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We establish some common fixed point results for a new class of pair of contraction mappings having functions as contractive
parameters, and satisfying minimal noncommutative operators property.

1. Introduction and Preliminaries

The metric fixed point theory has a vast literature; the
Banach-Caccioppoli contraction principle is one of the most
outstanding results in this theory. Since its appearance,
several generalizations of this result have appeared in the
literature. In 1976, Jungck [1] generalized this principle by
considering two commutating mappings and proved a com-
mon fixed point theorem for these mappings. Afterwards,
the commutative property of the mappings assumed by
Jungck has been relaxed by introducing “weak” alternative
notions as weak commutativity, (non)compatibility, R-weak
commutativity, and weak compatibility, among others, which
allowed extending several well-known common fixed point
theorems for Lipschitz type of mapping pairs.

Here, we are going to establish existence and uniqueness
results of common fixed point for a pair of contractive type
of mappings whose contractive parameters are nonconstants
and its contractive inequality is controlled by a positive
function satisfying a stability condition at 0 (see (11)). As a
particular case, our results are valid if we control the men-
tioned inequality by using the well-known altering distance
functions [2]. To attain our goals, we will assume that the
mappings under consideration are weakly compatible, which
is a minimal noncommuting notion for contractive type of
mapping pairs. Also, alternatively, we are going to assume that

the pair of mappings satisfy some strong conditions like E. A.
property and 𝐶𝐿𝑅

𝑇
property.

In order to establish our results the following notions
will be needed. A pair of self-mappings (𝑆, 𝑇) on a metric
space (𝑀, 𝑑) is said to be compatible [3] if and only if
lim
𝑛→∞

𝑑(𝑇𝑆𝑥
𝑛
, 𝑆𝑇𝑥
𝑛
) = 0, whenever (𝑥

𝑛
)
𝑛
⊂ 𝑀 is such that

lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛
= 𝑡 (1)

for some 𝑡 ∈ 𝑀. A pair of mappings (𝑆, 𝑇) will be said to be
noncompatible if there exits at least one sequence (𝑥

𝑛
)
𝑛
⊂ 𝑀

such that lim
𝑛→∞

𝑆𝑥
𝑛

= lim
𝑛→∞

𝑇𝑥
𝑛

= 𝑡 for some 𝑡 ∈ 𝑀,
but lim

𝑛→∞
𝑑(𝑆𝑇𝑥

𝑛
, 𝑇𝑆𝑥
𝑛
) is either nonzero or nonexistent.

A pair of self-mappings (𝑆, 𝑇) is said to satisfy the property
(E.A.) [4] if there exists a sequence (𝑥

𝑛
)
𝑛
⊂ 𝑀 such that

lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛
= 𝑡, (2)

for some 𝑡 ∈ 𝑀.
A pair of self-mappings (𝑆, 𝑇) is said to satisfy the common

limit in the range of 𝑇 property (in short 𝐶𝐿𝑅
𝑇
) [5] if there

exists a sequence (𝑥
𝑛
)
𝑛
⊂ 𝑀 such that

lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛
= 𝑇𝑡, (3)

for some 𝑡 ∈ 𝑀. It may be observed that the 𝐶𝐿𝑅
𝑇
property

avoids the requirement of the condition of closeness of the
ranges of the involved mappings.
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If 𝑆 is a self-map of a metric space (𝑀, 𝑑) then the set
𝑂(𝑥, 𝑆) = {𝑆

𝑛
𝑥 : 𝑛 = 0, 1, . . .} is called the orbit of 𝑆 at 𝑥

and 𝑆 is called orbitally continuous if 𝑧 = lim
𝑖
𝑆
𝑚𝑖𝑥 implies

𝑆𝑧 = lim
𝑖
𝑆𝑆
𝑚𝑖𝑥 [6].

