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We consider a nonlinear integral equation which can be interpreted as a generalization ofTheodorsen’s nonlinear integral equation.
This equation arises in computing the conformal mapping between simply connected regions. We present a numerical method for
solving the integral equation and prove the uniform convergence of the numerical solution to the exact solution. Numerical results
are given for illustration.

1. Introduction

Numerical methods for conformal mapping from a simply
connected region onto another simply connected region are
available only when one of the region is a standard region,
mostly the unit disk 𝐷. Let 𝐺 and Ω be bounded simply
connected regions in the 𝑧-plane and 𝑤-plane, respectively,
such that their boundaries Γ := 𝜕𝐺 and 𝐿 := 𝜕Ω are smooth
Jordan curves. Then the mapping Ψ : 𝐺 → Ω is calculated
as the composition of the maps 𝐺 → 𝐷 → Ω.

Recently, a numericalmethodhas beenproposed in [1] for
direct approximation of the mapping Ψ : 𝐺 → Ω. Assume
that Γ and𝐿 are star-likewith respect to the origin and defined
by polar coordinates

𝜂 (𝑡) = 𝜌 (𝑡) 𝑒
i𝑡
, 𝜁 (𝑡) = 𝑅 (𝑡) 𝑒

i𝑡
, 0 ≤ 𝑡 ≤ 2𝜋, (1)

respectively, such that both 𝜌 and 𝑅 are 2𝜋-periodic continu-
ously differentiable positive real functions with nonvanishing
derivatives. By the Riemann-mapping theorem, there exists a
unique conformalmapping functionΨ : 𝐺 → Ωnormalized
by Ψ(0) = 0, Ψ󸀠(0) > 0. The boundary value of the function
Ψ is on the boundary 𝐿 and can be described as

Ψ
+
(𝜂 (𝑡)) = 𝜁 (𝑆 (𝑡)) , 0 ≤ 𝑡 ≤ 2𝜋, (2)

where 𝑆(𝑡) is the boundary correspondence function of the
mapping functionΨ. The function 𝑆(𝑡) is a strictly increasing
function so that 𝑆(𝑡) − 𝑡 is a 2𝜋-periodic function.

The function 𝑆(𝑡) is the unique solution of a nonlinear
integral equationwhich can be interpreted as a generalization
of Theodorsen’s nonlinear integral equation [1]. The proof
of the existence and the uniqueness of the solution of the
nonlinear integral equation was given in [1] for regions Ω of
which boundaries 𝐿 = 𝜕Ω satisfy the so-called 𝜖-condition;
that is,

𝜀 := max
0≤𝑡≤2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
󸀠
(𝑡)

𝑅 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1. (3)

In this paper, the nonlinear integral equation is solved by
an iterative method. Each iteration of the iterative method
requires solving an 𝑛 × 𝑛 linear system which is obtained
by discretizing the integrals in the integral equation by the
trapezoidal rule.The linear system is solved by a combination
of the generalized minimal residual (GMRES) method and
the fast multipole method (FMM) in 𝑂(𝑛 ln 𝑛) operations.
The main objective of this paper is to prove the uniform
convergence of the numerical solution to the exact solution.
We also study the properties of the generalized conjugation
operator. Numerical results are presented for illustration.
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2. Auxiliary Materials

2.1. The Functions 𝜃 and 𝜏. Let 𝑤 = 𝑓(𝑧) be the mapping
function from the simply connected region 𝐺 onto the unit
disk 𝐷 with the normalization 𝑓(0) = 0 and 𝑓

󸀠
(0) > 0. Then

the boundary value of the function 𝑓 is on the unit circle and
can be described as

𝑓 (𝜂 (𝑡)) = 𝑒
i𝜃(𝑡)

, 0 ≤ 𝑡 ≤ 2𝜋. (4)

The function 𝜃(𝑡) is the boundary correspondence function
of the mapping function 𝑓 where 𝜃(𝑡) − 𝑡 is a 2𝜋-periodic
function and 𝜃

󸀠
(𝑡) > 0 for all 𝑡 ∈ [0, 2𝜋]. Let 𝜏(𝑡) be

the inverse of the function 𝜃(𝑡). Then 𝜏(𝑡) is the boundary
correspondence function of the inverse mapping function
𝑧 = 𝑓

−1
(𝑤) from𝐷 onto 𝐺; that is,

𝑓
−1

(𝑒
i𝑡
) = 𝜂 (𝜏 (𝑡)) , 0 ≤ 𝑡 ≤ 2𝜋, (5)

where 𝜏(𝑡) − 𝑡 is a 2𝜋-periodic function and 𝜏
󸀠
(𝑡) > 0 for all

𝑡 ∈ [0, 2𝜋].

2.2. The Norms. Let 𝐻 be the space of all real Hölder
continuous 2𝜋-periodic functions on [0, 2𝜋]. With the inner
product

(𝛾, 𝜓) =
1

2𝜋
∫

2𝜋

0

𝛾 (𝑠) 𝜓 (𝑠) 𝑑𝑠, (6)

the space 𝐻 is a pre-Hilbert space. We define the norm ‖ ⋅ ‖
2

by

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩2

:= (𝛾, 𝛾)
1/2

. (7)

Since 𝑠 = 𝜏(𝑡)and if 𝑡 = 𝜃(𝑠), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜃
󸀠
)
1/2

𝛾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
= ∫

2𝜋

0

𝜃
󸀠
(𝑠) 𝛾(𝑠)

2
𝑑𝑠

= ∫

2𝜋

0

𝛾(𝜏 (𝑡))
2
𝑑𝑡 =

󵄩󵄩󵄩󵄩𝛾 ∘ 𝜏
󵄩󵄩󵄩󵄩2
.

