑡)]

𝑞

, 𝑡 ∈ [𝑡
0
, 𝑇) , (49)

𝐸 (𝑡) := 3[

1

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

𝑏
𝑞

(𝑡) 𝑅 (𝑡) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(50)

𝐹 (𝑡) := 3[

1

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

× 𝑒
−𝑞𝑟

𝑐
𝑞

(𝑡) 𝑅 (𝑡 − 𝑟) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

(51)

Ψ (𝑡) := 𝜌[𝑒
−𝑡0

𝜙 (𝑡)]

𝑞

, 𝑡 ∈ [𝑡
0
, 𝑇) , (52)

and 𝑞 = 1 + 1/𝛽.

Proof. First we will prove assertion (1). Suppose that 𝛽 > 1/2.
Using Cauchy-Schwarz inequality, we obtain from (6) that

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

𝑒
𝑠
𝑏 (𝑠) 𝑒

−𝑠
𝑤 (𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

𝑒
𝑠−𝑟

𝑐 (𝑠) 𝑒
−𝑠+𝑟

𝑤 (𝑢 (𝑠 − 𝑟)) 𝑑𝑠

≤ 𝑎 (𝑡) + [∫

𝑡

𝑡0

(𝑡 − 𝑠)
2𝛽−2

𝑒
2𝑠

𝑑𝑠]

1/2

× [∫

𝑡

𝑡0

𝑏
2
(𝑠)𝑒
−2𝑠

𝑤
2
(𝑢(𝑠))𝑑𝑠]

1/2

+ [∫

𝑡

𝑡0

(𝑡 − 𝑠)
2𝛽−2

𝑒
2𝑠

𝑑𝑠]

1/2

× [∫

𝑡

𝑡0

𝑒
−2𝑟

𝑐
2

(𝑠) 𝑒
−2𝑠+2𝑟

𝑤
2

(𝑢 (𝑠 − 𝑟)) 𝑑𝑠]

1/2

,

𝑡 ∈ [𝑡
0
, 𝑇) .

(53)

Since 𝑤 satisfies (𝑞) condition, using (7) in Definition 1 and
(9) in Lemma 3, from (53) we derive that

𝑢 (𝑡) ≤ 𝑎 (𝑡) + [

2𝑒
2𝑡

4
𝛽

Γ (2𝛽 − 1)]

1/2

× [∫

𝑡

𝑡0

𝑏
2

(𝑠) 𝑅 (𝑠) 𝑤 (𝑢
2

(𝑠) 𝑒
−2𝑠

) 𝑑𝑠]

1/2

+ [

2𝑒
2𝑡

4
𝛽

Γ (2𝛽 − 1)]

1/2

× [∫

𝑡

𝑡0

𝑒
−2𝑟

𝑐
2

(𝑠) 𝑅 (𝑠 − 𝑟) 𝑤 (𝑢
2

(𝑠 − 𝑟) 𝑒
−2𝑠+2𝑟

) 𝑑𝑠]

1/2

,

(54)

for all 𝑡 ∈ [𝑡
0
, 𝑇). Using discrete Jensen inequality (8) with

𝑛 = 3, 𝑙 = 2, from (54) we obtain

𝑢
2

(𝑡) ≤ 3𝑎
2

(𝑡) + 3

2𝑒
2𝑡

4
𝛽

Γ (2𝛽 − 1)

× [∫

𝑡

𝑡0

𝑏
2

(𝑠) 𝑅 (𝑠) 𝑤 (𝑢
2

(𝑠) 𝑒
−2𝑠

) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑒
−2𝑟

𝑐
2

(𝑠) 𝑅 (𝑠 − 𝑟) 𝑤 (𝑢
2

(𝑠 − 𝑟) 𝑒
−2𝑠+2𝑟

) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(55)



6 Journal of Applied Mathematics

Let V(𝑡) = [𝑒
−𝑡

𝑢(𝑡)]

2 and 𝜆 = max{3, 𝑒
2𝑟

}. From (55) we have

V (𝑡) ≤ 𝜆[𝑒
𝑡0

𝑎 (𝑡)]

2

+

6

4
𝛽

Γ (2𝛽 − 1)