If 𝑆 and 𝑇 are self-maps of a metric space (𝑀, 𝑑) and if
{𝑥
𝑛
} is a sequence in (𝑀, 𝑑) such that 𝑆𝑥

𝑛
= 𝑇𝑥

𝑛+1
, 𝑛 =

0, 1, 2, . . ., then the set 𝑂(𝑥
0
, 𝑆, 𝑇) = {𝑆𝑥

𝑛
, 𝑛 = 0, 1, 2, . . .} is

called the (𝑆, 𝑇) orbit at 𝑥
0
and 𝑆 and 𝑇 are called orbitally

continuous if lim
𝑛→∞

𝑆𝑥
𝑛

= lim
𝑛→∞

𝑇𝑥
𝑛+1

= 𝑧 implies
lim
𝑛→∞

𝑆𝑇𝑥
𝑛+1

= 𝑆𝑧 and lim
𝑛→∞

𝑇𝑆𝑥
𝑛
= 𝑇𝑧.

A point 𝑥 ∈ 𝑀 is called a coincidence point (CP) of 𝑆 and
𝑇 if 𝑆𝑥 = 𝑇𝑥. The set of coincidence points of 𝑆 and 𝑇 will be
denoted by𝐶(𝑆, 𝑇). If 𝑥 ∈ 𝐶(𝑆, 𝑇), then𝑤 = 𝑆𝑥 = 𝑇𝑥 is called
a point of coincidence (POC) of 𝑆 and 𝑇.

A pair of mappings (𝑆, 𝑇) is said to be nontrivially weakly
compatible [7], whenever 𝑥 ∈ 𝐶(𝑆, 𝑇) ̸= 0 implies 𝑆𝑇𝑥 = 𝑇𝑆𝑥.
Finally, a pair of mappings (𝑆, 𝑇) is said to be occasionally
weakly compatible (OWC) [8] if there exists some 𝑥 ∈ 𝐶(𝑆, 𝑇)

such that 𝑆𝑇𝑥 = 𝑇𝑆𝑥.

Remark 1. We would like to show that weak compatibility
is a necessary, hence minimal, condition for the existence
of common fixed points of contractive type mapping pairs.
Suppose 𝑆 and 𝑇 are a contractive type pair of self-mappings
of a metric space (𝑀, 𝑑) having a common fixed point, say 𝑧;
then 𝑧 = 𝑆𝑧 = 𝑇𝑧 and 𝑆𝑇𝑧 = 𝑇𝑆𝑧 = 𝑆𝑧 = 𝑇𝑧 = 𝑧. If possible,
suppose that 𝑆 and 𝑇 are not weakly compatible. Then there
exists a point 𝑤 in 𝑀 such that 𝑆𝑤 = 𝑇𝑤 while 𝑆𝑇𝑤 ̸= 𝑇𝑆𝑤;
we thus have 𝑆𝑤 = 𝑇𝑤 and 𝑆𝑧 = 𝑇𝑧 with 𝑆𝑤 ̸= 𝑆𝑧. This is not
possible in view of contractive conditions. For example, if 𝑆
and 𝑇 satisfy the contractive condition

𝑑 (𝑆𝑥, 𝑆𝑦) < max {𝑑 (𝑇𝑥, 𝑇𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)} ,

(4)

then we get

𝑑 (𝑆𝑤, 𝑆𝑧) < max {𝑑 (𝑇𝑤, 𝑇𝑧) , 𝑑 (𝑆𝑤, 𝑇𝑤) , 𝑑 (𝑆𝑧, 𝑇𝑧)}

= 𝑑 (𝑆𝑤, 𝑆𝑧) ,

(5)

a contradiction.
This shows that weak compatibility is a necessary, hence

minimal, condition for the existence of common fixed points
of contractive type mapping pairs.

The following result due to Babu and Sailaja in [9] will be
useful in the sequel.