(8)

With the norm ‖ ⋅ ‖
2
, we define a norm ‖ ⋅ ‖

𝜃
by

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩𝜃

:=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜃
󸀠
)
1/2

𝛾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
=
󵄩󵄩󵄩󵄩𝛾 ∘ 𝜏

󵄩󵄩󵄩󵄩2
. (9)

We define also the maximum norm ‖ ⋅ ‖
𝜃
by

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩∞

:= max
0≤𝑡≤2𝜋

󵄨󵄨󵄨󵄨𝛾 (𝑡)
󵄨󵄨󵄨󵄨 . (10)

Since 𝜃(2𝜋) − 𝜃(0) = 2𝜋, we have

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

𝜃
=

1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) 𝛾
2
(𝑡) 𝑑𝑡

≤
󵄩󵄩󵄩󵄩𝛾

󵄩󵄩󵄩󵄩

2

∞

1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) 𝑑𝑡 =

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

∞
,

(11)

which implies that
󵄩󵄩󵄩󵄩𝛾

󵄩󵄩󵄩󵄩𝜃
≤
󵄩󵄩󵄩󵄩𝛾

󵄩󵄩󵄩󵄩∞
. (12)

Theorem 1. If ∫2𝜋
0

𝜃
󸀠
(𝑠)𝛾(𝑠)𝑑𝑠 = 0, then

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩

2

∞
≤ 2𝜋

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

. (13)

Proof. Since 𝑠 = 𝜏(𝑡) and if 𝑡 = 𝜃(𝑠), we have

∫

2𝜋

0

(𝛾 ∘ 𝜏) (𝑡) 𝑑𝑡 = ∫

2𝜋

0

𝛾 (𝜏 (𝑡)) 𝑑𝑡

= ∫

2𝜋

0

𝜃
󸀠
(𝑠) 𝛾 (𝑠) 𝑑𝑠 = 0.

(14)

Thus, it follows from [2, page 68] that

󵄩󵄩󵄩󵄩𝛾 ∘ 𝜏
󵄩󵄩󵄩󵄩

2

∞
≤ 2𝜋

󵄩󵄩󵄩󵄩𝛾 ∘ 𝜏
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
(𝛾 ∘ 𝜏)

󸀠󵄩󵄩󵄩󵄩󵄩2
. (15)

We have also

󵄩󵄩󵄩󵄩󵄩
(𝛾 ∘ 𝜏)

󸀠󵄩󵄩󵄩󵄩󵄩

2

2
=

1

2𝜋
∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
(𝛾 ∘ 𝜏)

󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

=
1

2𝜋
∫

2𝜋

0

𝛾
󸀠
(𝜏 (𝑡))

2
𝜏
󸀠
(𝑡)
2
𝑑𝑡

=
1

2𝜋
∫

2𝜋

0

𝛾
󸀠
(𝑠)
2 1

𝜃󸀠 (𝑠)
𝑑𝑠

=
1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑠) (

𝛾
󸀠
(𝑠)

𝜃󸀠 (𝑠)
)

2

𝑑𝑠.

(16)

Hence,

󵄩󵄩󵄩󵄩󵄩
(𝛾 ∘ 𝜏)

󸀠󵄩󵄩󵄩󵄩󵄩

2

2
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

. (17)

Since 𝜏(⋅) : [0, 2𝜋] → [0, 2𝜋] is bijective, we have
󵄩󵄩󵄩󵄩𝛾 ∘ 𝜏

󵄩󵄩󵄩󵄩∞
:= max
0≤𝑡≤2𝜋

󵄨󵄨󵄨󵄨𝛾 (𝜏 (𝑡))
󵄨󵄨󵄨󵄨

= max
0≤𝜏≤2𝜋

󵄨󵄨󵄨󵄨𝛾 (𝜏)
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩∞

.

(18)

Hence, (15) and (18) imply that
󵄩󵄩󵄩󵄩𝛾

󵄩󵄩󵄩󵄩∞
≤ 2𝜋

󵄩󵄩󵄩󵄩𝛾 ∘ 𝜏
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
(𝛾 ∘ 𝜏)

󸀠󵄩󵄩󵄩󵄩󵄩2
. (19)

Then (13) follows from (9), (17), and (19).

2.3. The Operators K and J. The conjugation operator K is
defined by

K𝜇 = ∫

2𝜋

0

1

2𝜋
cot 𝑠 − 𝑡

2
𝜇 (𝑡) 𝑑𝑡. (20)

Let J be the operator defined by

J𝜇 =
1

2𝜋
∫

2𝜋

0

𝜇 (𝑡) 𝑑𝑡. (21)

Hence, the operators K and J satisfy [3]

JK = 0, K2 = −I + J. (22)
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3. The Generalized Conjugation Operator

Let𝐴 be the complex 2𝜋-periodic continuously differentiable
function:

𝐴 (𝑠) := 𝜂 (𝑠) . (23)

We define the real kernels 𝑀 and 𝑁 as real and imaginary
parts:

𝑀(𝑠, 𝑡) + i𝑁(𝑠, 𝑡) :=
1

𝜋

𝐴 (𝑠)

𝐴 (𝑡)

𝜂
󸀠
(𝑡)

𝜂 (𝑡) − 𝜂 (𝑠)
. (24)

The kernel 𝑁(𝑠, 𝑡) is called the generalized Neumann kernel
formedwith𝐴 and 𝜂.The kernel𝑁(𝑠, 𝑡) is continuous and the
kernel𝑀 has the representation

𝑀(𝑠, 𝑡) = −
1

2𝜋
cot 𝑠 − 𝑡

2
+ 𝑀
1
(𝑠, 𝑡) , (25)

with a continuous kernel𝑀
1
. See [4] for more details.

