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We use the fractional derivatives in Caputos sense to construct exact solutions to fractional fifth order nonlinear evolution
equations. A generalized fractional complex transform is appropriately used to convert this equation to ordinary differential
equation which subsequently resulted in a number of exact solutions.

1. Introduction

The concept of differentiation and integration to noninteger
order is not new in any case. The notion of fractional calculus
emerged when the ideas of classical calculus were proposed
by Leibniz, who mentioned it in a letter to CHospital in 1695.
The foundation of the earliest, more or less, systematic studies
can be traced back to the beginning and middle of the 19th
century by Liouville in 1832, Riemann in 1853, and Holmgren
in 1864, although Euler in 1730, Lagrange in 1772, and others
also made contributions. Recently, it has turned out those
differential equations involving derivatives of noninteger [1,
2]. For example, the nonlinear oscillation of earthquakes
can be modeled with fractional derivatives [3]. There has
been some attempt to solve linear problems with multiple
fractional derivatives [3, 4]. Not much work has been done on
nonlinear problems and only a few numerical schemes have
been proposed for solving nonlinear fractional differential
equations [5, 6]. More recently, applications have included
classes of nonlinear equation with multiorder fractional
derivatives. The generalized fractional complex transform
was applied in [7-13] to convert fractional order differential
equation to ordinary differential equation. Finally, by using
Exp-function method [14-25] we obtain generalized solitary
solutions and periodic solutions. Recently the theory of local

fractional integrals and derivatives [26-28] is one of useful
tools to handle the fractal and continuously nondifferentiable
functions. It is to be tinted that that ¢ = d and p = q are the
only relations that can be obtained by applying Exp-function
method [29] to any nonlinear ordinary differential equation.
Most scientific problems and phenomena in different fields
of sciences and engineering occur nonlinearly. Except in a
limited number of these problems are linear, this method has
been effectively and accurately shown to solve a large class of
nonlinear problems. The solution procedure of this method,
with the aid of Maple, is of utter simplicity and this method
can easily extend to other kinds of nonlinear evolution
equations. In engineering and science, scientific phenomena
give a variety of solutions that are characterized by distinct
features. Traveling waves appear in many distinct physical
structures in solitary wave theory [30] such as solitons, kinks,
peakons, cuspons, compactons, and many others. Solitons
are localized traveling waves which are asymptotically zero
at large distances. In other words, solitons are localized
wave packets with exponential wings or tails. Solitons are
generated from robust balance between nonlinearity and
dispersion. Solitons exhibit properties typically associated
with particles. Kink waves [30, 31] are solitons that rise or
descend from one asymptotic state to another and hence
another type of traveling waves as in the case of the Burgers
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hierarchy. Peakons, that are peaked solitary wave solutions,
are another type of travelling waves as in the case of Camassa-
Holm equation. For peakons, the traveling wave solutions are
smooth except for a peak at a corner of its crest. Peakons are
the points at which spatial derivative changes sign so that
peakons have a finite jump in Ist derivative of the solution.
Cuspons are other forms of solitons where solution exhibits
cusps at their crests. Unlike peakons where the derivatives at
the peak differ only by a sign, the derivatives at the jump of
a cuspon diverge. The compactons are solitons with compact
spatial support such that each compacton is a soliton confined
to a finite core or a soliton without exponential tails or
wings. Other types of travelling waves arise in science such as
negatons, positons, and complexitons. In this research, we use
the Exp-function method along with generalized fractional
complex transform to obtain new Kink waves’ solutions for
[30-32].

2. Preliminaries and Notation [1, 2]

In this section, we give some basic definitions and properties
of the fractional calculus theory [1, 2] which will be used
further in this work. For the finite derivative in [a, b] we
define the following fractional integral and derivatives.

Definition 1. A real function f(x), x > 0, is said to be in the
space Cy, y € R if there exists a real number (p > ) such
that f(x) = x* f,(x), where f;(x) = C(0, 00), and it is said to
be in the space Cj/p if f™ € Cu,m € N.

Definition 2. The Riemann-Liouville fractional integral oper-
ator of order o > 0 of a function f € Cy, u > -1, is defined
as

o _L * _ -l
= L (x =" F (1) dt, )

x>0, J°(x)=f(x).

a >0,

Properties of the operator J* can be found in [1]; we mention
only the following.
For f e Cy,u>-1,a,>0,andy > -1

TP () = 1 (x),
JETP £ (%) = TPT f (%),

](xxy _ I (V + 1) g
F(a+y+1)

)

The Riemann-Liouville derivative has certain disadvantages
when trying to model real-world phenomena with fractional
differential equations. Therefore, we will introduce a modified
fractional differential operator proposed by M. Caputo in his
work on the theory of viscoelasticity [2].
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Definition 3. For m to be the smallest integer that exceeds «,
the Caputo time fractional derivative operator of order « > 0
defined as

D, f &) =]""D"f (1)
3)
! Jt(t-T)M‘“‘lj””(t)dt,

- I'(m-«) Jo

form-1<a<lmmeN,t>0,feC.