Lemma 2. Let (𝑀, 𝑑) be ametric space. Let (𝑥
𝑛
) be a sequence

in 𝑀 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (6)

If (𝑥
𝑛
) is not a Cauchy sequence in𝑀, then there exist an 𝜀

0
> 0

and sequences of integers positive (𝑚(𝑘)) and (𝑛(𝑘)) with

𝑚(𝑘) > 𝑛 (𝑘) > 𝑘 (7)

such that

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀
0
, 𝑑 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑛(𝑘)

) < 𝜀
0 (8)

and

(i) lim
𝑘→∞

𝑑(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)+1

) = 𝜀
0
,

(ii) lim
𝑘→∞

𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = 𝜀
0
,

(iii) lim
𝑘→∞

𝑑(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)

) = 𝜀
0
.

2. The Class of Pairs of Mappings with
Nonconstant Contractive Parameters

In order to introduce the class of mappings which will be the
focus of study of this paper, as in [10], we are going to use the
functions 𝛼, 𝛽, 𝛾 : R

+
→ [0, 1)which satisfy that 𝛼(𝑡)+𝛽(𝑡)+

𝛾(𝑡) < 1, for all 𝑡 ∈ R
+
, and

lim sup
𝑠→0
+

𝛾 (𝑠) < 1,

lim sup
𝑠→ 𝑡
+

𝛼 (𝑠) + 𝛽 (𝑠)

1 − 𝛾 (𝑠)
< 1, ∀𝑡 > 0.

(9)

Now, we introduce the following class of pair of contrac-
tion type of mappings.

Definition 3. Let (𝑀, 𝑑) be a metric space and let 𝑆, 𝑇 :

𝑀 → 𝑀 be mappings. The pair (𝑆, 𝑇) is called a𝜓-(𝛼, 𝛽, 𝛾)-
contraction pair if for all 𝑥, 𝑦 ∈ 𝑀

𝜓 (𝑑 (𝑆𝑥, 𝑆𝑦)) ≤ 𝛼 (𝑑 (𝑇𝑥, 𝑇𝑦)) 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

+ 𝛽 (𝑑 (𝑇𝑥, 𝑇𝑦)) 𝜓 (𝑑 (𝑆𝑥, 𝑇𝑥))

+ 𝛾 (𝑑 (𝑇𝑥, 𝑇𝑦)) 𝜓 (𝑑 (𝑆𝑦, 𝑇𝑦)) ,

(10)

where 𝛼, 𝛽, 𝛾 : R
+

→ [0, 1) are functions satisfying the
conditions (9) and 𝜓 : R

+
→ R
+

:= [0, +∞) is a continuous
function satisfying that

𝜓 (𝑡
𝑛
) → 0 implies that 𝑡

𝑛
→ 0. (11)

Proposition 4. Let 𝑆 and𝑇 be two self-maps on ametric space
(𝑀, 𝑑). Let one assume that the pair (𝑆, 𝑇) is a 𝜓-(𝛼, 𝛽, 𝛾)-
contraction pair. If 𝑆 and 𝑇 have a POC in𝑀 then it is unique.

Proof. Let 𝑧 ∈ 𝑀 be a POC of the pair (𝑆, 𝑇). Then there exits
𝑥 ∈ 𝑀 such that 𝑆𝑥 = 𝑇𝑥 = 𝑧. Suppose that, for some V ∈ 𝑀,
𝑆V = 𝑇V = 𝑤 with 𝑧 ̸=𝑤. Then, by (10) we have

𝜓 (𝑑 (𝑧, 𝑤)) = 𝜓 (𝑑 (𝑆𝑥, 𝑆V)) ≤ 𝛼 (𝑑 (𝑇𝑥, 𝑇V)) 𝜓 (𝑑 (𝑇𝑥, 𝑇V))

+ 𝛽 (𝑑 (𝑇𝑥, 𝑇V)) 𝜓 (𝑑 (𝑆𝑥, 𝑇𝑥))

+ 𝛾 (𝑑 (𝑇𝑥, 𝑇V))

× 𝜓 (𝑑 (𝑆V, 𝑇V)) .
(12)

It follows that

𝜓 (𝑑 (𝑧, 𝑤)) ≤ 𝛼 (𝑑 (𝑧, 𝑤)) 𝜓 (𝑑 (𝑧, 𝑤))

+ 𝛽 (𝑑 (𝑧, 𝑤)) 𝜓 (𝑑 (𝑧, 𝑧))

+ 𝛾 (𝑑 (𝑧, 𝑤)) 𝜓 (𝑤, 𝑤) .