We define the Fredholm integral operatorsN andM
1
and

the singular integral operatorM on𝐻 by

N𝜇 = ∫

2𝜋

0

𝑁(𝑠, 𝑡) 𝜇 (𝑡) 𝑑𝑡,

M
1
𝜇 = ∫

2𝜋

0

𝑀
1
(𝑠, 𝑡) 𝜇 (𝑡) 𝑑𝑡,

M𝜇 = ∫

2𝜋

0

𝑀(𝑠, 𝑡) 𝜇 (𝑡) 𝑑𝑡.

(26)

We define an operator E on𝐻 by

E = −(I − N)
−1M. (27)

The operator E is singular but bounded on 𝐻 [1]. Finally, we
define an operator J

𝜃
by

J
𝜃
𝜇 =

1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) 𝜇 (𝑡) 𝑑𝑡. (28)

Remark 2. When Γ reduces to the unit, then 𝜃
󸀠
(𝑡) = 1,

the operator J
𝜃
reduces to the operator J, and the operator

E reduces to the operator K; that is, the operator E is a
generalization of the well-known conjugation operatorK (see
[1] for more details).

The operator E is related to the operator K by [1]

𝜇 = E𝛾 iff 𝜇 ∘ 𝜏 = K (𝛾 ∘ 𝜏) . (29)

Since 𝜇 = (𝜇 ∘ 𝜃) ∘ 𝜏 and 𝛾 = (𝛾 ∘ 𝜃) ∘ 𝜏, it follows from (29)
that

𝜇 = K𝛾 iff𝜇 ∘ 𝜃 = E (𝛾 ∘ 𝜃) . (30)

Lemma 3 (see [1]). Let 𝛾, 𝜇 ∈ 𝐻 be given functions. Then
𝑓(𝜂(𝑡)) = 𝛾(𝑡) + i𝜇(𝑡) is the boundary value of an analytic
function in 𝐺 with Im𝑓(0) = 0 if and only if

𝜇 = E𝛾. (31)

Lemma 4 (see [1]). If 𝛾 ∈ 𝐻 and 𝜇 = E𝛾, then 𝛾 = 𝑐 − E𝜇
with a real constant 𝑐 = 𝑓(0) where 𝑓 is the unique analytic
function in 𝐺 with the boundary values 𝑓(𝜂(𝑡)) = 𝛾(𝑡) + i𝜇(𝑡)
and Im𝑓(0) = 0.

Lemma5 (see [1]). TheoperatorE has the following properties:

𝑁𝑢𝑙𝑙 (E) = 𝑠𝑝𝑎𝑛 {1} ,

E3 = −E,

𝜎 (E) = {0, ±i} .

(32)

Lemma 6. The operator E has the norm

‖E‖
𝜃
= 1. (33)

Proof. The operator E has the norm ‖E‖
𝜃
≤ 1 [1]. Since i ∈

𝜎(E), hence 1 = |i| ≤ ‖E‖
𝜃
≤ 1. Hence, we obtain (33).

Lemma 7. The operators J
𝜃
and E satisfy

J
𝜃
E = 0. (34)

Proof. For any 𝛾 ∈ 𝐻, let 𝜇 = E𝛾, 𝜇 = 𝜇 ∘ 𝜏, and 𝛾 = 𝛾 ∘ 𝜏.
Then, it follows from (29) that 𝜇 = K𝛾. Thus,

J
𝜃
E𝛾 (𝑠) = J

𝜃
𝜇 (𝑠)

=
1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) 𝜇 (𝑡) 𝑑𝑡

=
1

2𝜋
∫

2𝜋

0

𝜇 (𝜏 (𝑠)) 𝑑𝑠

=
1

2𝜋
∫

2𝜋

0

𝜇 (𝑠) 𝑑𝑠

= J𝜇 (𝑠)

= JK𝛾 (𝑠) ,

(35)

which by (22) implies that

J
𝜃
E𝛾 (𝑠) = 0. (36)

Since (36) holds for all functions 𝛾 ∈ 𝐻, the operator identity
(34) follows.

Lemma 8. The operator E satisfies

E2 = −I + J
𝜃
. (37)

Proof. Let 𝛾 ∈ 𝐻 and 𝜇 = E𝛾. Then, by Lemma 4, 𝛾 = 𝑐 − E𝜇
with a real constant 𝑐. By the definition of the operator J

𝜃
, we

have J
𝜃
𝑐 = 𝑐. Since J

𝜃
E = 0, we have

J
𝜃
𝛾 = J
𝜃
𝑐 − J
𝜃
E = 𝑐. (38)

Hence,

E2𝛾 = E𝜇 = −𝛾 + 𝑐 = (−I + J
𝜃
) 𝛾 (39)

holds for all 𝛾 ∈ 𝐻. Thus, the operator identities (37) follow.
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Lemma 9. For all functions 𝛾 ∈ 𝐻, we have
󵄩󵄩󵄩󵄩E𝛾

󵄩󵄩󵄩󵄩𝜃
≤
󵄩󵄩󵄩󵄩𝛾

󵄩󵄩󵄩󵄩𝜃
, (40)

with equality for all 𝛾 with J
𝜃
𝛾 = 0.

Proof. For all functions 𝛾 ∈ 𝐻, the inequality (40) follows
from (33).

For all functions 𝛾 with J
𝜃
𝛾 = 0, we have from (37) that

𝛾 = −E2𝛾. Hence

󵄩󵄩󵄩󵄩𝛾
󵄩󵄩󵄩󵄩𝜃

=
󵄩󵄩󵄩󵄩󵄩
E2𝛾󵄩󵄩󵄩󵄩󵄩𝜃 ≤

󵄩󵄩󵄩󵄩E𝛾
󵄩󵄩󵄩󵄩𝜃

≤
󵄩󵄩󵄩󵄩𝛾

󵄩󵄩󵄩󵄩𝜃
, (41)

which means that ‖E𝛾‖
𝜃
= ‖𝛾‖
𝜃
.