3. Chain Rule for Fractional Calculus and
Fractional Complex Transform

In [7], the authors used the following chain rule 0*u/ot" =
(0u/0s)(0%s/0t™) to convert a fractional differential equation
with Jumarie’s modification of Riemann-Liouville derivative
into its classical differential partner. In [10], the authors
showed that this chain rule is invalid and showed following
relation [8]:

d
Du=o

—Diy.
X .X,'d}/] X’7 (4)

a Idu a
Dtu=otd—}1Dt;1,

To determine o, consider a special case as follows:
s=1t% u=s" (5)
and we have

“u  T'(1+ma)t"™ Y
or*  T(l+ma—a)  Os

Thus one can calculate o, as

o - I'(1+mx) 7

TT(l+ma—a)

Other fractional indexes (0;,0;,0;) can determine in sim-
ilar way. Li and He [3, 7-9] proposed the following frac-
tional complex transform for converting fractional differen-
tial equations into ordinary differential equations, so that
all analytical methods for advanced calculus can be easily
applied to fractional calculus:

kxP . wt® . MxY
Ir(1+B) T'(l+a) T(1+y)
(8)

ulet)y=u(n), n=

where k, w, and M are constants.

4. Exp-Function Method [33-36]

Consider the general nonlinear partial differential equation
of fractional order:

(24 o (24
P (1t Uy Uy U - - -, D1, DS, DY 1, .. = 0,

€)

O<ac<l,
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where D;u, D{u, and D} u are the fractional derivative of u
with respect to ¢, x, xx, respectively.

Use
u(x,t)=u(n) = ka + wt” + M
D T T T T e T(14y)
(10)
where k, w, and M are constants.
Then (9) becomes
Q (u, ul’ u”, u”’, uiv) -0, (1)

where the prime denotes derivative with respect to #. In
accordance with Exp-function method, we assume that the
wave solution can be expressed in the following form:

() = eGP 1]
mi—p b exp [mn]’

m—p m

u (12)

where p, g, ¢, and d are positive integers which are known to
be further determined and a,, and b,, are unknown constants.
Equation (8) can be rewritten as

a.exp(cn) + - +a_y exp (—dn)
u(n) = . (13)
byexp (pn) +--- +b_gexp (~q1)
This equivalent formulation plays an important and funda-
mental for finding the analytic solution of problems. ¢ and p
can be determined by [29].

5. Solution Procedure

Consider the following new fifth order nonlinear (2 + 1)-
dimensional evolution equations of fractional order:

D*u— (Dfu), ., — (Dfu), —4(u(Dfu),) =0. (14)

XXXX
Using (8) in (14) then it can be converted to an ordinary
differential equation. Consider

—0’ii + wk*u" + Kwii + 40k’ uii = 0, (15)

where the prime denotes the derivative with respect to #. The
solution of (15) can be expressed in form (13). To determine
the value of ¢ and p, by using [26],

p=c qg=d. (16)

Case 1. We can freely choose the values of ¢ and d, but we
will illustrate that the final solution does not strongly depend
upon the choice of values of ¢ and d. For simplicity, we set
p=c=1landg=d =1 (15) reduces to

ay exp [n] +ag +a_, exp [-]

. 17)
by exp [1] +ay +b_; exp [-7]

u(n) =

3
Substituting (17) into (15), we have
1
1 [caan exp [4n] = ¢; exp [3n] + ¢ exp [2n7] + ¢, exp [1]
+6 + ey exp [-n] +c, exp [-27]
+c_yexp [-3n] + c_yexp [-47]] =0,
(18)

where A = (b exp(n) +b, + b, 6:)(p(—11))4 and ¢ are con-
stants obtained by Maple software 16. Equating the coeffi-
cients of exp(n#) to be zero, we obtain

€4,=0,¢3=0,¢c,=0,¢,=0,
(19)
©=0,¢6=0,¢6=0,¢=0¢=0.

For solution of (19) we have five solution sets satisfying the
given (15).

Ist Solution Set. Consider

w= _1/k2 + 1k, a—l = m,
’ (20)

=0,b,=b,, by=by b =0.

ag = dy,

We, therefore, obtained the following generalized solitary
solution u(x, t) of (14) (Figure 1):

b, (3kby + ag) e ORI g
b, e kx- @RIk EL) 1 '

u(x,t) =

(21)

2nd Solution Set. Consider

b_, (6kb
w = V4ak? + 1k, a, = M’
b, (22)

ay=ay a,=a;, b, =b_, b=0, b =b,.