(13)
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Thus, we get

𝜓 (𝑑 (𝑧, 𝑤)) ≤ 𝛼 (𝑑 (𝑧, 𝑤)) 𝜓 (𝑑 (𝑧, 𝑤)) < 𝜓 (𝑑 (𝑧, 𝑤)) (14)

which is a contradiction. Therefore, 𝑧 = 𝑤.

Proposition 5. Let (𝑀, 𝑑) be a metric space and let 𝑆, 𝑇 :

𝑀 → 𝑀 be mappings with 𝑆(𝑀) ⊂ 𝑇(𝑀). If the pair (𝑆, 𝑇)

is a 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair, then for any 𝑥
0

∈ 𝑀, the
sequence (𝑦

𝑛
) defined by

𝑦
𝑛
= 𝑆𝑥
𝑛
= 𝑇𝑥
𝑛+1

, 𝑛 = 0, 1, . . . (15)

satisfies

(1) lim
𝑛→∞

𝑑(𝑦
𝑛
, 𝑦
𝑛+1

) = 0;
(2) (𝑦

𝑛
) ⊂ 𝑀 is a Cauchy sequence in 𝑀.

Proof. To prove (1), let 𝑥
0

∈ 𝑀 be an arbitrary point. Since
𝑆(𝑀) ⊂ 𝑇(𝑀), then there exists 𝑥

1
∈ 𝑀 such that 𝑆𝑥

0
= 𝑇𝑥
1
.

By continuing this process inductively we obtain a sequence
(𝑥
𝑛
) in 𝑀 such that

𝑦
𝑛
= 𝑆𝑥
𝑛
= 𝑇𝑥
𝑛+1

. (16)

Now, we have

𝜓 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛+2

)) = 𝜓 (𝑑 (𝑆𝑥
𝑛
, 𝑆𝑥
𝑛+1

))

≤ 𝛼 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) 𝜓 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

))

+ 𝛽 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) 𝜓 (𝑑 (𝑆𝑥
𝑛
, 𝑇𝑥
𝑛
))

+ 𝛾 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) 𝜓 (𝑑 (𝑆𝑥
𝑛+1

, 𝑇𝑥
𝑛+1

)) .

(17)

It follows that

𝜓 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛+2

))

≤ 𝛼 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) 𝜓 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

))

+ 𝛽 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) 𝜓 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
))

+ 𝛾 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) 𝜓 (𝑑 (𝑇𝑥
𝑛+2

, 𝑇𝑥
𝑛+1

)) .

(18)

Therefore, we obtain

𝜓 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛+2

))

≤
𝛼 (𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1

)) + 𝛽 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

))

1 − 𝛾 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

))

× 𝜓 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) ,

(19)

from which, together with (9), we conclude that

𝜓 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛+2

)) < 𝜓 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)) . (20)

Thus, (𝜓(𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

)))
𝑛

is a nondecreasing sequence,
bounded below by zero, and so converges to 𝑎 ≥ 0. Now, if
𝑎 > 0 then by taking lim sup from both sides of the above
inequality we have a contradiction. Thus, 𝑎 = 0. Now, from
condition (11) we conclude that 𝑑(𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1

) → 0.

To prove (2), we are going to suppose that (𝑦
𝑛
) ⊂ 𝑇(𝑀) is

not a Cauchy sequence.Then, fromLemma 2 there exist 𝜀 > 0

and sequences (𝑚(𝑘)) and (𝑛(𝑘)) with 𝑚(𝑘) ≥ 𝑛(𝑘) > 𝑘 such
that

lim
𝑘→∞

𝑑 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) = 𝜀,

lim
𝑘→∞

𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

) = 𝜀.