Theorem 10. Let 𝛾 ∈ 𝐻 and 𝜇 = E𝛾. Then

𝜇
󸀠

𝜃󸀠
= E(

𝛾
󸀠

𝜃󸀠
) . (42)

Proof. For 𝛾 ∈ 𝐻 and 𝜇 = E𝛾, we have from (29) that 𝜇 ∘ 𝜏 =

K(𝛾 ∘ 𝜏). Then, it follows from [2, page 64] that

(𝜇 ∘ 𝜏)
󸀠

= K(𝛾 ∘ 𝜏)
󸀠

. (43)

Hence, by (30), we have

(𝜇 ∘ 𝜏)
󸀠

∘ 𝜃 = E ((𝛾 ∘ 𝜏)
󸀠

∘ 𝜃) , (44)

which implies that

((𝜇 ∘ 𝜏) ∘ 𝜃)
󸀠

𝜃󸀠
= E(

((𝛾 ∘ 𝜏) ∘ 𝜃)
󸀠

𝜃󸀠
) . (45)

Hence, we obtain (42).

4. The Generalized Theodorsen Nonlinear
Integral Equation

The boundary correspondence function 𝑆(𝑡) is the unique
solution of the nonlinear integral equation

𝑆 (𝑡) − 𝑡 = E ln 𝑅 (𝑆 (⋅))

𝜌 (⋅)
(𝑡) (46)

which is a generalization of the well-known Theodorsen
integral equation [1]. Nonlinear integral equation (46) can be
solved by the iterative method

𝑆
𝑘
(𝑡) − 𝑡 = E ln

𝑅 (𝑆
𝑘−1

(⋅))

𝜌 (⋅)
(𝑡) , 𝑘 = 1, 2, 3, . . . . (47)

Then we have [1]

󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆
󵄩󵄩󵄩󵄩𝜃

≤ 𝜀
𝑘󵄩󵄩󵄩󵄩𝑆0 − 𝑆

󵄩󵄩󵄩󵄩𝜃
. (48)

Thus, if the curve 𝐿 satisfies the 𝜀-condition (3), then
󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆

󵄩󵄩󵄩󵄩𝜃
󳨀→ 0. (49)

That is, the approximate solutions 𝑆
𝑘
(𝑡) converge to 𝑆(𝑡) with

respect to the norm ‖ ⋅ ‖
𝜃
if 𝜀 < 1.

In this section, we will prove the uniform convergence of
the approximate solutions 𝑆

𝑘
(𝑡) to the exact solution 𝑆(𝑡). We

will use the approach used in the proof of Proposition 1.5 in
[2, page 69] related toTheodorsen’s integral equation. See also
[5, 6].

Lemma 11. Consider

E [ln 𝜌 (⋅)] (𝑡) = 𝑡 − 𝜃 (𝑡) . (50)

Proof. The function 𝜃 is the boundary correspondence func-
tion of the conformal mapping 𝑓 from 𝐺 onto the unit disk.
Hence, the function 𝜃(𝑡) − 𝑡 satisfies [1]

𝜃 (𝑡) − 𝑡 = E ln 1

𝜌 (⋅)
(𝑡) . (51)

Then (50) follows from (51).

The previous lemma implies that (46) can be rewritten as

𝑆 (𝑡) − 𝜃 (𝑡) = E [ln𝑅 (𝑆 (⋅))] (𝑡) , (52)

and (47) can be rewritten as

𝑆
𝑘
(𝑡) − 𝜃 (𝑡) = E [ln𝑅 (𝑆

𝑘−1
(⋅))] (𝑡) . (53)

Thus

𝑆
𝑘
(𝑡) − 𝑆 (𝑡) = E [ln𝑅 (𝑆

𝑘−1
(⋅)) − ln𝑅 (𝑆 (⋅))] (𝑡) . (54)

Lemma 12. Consider
󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆

󵄩󵄩󵄩󵄩𝜃
≤ (𝜀 +

󵄩󵄩󵄩󵄩𝑆0 − 𝜃
󵄩󵄩󵄩󵄩𝜃
) 𝜀
𝑘
. (55)

Proof. Let 𝑎 be such that

1

1 + 𝜀
≤

𝑅 (𝑡)

𝑎
≤ 1 + 𝜀, ∀𝑡. (56)

Then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln 𝑅 (𝑡)

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ln (1 + 𝜀) < 𝜀, ∀𝑡. (57)

Hence,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ln 𝑅

𝑎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
< 𝜀. (58)

Thus
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

E [ln(
𝑅 (𝑆 (⋅))

𝑎
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤ ‖E‖
𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ln(
𝑅 (𝑆)

𝑎
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ln(
𝑅 (𝑆)

𝑎
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

< 𝜀.

(59)

Since

𝑆 (𝑡) − 𝑆
0
(𝑡) = 𝑆 (𝑡) − 𝜃 (𝑡) + 𝜃 (𝑡) − 𝑆

0
(𝑡)

= E [ln𝑅 (𝑆 (⋅))] (𝑡) + 𝜃 (𝑡) − 𝑆
0
(𝑡)

(60)
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and E(ln 𝑎) = 0, we have

𝑆 (𝑡) − 𝑆
0
(𝑡) = E [ln(

𝑅 (𝑆 (⋅))

𝑎
)] (𝑡) + 𝜃 (𝑡) − 𝑆

0
(𝑡) , (61)

which implies that

󵄩󵄩󵄩󵄩𝑆 − 𝑆
0

󵄩󵄩󵄩󵄩𝜃
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

E [ln(
𝑅 (𝑆 (⋅))

𝑎
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

+
󵄩󵄩󵄩󵄩𝜃 − 𝑆

0

󵄩󵄩󵄩󵄩𝜃
≤ 𝜀 +

󵄩󵄩󵄩󵄩𝜃 − 𝑆
0

󵄩󵄩󵄩󵄩𝜃
.