× [∫

𝑡

𝑡0

𝑏
2

(𝑠) 𝑅 (𝑠) 𝑤 (V (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑒
−2𝑟

𝑐
2

(𝑠) 𝑅 (𝑠 − 𝑟) 𝑤 (V (𝑠 − 𝑟)) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(56)

We observe that

V (𝑡) = [𝑒
−𝑡

𝜙 (𝑡)]

2

≤ 𝑒
2𝑟

[𝑒
−𝑡0

𝜙 (𝑡)]

2

≤ 𝜆[𝑒
−𝑡0

𝜙 (𝑡)]

2

= Φ (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) ,

(57)

Φ(𝑡) is defined by (45). By the definitions of 𝐴(𝑡), 𝐵(𝑡), and
𝐶(𝑡) in (42), (43), and (44), from (56) we see

V (𝑡) ≤ 𝐴 (𝑡) + ∫

𝑡

𝑡0

𝐵 (𝑠) 𝑤 (V (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝐶 (𝑠) 𝑤 (V (𝑠 − 𝑟)) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) ;

V (𝑡) ≤ Φ (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) .

(58)

We observe that (58) have the same form as (5) and
𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡) satisfy the corresponding conditions in
Theorem 4. Applying Theorem 4 to (58), we obtain our
required estimations (39).

(2) Now let us prove assertion (2). Suppose 𝛽 ∈

(0, 1/2], 𝑝 = 1 + 𝛽. Let 𝑞 = 1 + 1/𝛽; then 1/𝑝 + 1/𝑞 = 1.
Using Hölder inequality, from (6) we obtain

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

𝑒
𝑠
𝑏 (𝑠) 𝑒

−𝑠
𝑤 (𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

𝑒
𝑠−𝑟

𝑐 (𝑠) 𝑒
−𝑠+𝑟

𝑤 (𝑢 (𝑠 − 𝑟)) 𝑑𝑠

≤ 𝑎 (𝑡) + [∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑝𝛽−𝑝

𝑒
𝑝𝑠

𝑑𝑠]

1/𝑝

× [∫

𝑡

𝑡0

𝑏
𝑞
(𝑠)𝑒
−𝑞𝑠

𝑤
𝑞
(𝑢(𝑠))𝑑𝑠]

1/𝑞

+ [∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑝𝛽−𝑝

𝑒
𝑝𝑠

𝑑𝑠]

1/𝑝

× [∫

𝑡

𝑡0

𝑒
−𝑞𝑟

𝑐
𝑞

(𝑠) 𝑒
−𝑞𝑠+𝑞𝑟

𝑤
𝑞

(𝑢 (𝑠 − 𝑟)) 𝑑𝑠]

1/𝑞

,

𝑡 ∈ [𝑡
0
, 𝑇) .

(59)

Since 𝑤 satisfies (𝑞) condition, using (7) and (10), from (59)
we derive

𝑢 (𝑡) ≤ 𝑎 (𝑡) + [

𝑒
𝑝𝑡

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

1/𝑝

× [∫

𝑡

𝑡0

𝑏
𝑞

(𝑠) 𝑅 (𝑠) 𝑤 (𝑢
𝑞

(𝑠) 𝑒
−𝑞𝑠

) 𝑑𝑠]

1/𝑞

+ [

𝑒
𝑝𝑡

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

1/𝑝

× [∫

𝑡

𝑡0

𝑒
−𝑞𝑟

𝑐
𝑞

(𝑠) 𝑅 (𝑠 − 𝑟) 𝑤 (𝑢
𝑞

(𝑠 − 𝑟) 𝑒
−𝑞𝑠+𝑞𝑟

) 𝑑𝑠]

1/𝑞

,

(60)

for all 𝑡 ∈ [𝑡
0
, 𝑇). Using Jensen inequality (8), from (60) we

have

𝑢
𝑞

(𝑡) ≤ 3𝑎
𝑞

(𝑡) + 3[

𝑒
𝑝𝑡

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

× [∫

𝑡

𝑡0

𝑏
𝑞

(𝑠) 𝑅 (𝑠) 𝑤 (𝑢
𝑞

(𝑠) 𝑒
−𝑞𝑠

) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑒
−𝑞𝑟

𝑐
𝑞

(𝑠) 𝑅 (𝑠 − 𝑟) 𝑤 (𝑢
𝑞

(𝑠 − 𝑟) 𝑒
−𝑞𝑠+𝑞𝑟

) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(61)