(21)

In this way we have

0 < 𝜓 (𝜀) = lim sup
𝑘→∞

𝜓 (𝑑 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑛(𝑘)

))

= lim sup
𝑘→∞

𝜓 (𝑑 (𝑆𝑥
𝑚(𝑘)−1

, 𝑆𝑥
𝑛(𝑘)−1

))

≤ lim sup
𝑘→∞

𝛼 (𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

))

× 𝜓 (𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

))

+ lim sup
𝑘→∞

𝛽 (𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

))

× 𝜓 (𝑑 (𝑆𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

))

+ lim sup
𝑘→∞

𝛾 (𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

))

× 𝜓 (𝑑 (𝑆𝑥
𝑛(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

))

≤ lim sup
𝑠→ 𝜀

𝛼 (𝑠) lim sup
𝑘→∞

𝜓 (𝑑 (𝑇𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)−1

))

+lim sup
𝑠→ 𝜀

𝛽 (𝑠) lim sup
𝑘→∞

𝜓 (𝑑 (𝑇𝑥
𝑚(𝑘)

, 𝑇𝑥
𝑚(𝑘)−1

))

+lim sup
𝑠→ 𝜀

𝛾 (𝑠) lim sup
𝑘→∞

𝜓 (𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)−1

))

< 𝜓 (𝜀) ,

(22)

which is a contradiction; hence, (𝑇𝑥
𝑛
) is a Cauchy sequence

in 𝑀.

3. On the Existence and Uniqueness of
Common Fixed Points

In this section we prove our main results concerning the
existence and uniqueness of common fixed points for a
𝜓-(𝛼, 𝛽, 𝛾)-contraction pair of mappings without continuity
requirement.

Theorem 6. Let 𝑆 and 𝑇 be self-maps on a complete metric
space (𝑀, 𝑑) such that

(i) 𝑆(𝑀) ⊂ 𝑇(𝑀);

(ii) the pair (𝑆, 𝑇) is a 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair.
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Then,

(1) the pair (𝑆, 𝑇) has a unique POC;
(2) if 𝑆 and 𝑇 are orbitally continuous and if the pair (𝑆, 𝑇)

is compatible, then 𝑆 and 𝑇 have a unique common
fixed point.

Proof. Let 𝑦
𝑛

= 𝑆𝑥
𝑛

= 𝑇𝑥
𝑛+1

, 𝑛 = 0, 1, . . ., be the Cauchy
sequence defined in Proposition 5 which, as was proved,
satisfies that (𝑦

𝑛
) = (𝑇𝑥

𝑛+1
) ⊂ 𝑇(𝑀). Since (𝑀, 𝑑) is

complete, there exists a point 𝑧 in (𝑀, 𝑑) such that

lim
𝑛→∞

𝑦
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛+1

= 𝑧. (23)

Compatibility and orbital continuity of 𝑆 and 𝑇 imply
𝑆𝑧 = 𝑇𝑧; hence 𝑧 is a POC of 𝑆 and 𝑇. From Proposition 4
we conclude that 𝑧 is the unique POC.

On the other hand, since the pair (𝑆, 𝑇) is compatible and
compatible mappings commute at their coincidence point,
𝑆𝑆𝑧 = 𝑆𝑇𝑧 = 𝑇𝑆𝑧 = 𝑇𝑇𝑧. Using (ii), we get

𝜓 (𝑑 (𝑆𝑧, 𝑆𝑆𝑧)) ≤ 𝛼 (𝑑 (𝑇𝑧, 𝑇𝑆𝑧)) 𝜓 (𝑑 (𝑇𝑧, 𝑇𝑆𝑧))

+ 𝛽 (𝑑 (𝑇𝑧, 𝑇𝑆𝑧)) 𝜓 (𝑑 (𝑆𝑧, 𝑇𝑧))