(62)

Hence (55) follows from (48).

Lemma 13. Consider
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘
− 𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤
𝜀

√1 − 𝜀2
(1 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

0

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

) . (63)

Proof. We have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘
− 𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘
− 𝜃
󸀠
+ 𝜃
󸀠
− 𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

.

(64)

Since
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

=
1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) (

𝑆
󸀠

𝜃󸀠
− 1)

2

𝑑𝑡

=
1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) (

𝑆
󸀠

𝜃󸀠
)

2

𝑑𝑡 − 2
1

2𝜋
∫

2𝜋

0

𝑆
󸀠
(𝑡) 𝑑𝑡

+
1

2𝜋
∫

2𝜋

0

𝜃
󸀠
(𝑡) 𝑑𝑡,

(65)

∫
2𝜋

0
𝑆
󸀠
(𝑡)𝑑𝑡 = 2𝜋, and ∫

2𝜋

0
𝜃
󸀠
(𝑡)𝑑𝑡 = 2𝜋, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

− 1. (66)

Similarly, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

− 1. (67)

In view of Theorem 10, it follows from (52) and (53) that

𝑆
󸀠
(𝑡)

𝜃󸀠 (𝑡)
− 1 = E[

𝑅
󸀠
(𝑆 (⋅))

𝑅 (𝑆 (⋅))

𝑆
󸀠
(⋅)

𝜃󸀠 (⋅)
] (𝑡) , (68)

𝑆
󸀠

𝑘
(𝑡)

𝜃󸀠 (𝑡)
− 1 = E[

𝑅
󸀠
(𝑆
𝑘−1

(⋅))

𝑅 (𝑆
𝑘−1

(⋅))

𝑆
󸀠

𝑘−1
(⋅)

𝜃󸀠 (⋅)
] (𝑡) . (69)

Hence, it follows from (68) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

E[
𝑅
󸀠
(𝑆 (⋅))

𝑅 (𝑆 (⋅))

𝑆
󸀠
(⋅)

𝜃󸀠 (⋅)
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤ ‖E‖
𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑅
󸀠
(𝑆 (⋅))

𝑅 (𝑆 (⋅))

𝑆
󸀠
(⋅)

𝜃󸀠 (⋅)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤ 𝜀

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

.

(70)

By (70) and (66), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

≤ 𝜀
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

= 𝜀
2
+ 𝜀
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

. (71)

Hence,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

≤
𝜀
2

1 − 𝜀2
. (72)

Similarly, it follows from (69) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

≤ 𝜀

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘−1

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

, (73)

which by (67) implies that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

≤ 𝜀
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘−1

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

= 𝜀
2
+ 𝜀
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘−1

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

.

(74)

Hence,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

≤ 𝜀
2
+ 𝜀
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘−1

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

≤ ⋅ ⋅ ⋅ ≤ 𝜀
2
+ 𝜀
4
+ ⋅ ⋅ ⋅ + 𝜀

2𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

0

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

,

(75)

which, in view of (67), implies that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

≤
𝜀
2

1 − 𝜀2
(1 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

0

𝜃󸀠
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

) =
𝜀
2

1 − 𝜀2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

0

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝜃

.

(76)

Then (63) follows from (64), (72), and (76).

Theorem 14. If 𝜀 < 1, then the approximate solution 𝑆
𝑘

converges uniformly to the exact solution 𝑆 with

󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆
󵄩󵄩󵄩󵄩∞

≤ √
2𝜋

√1 − 𝜀2

× √(𝜀 +
󵄩󵄩󵄩󵄩𝑆0 − 𝜃

󵄩󵄩󵄩󵄩𝜃
) (1 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

0

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

)𝜀
𝑘/2+1/2

.

(77)

Proof. In view of (54), Lemma 7 implies that

∫

2𝜋

0

𝜃
󸀠
(𝑡) (𝑆
𝑘
(𝑡) − 𝑆 (𝑡)) 𝑑𝑡 = 0. (78)

Thus, we have from (13) that

󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆
󵄩󵄩󵄩󵄩

2

∞
≤ 2𝜋

󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆
󵄩󵄩󵄩󵄩𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆
󸀠

𝑘
− 𝑆
󸀠

𝜃󸀠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃

. (79)

Hence (77) follows from (55) and (63).
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The following corollary follows from the previous theo-
rem.

Corollary 15. If

𝑆
0
(𝑡) = 𝜃 (𝑡) = 𝑡 − E [ln 𝜌 (⋅)] (𝑡) , (80)

then

󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆
󵄩󵄩󵄩󵄩∞

≤ 2√
𝜋

√1 − 𝜀2
𝜀
𝑘/2+1

. (81)

Remark 16. When Γ reduces to the unit, then

𝜌 (𝑡) = 1, 𝜃 (𝑡) = 𝑡, E = K. (82)

Hence, the results presented in this section reduces to the
results presented in [2] for Theodorsen’s integral equation.

5. Discretizing (47)
In this paper, we will discretize (47) instead of (46). The
numerical method used here is based on strict discretization
of the integrals in the operatorE by the trapezoidal rule which
gives accurate results since the integrals are over 2𝜋-periodic.
Let 𝑛 be a given even positive integer. We define 𝑛 equidistant
collocation points 𝑠

𝑖
in the interval [0, 2𝜋] by

𝑡
𝑖
:= (𝑖 − 1)

2𝜋

𝑛
, 𝑖 = 1, 2, . . . , 𝑛. (83)

Then, for 2𝜋-periodic function 𝛾(𝑡), the trapezoidal rule
approximates the integral

𝐼 = ∫

2𝜋

0

𝛾 (𝑡) 𝑑𝑡 (84)

by

𝐼
𝑛
=

2𝜋

𝑛

𝑛

∑

𝑖=1

𝛾 (𝑡
𝑖
) . (85)