We, therefore, obtained the following generalized solitary
solution u(x;, t) of (14) (Figure 2):

u(x,t) = (b_l (6kb, +a,) e—kx+(u\/Wkt"‘/rum))/b1

. 2 o«
+€l1€kx (o Vak2+1kt /r(1+a))>

2 (23)
% (b_le—kx+(a\/4k +1kt* /T(1+))

+blekx—(aMkt“/r(1+a)))‘1_
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F1GURE 1: Kink waves’ solutions of (14) for 1st solution set.
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F1GURE 2: Kink waves’ solutions of (14) for 2nd solution set.



3rd Solution Set. Consider

b, (3kb
w=V+1k, a_ = M,
by (24)

ay=ay a =0, b,=b,, b=b, b=0.
We, therefore, obtained the following generalized solitary

solution u(x, t) of (14) (Figure 3):

b_l (3kb0 +a0)eka+(o' vk2+1kt°‘/1“(1+zx))/b0 +a0

u(x,t
(x,2) b le—kx+(tf\/k2+1kt"‘/l"(l+a)) + bo

(25)

4th Solution Set. Consider
w = Vk? + 1k,

L1 (9kaybyb—9K2a, b6~ 3kalb; + Okayaybyb

17 e
—6ka;byb, — ayayb; + 2aga;byb; - ajb; ),

by=b, b =b,

ao = ao, al = al)

1 3kagbyb? — 3ka,bjb, — alb? + 2aya,byb, — a’b;
1= = 213 .
9 k*b;

(26)

We, therefore, obtained the following generalized solitary
solution u(x, t) of (14) (Figure 4):

11
u(x,t) = (§k2—b{1

( (9K agkob; - 9K*a,bb}
~ 3kab; + 9kaya,byb;
—~ 6ka;blb, — aja,b;

+2%“fbob1 - afbé)

Xe—kx+(a\/k2+1kt“/l"(1+oc)) )

« (27)
ray+ alekx—(o\/kzﬂkt /F(1+oc)))

1
x (§ ( (kaghybf — 3kaybgb, - a2b
+2aya,b,b, - afbg)
X

e—kx+(a\/k2+1kt“/l"(1+oc)) ) (kzbf)_l

-1
b+ blekx—(o\/kzﬂkt /F(1+oc))> .
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5th Solution Set. Consider

b_, (6kb
w=Vk*+1k, a_, = —_1( ! +a1),
b (28)

ay=0, a =a;, b, =b,, =0, b =b.

We, therefore, obtained the following generalized solitary
solution u(x, t) of (14) (Figure 5):

—kx+(o VK2 +1kt* /T (1+a))

1 +611€
u(x,t)= .
(x,£) b_le—kx+(a\/k2+1kt"‘/1“(1+o¢)) +blekx—(a\/k2+1kt"‘/1“(1+o¢))

(29)

kx—(o VK> +1kt* [T(1+c))

Case 2. If p = ¢ = 2and q = d = 1 then trial solution (14)
reduces to

_ @ exp[2n] +ayexpn] +ay +a, exp -]

n) = . (30)
by exp [217] + by exp [] + by + b_ exp [7]
Proceeding as before, we obtain the following.
Ist Solution. Consider
a,=4ay Gy = al;lboa a = al;lbla a = al;lbz,
-1 -1 -1 (31)
b,=b,, by=b, b=b, b=>b,.

Hence we get the generalized solitary wave solution u(x, t) of
(14) (Figure 6):

_ « a_b
u(x, t) _ <a_le kx+(owkt™ /T(1+a)) + bl 0
1

a_,by x—(owkt® [T(1+a))
b,
+ a_b, ezkxfz(awkt“ JT(1+a))
b,

(32)

% (bileka+(awkt“/1‘(1+zx)) + bo

n bl ekx—(owkt"‘/l"(l+a))

_ o _1
+b2€2kx 2(owkt’ /I‘(1+zx))) )

In both cases, for different choices of ¢, p, d, and g we get
the same soliton solutions which clearly illustrate that final
solution does not strongly depend on these parameters.

6. Conclusions

Exp-function method is applied to construct solitary solu-
tions of the nonlinear new fifth order evolution equations
of fractional orders. The reliability of proposed algorithm is
fully supported by the computational work, the subsequent
results, and graphical representations. It is observed that Exp-
function method is very convenient to apply and is very useful
for finding solutions of a wide class of nonlinear problems of
fractional orders.
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F1GURE 3: Kink waves’ solutions of (14) for 3rd solution set.
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FIGURE 4: Kink waves’ solutions of (14) for 4th solution set.
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