Let V(𝑡) = [𝑒
−𝑡

𝑢(𝑡)]

𝑞 and 𝜌 = max{3, 𝑒
𝑞𝑟

}. Then, we obtain
from (61) that

V (𝑡) ≤ 𝜌[𝑒
𝑡0

𝑎 (𝑡)]

𝑞

+ 3[

1

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

× [∫

𝑡

𝑡0

𝑏
𝑞

(𝑠) 𝑅 (𝑠) 𝑤 (𝑢
𝑞

(𝑠) 𝑒
−𝑞𝑠

) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑒
−𝑞𝑟

𝑐
𝑞

(𝑠) 𝑅 (𝑠 − 𝑟) 𝑤 (𝑢
𝑞

(𝑠 − 𝑟) 𝑒
−𝑞𝑠+𝑞𝑟

) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(62)

We observe that

V (𝑡) = [𝑒
−𝑡

𝜙 (𝑡)]

𝑞

≤ 𝑒
𝑞𝑟

[𝑒
−𝑡0

𝜙 (𝑡)]

𝑞

≤ 𝜌[𝑒
−𝑡0

𝜙 (𝑡)]

𝑞

= Ψ (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) ,

(63)

where Ψ(𝑡) is defined by (52). Using definitions of 𝐷(𝑡), 𝐸(𝑡)

and 𝐹(𝑡) in (49), (50), and (51), from (62) we have

V (𝑡) ≤ 𝐷 (𝑡) + ∫

𝑡

𝑡0

𝐸 (𝑠) 𝑤 (V (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝐹 (𝑠) 𝑤 (V (𝑠 − 𝑟)) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) ,

V (𝑡) ≤ Ψ (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) .

(64)
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We observe that (64) have the same form as (5) and 𝐷(𝑡),

𝐸(𝑡), 𝐹(𝑡) satisfy the corresponding conditions inTheorem 4.
Applying Theorem 4 to (64), we obtain our required estima-
tions (46).

3. Application to Fractional Differential
Equations (FDEs) with Delay

In this section, we apply our result to the following fractional
differential equations (FDEs) with delay (see [20]):

𝐷
𝛽

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟)) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) ,

(65)

where𝐷
𝛽 represents the Caputo fractional derivative of order

𝛽 (𝛽 > 0), 𝑓 ∈ 𝐶([𝑡
0
, 𝑇) ×R×R,R), and 𝜙 is as inTheorem 6.

Theorem 7. Suppose that
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 𝑏 (𝑡) 𝑤 (|𝑥|) + 𝑐 (𝑡) 𝑤 (
󵄨
󵄨
󵄨
󵄨
𝑦

󵄨
󵄨
󵄨
󵄨
) , (66)

where 𝑏(𝑡), 𝑐(𝑡), 𝑤 are as in Theorem 6. Let 𝑀 = max
𝑡∈[𝑡0−𝑟,𝑡0)

|𝜙(𝑡)|. If 𝑥(𝑡) is any solution of IVP (65), then the following
estimates hold.

(1) Suppose 1/2 < 𝛽 ≤ 1. Then

𝑧 (𝑡) ≤ 𝐴 (𝑡) + 𝑊
−1

[𝑊 (∫

𝑡

𝑡0

𝐼 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝐵 (𝑠) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝑧 (𝑡) ≤ 𝐴 (𝑡) + 𝑊
−1

{𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐼 (𝑠) 𝑑𝑠)

+ ∫

𝑡0+𝑟

𝑡0

𝐵 (𝑠) 𝑑𝑠)

+ ∫

𝑡

𝑡0+𝑟

𝐽 (𝑠) 𝑑𝑠]

+ ∫

𝑡

𝑡0+𝑟

(𝐵 (𝑠) + 𝐶 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(67)

where 𝑊 is defined by (14) in Theorem 4,

𝐼 (𝑠) := 𝐵 (𝑡) 𝑤 (𝐴 (𝑡)) + 𝐶 (𝑡) 𝑤 (Φ (𝑡 − 𝑟)) ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝐽 (𝑡) := 𝐵 (𝑡) 𝑤 (𝐴 (𝑡)) + 𝐶 (𝑡) 𝑤 (𝐴 (𝑡 − 𝑟)) ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