If the function 𝛾(𝑡) is continuous, then |𝐼 − 𝐼
𝑛
| → 0. If the

integrand 𝛾(𝑡) is 𝑘 times continuously differentiable, then the
rate of convergence of the trapezoidal rule is 𝑂(1/𝑛

𝑘
). For

analytic 𝛾(𝑡), the rate of convergence is better than 𝑂(1/𝑛
𝑘
)

for any positive integer 𝑘 [7, page 83]. See also [8].
For 𝛾 ∈ 𝐻, the integral operator N will be discretized by

the Nyström method as follows:

N
𝑛
𝛾 (𝑠) =

2𝜋

𝑛

𝑛

∑

𝑗=1

𝑁(𝑠, 𝑡
𝑗
) 𝛾 (𝑡
𝑗
) . (86)

Hence, we have
󵄩󵄩󵄩󵄩(N − N

𝑛
) 𝛾

󵄩󵄩󵄩󵄩∞

= max
𝑠∈[0,2𝜋]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝑁(𝑠, 𝑡) 𝛾 (𝑡) 𝑑𝑡 −
2𝜋

𝑛

𝑛

∑

𝑗=1

𝑁(𝑠, 𝑡
𝑗
) 𝛾 (𝑡
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(87)

Since the kernel 𝑁(𝑠, 𝑡) is continuous on both variables and
since the function 𝛾(𝑡) is continuous, we have [9]

󵄩󵄩󵄩󵄩(N − N
𝑛
) 𝛾

󵄩󵄩󵄩󵄩∞
󳨀→ 0. (88)

The integral operator M
1
will be discretized by the

Nyström method as follows:

M
1,𝑛

𝛾 (𝑠) =
2𝜋

𝑛

𝑛

∑

𝑗=1

𝑀
1
(𝑠, 𝑡
𝑗
) [𝛾 (𝑡

𝑗
) − 𝛾 (𝑠)] . (89)

Since the kernel𝑀
1
(𝑠, 𝑡) is continuous on both variables and

since the function 𝛾(𝑡) is continuous, we have [9]

󵄩󵄩󵄩󵄩(M1 − N
1,𝑛

) 𝛾
󵄩󵄩󵄩󵄩∞

= max
𝑠∈[0,2𝜋]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝑀
1
(𝑠, 𝑡) 𝛾 (𝑡) 𝑑𝑡

−
2𝜋

𝑛

𝑛

∑

𝑗=1

𝑀
1
(𝑠, 𝑡
𝑗
) 𝛾 (𝑡
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0.

(90)

To discretize the operatorK𝛾(𝑠), we first approximate the
function 𝛾(𝑠) by the interpolating trigonometric polynomial
of degree 𝑛/2 which interpolates 𝛾(𝑠) at the 𝑛 points 𝑡

𝑗
, 𝑗 =

1, 2, . . . , 𝑛. That is,

𝛾 (𝑠) ≈

𝑛/2

∑

𝑖=0

𝑎
𝑖
cos 𝑖𝑠 +

𝑛/2−1

∑

𝑖=0

𝑏
𝑖
sin 𝑖𝑠. (91)

Then K𝛾(𝑠) is approximated by

K
𝑛
𝛾 (𝑠) =

𝑛/2

∑

𝑖=1

𝑎
𝑖
sin 𝑖𝑠 −

𝑛/2−1

∑

𝑖=0

𝑏
𝑖
cos 𝑖𝑠, (92)

where [6]
󵄩󵄩󵄩󵄩(K − K

𝑛
) 𝛾

󵄩󵄩󵄩󵄩∞
󳨀→ 0. (93)

The integral operatorM is then discretized by

M
𝑛
= M
1,𝑛

− K
𝑛
. (94)

Then, it follows from (90) and (93) that

󵄩󵄩󵄩󵄩(M −M
𝑛
)𝛾
󵄩󵄩󵄩󵄩∞

󳨀→ 0. (95)

The operatorM
𝑛
is bounded operator since the operatorM

1,𝑛

is bounded (𝑀
1
(𝑠, 𝑡) is continuous) and the operator K

𝑛
is

bounded operator (see [6]).
Since the kernel 𝑁(𝑠, 𝑡) is continuous and 𝜆 = 1 is not

an eigenvalue of the kernel 𝑁(𝑠, 𝑡) [1], the operators I − N
𝑛

are invertible and (I − N
𝑛
)
−1 are uniformly bounded for

sufficiently large 𝑛 [9]. Hence, we discretize the operator E
by the bounded operator

E
𝑛
:= −(I − N

𝑛
)
−1M
𝑛
. (96)
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Lemma 17. If 𝛾 ∈ 𝐻, then
󵄩󵄩󵄩󵄩(E − E

𝑛
) 𝛾

󵄩󵄩󵄩󵄩∞
󳨀→ 0. (97)

Proof. Let 𝜙 := E𝛾 and 𝜙
𝑛
:= E
𝑛
𝛾, then

(I − N) 𝜙 = −M𝛾, (I − N
𝑛
) 𝜙
𝑛
= −M

𝑛
𝛾. (98)

Let also 𝜙
𝑛
be the unique solution of the discretized equation

(I − N
𝑛
) 𝜙
𝑛
= −M𝛾. (99)

Thus, we have
󵄩󵄩󵄩󵄩(E − E

𝑛
) 𝛾

󵄩󵄩󵄩󵄩∞
=
󵄩󵄩󵄩󵄩𝜙 − 𝜙

𝑛

󵄩󵄩󵄩󵄩∞
≤
󵄩󵄩󵄩󵄩󵄩
𝜙 − 𝜙
𝑛

󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑛
− 𝜙
𝑛

󵄩󵄩󵄩󵄩󵄩∞
.

(100)

Since the kernel𝑁 is continuous and N
𝑛
is the discretization

of N, then it follows from [9, page 108] that
󵄩󵄩󵄩󵄩󵄩
𝜙 − 𝜙
𝑛

󵄩󵄩󵄩󵄩󵄩∞
󳨀→ 0. (101)

Since (I − N
𝑛
)
−1 is bounded and 𝛾 is continuous, then (95)

implies that
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑛
− 𝜙
𝑛

󵄩󵄩󵄩󵄩󵄩∞

=
󵄩󵄩󵄩󵄩󵄩
(I − N

𝑛
)
−1

(M −M
𝑛
) 𝛾

󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩
(I − N

𝑛
)
−1󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩(M −M
𝑛
) 𝛾

󵄩󵄩󵄩󵄩∞
󳨀→ 0,

(102)

which with (100) and (101) implies (97).

To calculate the function 𝑆
𝑘
in (47) for a given 𝑆

𝑘−1
, we

replace the operator E in (47) by the approximate operator E
𝑛

to obtain

𝑆
𝑘,𝑛

(𝑠) − 𝑠 = E
𝑛
ln

𝑅 (𝑆
𝑘−1

(⋅))

𝜌 (⋅)
(𝑠) , (103)

where 𝑆
𝑘,𝑛

is an approximation to 𝑆
𝑘
. Substituting 𝑠 = 𝑡

𝑖
and

𝑖 = 1, 2, . . . , 𝑛, in (103) we obtain

𝑆
𝑘,𝑛

(𝑡
𝑖
) − 𝑡
𝑖
= E
𝑛
ln

𝑅 (𝑆
𝑘−1

(⋅))

𝜌 (⋅)
(𝑡
𝑖
) , 𝑖 = 1, 2 . . . , 𝑛. (104)

Equation (104) can be rewritten as

(I − N
𝑛
) [𝑆
𝑘,𝑛

(𝑡
𝑖
) − 𝑡
𝑖
] = −M

𝑛
ln

𝑅 (𝑆
𝑘−1

(⋅))

𝜌 (⋅)
(𝑡
𝑖
) ,

𝑖 = 1, 2, . . . , 𝑚,

(105)

which represents an 𝑛 × 𝑛 linear system for the unknown
𝑆
𝑘,𝑛

(𝑡
1
), 𝑆
𝑘,𝑛

(𝑡
2
), . . . , 𝑆

𝑘,𝑛
(𝑡
𝑛
). By obtaining 𝑆

𝑘,𝑛
(𝑡
𝑖
) for 𝑖 =

1, 2 . . . , 𝑛, the function 𝑆
𝑘,𝑛

(𝑠) can be calculated for 𝑠 ∈

[0, 2𝜋] by the Nyström interpolating formula. In the fol-
lowing lemma, we prove the uniform convergence of the
approximate solution 𝑆

𝑘,𝑛
of discretized equation (103) to the

solution 𝑆
𝑘
of (46).

Lemma 18. Consider
󵄩󵄩󵄩󵄩𝑆𝑘,𝑛 − 𝑆

𝑘

󵄩󵄩󵄩󵄩∞
󳨀→ 0 a𝑠 𝑛 󳨀→ ∞. (106)

Proof. Let 𝛾(𝑠) := ln(𝑅(𝑆
𝑘−1

(𝑠)))/𝜌(𝑠). Then, we have

𝑆
𝑘,𝑛

− 𝑆
𝑘
= E
𝑛
𝛾 − E𝛾 = (E

𝑛
− E) 𝛾. (107)

Hence,
󵄩󵄩󵄩󵄩𝑆𝑘,𝑛 − 𝑆

𝑘

󵄩󵄩󵄩󵄩∞
≤
󵄩󵄩󵄩󵄩(E − E

𝑛
) 𝛾
𝑛

󵄩󵄩󵄩󵄩∞
. (108)

The lemma is then followed from (97).

The proof of the uniform convergence of the approximate
solution 𝑆

𝑘,𝑛
to the boundary correspondence function 𝑆 is

given in the following theorem.

Theorem 19. If 𝜀 < 1, then
󵄩󵄩󵄩󵄩𝑆𝑘,𝑛 − 𝑆

󵄩󵄩󵄩󵄩∞
󳨀→ 0 a𝑠 𝑘, 𝑛 󳨀→ ∞. (109)

Proof. We have
󵄩󵄩󵄩󵄩𝑆𝑘,𝑛 − 𝑆

󵄩󵄩󵄩󵄩∞
≤
󵄩󵄩󵄩󵄩𝑆𝑘,𝑛 − 𝑆

𝑘

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩𝑆𝑘 − 𝑆

󵄩󵄩󵄩󵄩∞
. (110)

Since 𝜀 < 1, it follows from (77) that ‖𝑆
𝑘
− 𝑆‖
∞

→ 0 as 𝑘 →

∞. The theorem is then followed from (106).

6. The Algebraic System

Let t be the 𝑛 × 1 vector t := (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
)
𝑇 where 𝑇 denotes

transposition. Then, for any function 𝛾(𝑡) defined on [0, 2𝜋],
we define 𝛾(t) as the 𝑛×1 vector obtained by componentwise
evaluation of the function 𝛾(𝑡) at the points 𝑡

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

As in MATLAB, for any two vectors x and y, we define x
⋅
∗ y

as the componentwise vector product of x and y. If y
𝑗

̸= 0, for
all 𝑗 = 1, 2 . . . , (𝑚+1)𝑛, we define x

⋅
/y as the componentwise

vector division of x by y. For simplicity, we denote x
⋅
∗ y by

xy and x
⋅
/y by x/y.