𝐴 (𝑡) := max {3, 𝑒
2𝑟

} [𝑒
𝑡0

𝑀]

2

, 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝐵 (𝑡) :=

6Γ (2𝛽 − 1) 𝑏
2

(𝑡) 𝑅 (𝑡)

(4
𝛽

Γ (𝛽))

, 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝐶 (𝑡) :=

6Γ (2𝛽 − 1) 𝑒
−2𝑟

𝑐
2

(𝑡) 𝑅 (𝑡 − 𝑟)

(4
𝛽

Γ (𝛽))

, 𝑡 ∈ [𝑡
0
, 𝑇) ,

(68)

and 𝑅(𝑡), Φ are defined by (7) and (45), respectively.

(2) Suppose that 𝛽 ∈ (0, 1/2], 𝑝 = 1 + 𝛽. Then

𝑧 (𝑡) ≤ 𝐷 (𝑡) + 𝑊
−1

[𝑊 (∫

𝑡

𝑡0

𝐾̃ (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0

𝐸 (𝑠) 𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝑧 (𝑡) ≤ 𝐷 (𝑡)

+ 𝑊
−1

{𝑊 [𝑊
−1

(𝑊 (∫

𝑡0+𝑟

𝑡0

𝐾̃ (𝑠) 𝑑𝑠)

+ ∫

𝑡0+𝑟

𝑡0

𝐸 (𝑠) 𝑑𝑠) + ∫

𝑡

𝑡0+𝑟

𝐿̃ (𝑠) 𝑑𝑠]

+ ∫

𝑡

𝑡0+𝑟

(𝐸 (𝑠) + 𝐹 (𝑠)) 𝑑𝑠} ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

(69)

where

𝐾̃ (𝑠) := 𝐸 (𝑡) 𝑤 (𝐷 (𝑡)) + 𝐹 (𝑡) 𝑤 (Ψ (𝑡 − 𝑟)) ,

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝑟) ,

𝐿̃ (𝑡) := 𝐸 (𝑡) 𝑤 (𝐷 (𝑡)) + 𝐹 (𝑡) 𝑤 (𝐷 (𝑡 − 𝑟)) ,

𝑡 ∈ [𝑡
0

+ 𝑟, 𝑇) ,

𝐷 (𝑡) := 𝜌[𝑒
𝑡0

𝑀]

𝑞

, 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝐸 (𝑡) := 3[

1

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

× (

𝑏 (𝑡)

Γ (𝛽)

)

𝑞

𝑅 (𝑡) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝐹 (𝑡) := 3[

1

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

× (

𝑐 (𝑡)

Γ (𝛽)

)

𝑞

𝑒
−𝑞𝑟

𝑅 (𝑡 − 𝑟) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

(70)

and 𝑞 = 1 + 1/𝛽; Ψ(𝑡) is defined by (52).

Proof. The solution 𝑥(𝑡) of FDEs (65) can be written as (see
[24])

𝑥 (𝑡) =

𝑛−1

∑

𝑘=0

𝑏
𝑘

𝑘!

(𝑡 − 𝑡
0
)
𝑘

+

1

Γ (𝛽)

× ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟)) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) .

(71)
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When 0 < 𝛽 ≤ 1, from (71) we obtain

|𝑥 (𝑡)|

≤ 𝑀 +

1

Γ (𝛽)

× ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1

[𝑏 (𝑠) 𝑤 (|𝑥 (𝑠)|) + 𝑐 (𝑠) 𝑤 (|𝑥 (𝑠 − 𝑟)|)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

|𝑥 (𝑡)| ≤ 𝑀, 𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
0
) .

(72)

Applying Theorem 6 to (72), we obtain our required estima-
tions (67) and (69).

Remark 8. When 𝛽 > 1. Let 𝐷(𝑡) = 𝑀 + ∑
𝑛−1

𝑘=0
(𝑏
𝑘
/𝑘!)(𝑡 − 𝑡

0
)
𝑘;

we can obtain the estimations similar to (67) in Theorem 7.
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