Let x
𝑘−1

= 𝑆
𝑘−1

(t) − t (given) and x
𝑘

= 𝑆
𝑘,𝑛

(t) − t
(unknown). Then system (105) can be rewritten as

(𝐼 − 𝐵) x
𝑘
= −𝐶 ln

𝑅 (x
𝑘−1

+ t)
𝜌 (t)

, 𝑘 = 1, 2, . . . , (111)

where 𝐼 is the 𝑛 × 𝑛 identity matrix, 𝐵 is the discretized
matrix of the operator N, and 𝐶 is the discretized matrix of
the operator M [1]. Linear system (111) is uniquely solvable
[4, 10, 11].

We start the iteration in (47) with 𝑆
𝑘
(𝑡) = 𝑡 and

iterate until ‖𝑆
𝑘
− 𝑆
𝑘−1

‖
∞

< tol where tol is a given
tolerance; that is, we start the iteration in (111) with
x
0

= 0 and iterate until ‖x
𝑘
− x
𝑘−1

‖
∞

< tol. Each
iteration in (111) requires solving a linear system for x

𝑘

given x
𝑘−1

. Linear system (111) is solved in 𝑂(𝑛 ln 𝑛) oper-
ations by the fast method presented in [11, 12] which is
based on a combination of the MATLAB function gmres
and the MATLAB function zfmm2dpart in the MATLAB
toolbox FMMLIB2D [13]. In the numerical results below, for
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Figure 1: The conformal mappings from 𝐺
1
ontoΩ

1
,Ω
2
, andΩ

3
.

Figure 2: The conformal mappings from 𝐺
2
ontoΩ

1
, Ω
2
, andΩ

3
.



Abstract and Applied Analysis 9

Figure 3: The conformal mappings from 𝐺
3
ontoΩ

1
,Ω
2
, and Ω

3
.

function zfmm2dpart, we assume that iprec = 4 which
means that the tolerance of the FMM is 0.5 × 10

−12. For the
function gmres, we choose the parameters restart = 10,
gmrestol = 10

−12, and maxit = 10, which means that the
GMRES method is restarted every 10 inner iterations, the
tolerance of the GMRES method is 10−12, and the maximum
number of outer iterations of GMRES method is 10. See
[11, 12] for more details.

By obtaining x
𝑘
, we obtain the values 𝑆

𝑘,𝑛
(𝑡
𝑖
) for 𝑖 =

1, 2, . . . , 𝑛. Then, the function 𝑆
𝑘,𝑛

(𝑠) − 𝑠 can be calculated
for 𝑠 ∈ [0, 2𝜋] by the Nyström interpolating formula.
The convergence of 𝑆

𝑘,𝑛
(𝑠) to 𝑆(𝑠) follows from Theorem 19.

Then the values of the mapping function Ψ can be com-
puted from (2). The interior values of the mapping func-
tion can be computed by the Cauchy integral formula
which can be computed using the fast method presented in
[12].

7. Numerical Examples

In this section, we will compute the conformal mapping from
three simply connected regions 𝐺

1
, 𝐺
2
, and 𝐺

3
onto three

simply connected regionsΩ
1
,Ω
2
, andΩ

3
.The boundaries Γ

1
,

Γ
2
, and Γ

3
of the regions 𝐺

1
, 𝐺
2
, and 𝐺

3
are parameterized by

𝜂 (𝑡) = 𝜌 (𝑡) 𝑒
i𝑡
, 0 ≤ 𝑡 ≤ 2𝜋, (112)

where the function 𝜌(𝑡) is given by

Γ
1
: 𝜌 (𝑡) = 1 +

1

4
cos34𝑡,

Γ
2
: 𝜌 (𝑡) = 1 +

3

4
cos 4𝑡,

Γ
3
: 𝜌 (𝑡) = 𝑒

cos 𝑡cos22𝑡 + 𝑒
sin 𝑡sin22𝑡.

(113)

The boundaries 𝐿
1
, 𝐿
2
, and 𝐿

3
of the regionsΩ

1
,Ω
2
, andΩ

3

are parameterized by

𝜂 (𝑡) = 𝑅 (𝑡) 𝑒
i𝑡
, 0 ≤ 𝑡 ≤ 2𝜋, (114)

where the function 𝑅(𝑡) is given by

𝐿
1
: 𝑅 (𝑡) = 1,

𝐿
2
: 𝑅 (𝑡) =

𝛼

√1 − (1 − 𝛼2) cos2𝑡
,

𝛼 = 0.6180339630899485,

𝐿
3
: 𝑅 (𝑡) = 1 +

1

10
cos 8𝑡.

(115)
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Figure 4: The error norm ‖x
𝑘
− x
𝑘−1

‖
∞
versus the iteration number 𝑘 for (a) the conformal mapping from 𝐺

1
onto Ω

1
, Ω
2
, and Ω

3
, (b) the

conformal mapping from 𝐺
2
ontoΩ

1
,Ω
2
, andΩ

3
, and (c) the conformal mapping from 𝐺

3
ontoΩ

1
, Ω
2
, and Ω

3
.

The curves 𝐿
1
, 𝐿
2
, and 𝐿

3
satisfy the 𝜀-condition where

𝐿
1
: 𝜀 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑅
󸀠
(𝑡)

𝑅 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

= 0,

𝐿
2
: 𝜀 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑅
󸀠
(𝑡)

𝑅 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

= 0.5 < 1,

𝐿
3
: 𝜀 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑅
󸀠
(𝑡)

𝑅 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

= 0.80403 < 1.

(116)

The numerical results obtained with 𝑛 = 4096 and tol = 10
−12

are shown in Figures 1, 2, and 3.The error norm ‖x
𝑘
− x
𝑘−1

‖
∞

versus the iteration number 𝑘 in (111) is shown in Figure 4.
It is clear from Figure 4 that the number of iterations in (111)
depends only on the boundary 𝐿 of the image region. More
precisely, it depends on 𝜀.The iterations in (111) converge only
if 𝜀 < 1. For small 𝜀, a few number of iterations are required
for convergence. For values of 𝜀 close to 1, a large number of
iterations are required for convergence.
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