+ 𝛾 (𝑑 (𝑇𝑧, 𝑇𝑆𝑧)) 𝜓 (𝑑 (𝑆𝑆𝑧, 𝑇𝑆𝑧))

= 𝛼 (𝑑 (𝑇𝑧, 𝑇𝑆𝑧)) 𝜓 (𝑑 (𝑆𝑧, 𝑆𝑆𝑧)) ;

(24)

that is, 𝑆𝑧 = 𝑆𝑆𝑧. Hence, 𝑆𝑧 = 𝑆𝑆𝑧 = 𝑇𝑆𝑧, and 𝑆𝑧 is a common
fixed point of the pair (𝑆, 𝑇). The uniqueness of the common
fixed point follows easily.

Theorem 7. Let 𝑆 and 𝑇 be self-mappings on a metric space
(𝑀, 𝑑) such that

(i) 𝑆(𝑀) ⊂ 𝑇(𝑀);
(ii) 𝑇(𝑀) ⊂ 𝑀 is a complete subspace of 𝑀;
(iii) the pair (𝑆, 𝑇) is a 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair.

Then,

(1) the pair (𝑆, 𝑇) has a unique POC;
(2) if the pair (𝑆, 𝑇) is nontrivially weakly compatible, then

𝑆 and 𝑇 have a unique common fixed point.

Proof. Let 𝑦
𝑛

= 𝑆𝑥
𝑛

= 𝑇𝑥
𝑛+1

, 𝑛 = 0, 1, . . ., be the Cauchy
sequence defined in Proposition 5 which, as was proved,
satisfies that (𝑦

𝑛
) = (𝑇𝑥

𝑛+1
) ⊂ 𝑇(𝑀). Since 𝑇(𝑀) ⊂ 𝑀 is

a complete subspace of 𝑀, then there exists 𝑧 ∈ 𝑇(𝑀) such
that

lim
𝑛→∞

𝑦
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛+1

= 𝑧, (25)

and thus we can find 𝑢 ∈ 𝑀 such that 𝑇𝑢 = 𝑧. Now, we are
going to assume that 𝑆𝑢 ̸= 𝑧. Then,

𝜓 (𝑑 (𝑆𝑥
𝑛+1

, 𝑆𝑢)) ≤ 𝛼 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)) 𝜓 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢))

+ 𝛽 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)) 𝜓 (𝑑 (𝑆𝑥
𝑛+1

, 𝑇𝑥
𝑛+1

))

+ 𝛾 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)) 𝜓 (𝑆𝑢, 𝑇𝑢) .

(26)

Letting 𝑛 → ∞, we obtain

𝜓 (𝑑 (𝑆𝑢, 𝑧)) ≤ lim sup
𝑛→∞

𝛼 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)) 𝜓 (𝑑 (𝑧, 𝑇𝑢))

+ lim sup
𝑛→∞

𝛽 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)) 𝜓 (𝑑 (𝑧, 𝑧))

+ lim sup
𝑛→∞

𝛾 (𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)) 𝜓 (𝑑 (𝑆𝑢, 𝑇𝑢))

< 𝜓 (𝑑 (𝑆𝑢, 𝑧))

(27)

which is a contradiction; therefore 𝑆𝑢 = 𝑧; hence 𝑧 is a POC
of 𝑆 and 𝑇. The theorem now follows easily using arguments
similar to those which have been used in the corresponding
part of Theorem 6.

Theorem 7 is also true if we replace conditions (i)
and (ii) (of Theorem 7) by a single condition. In the next
theorem 𝑆𝑀 denotes the closure of the range of the mapping
𝑆.

Theorem 8. Let 𝑆 and 𝑇 be self-mappings on a metric space
(𝑀, 𝑑) such that

(i) 𝑆𝑀 ⊂ 𝑇(𝑀);
(ii) the pair (𝑆, 𝑇) is a 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair.

Then,

(1) the pair (𝑆, 𝑇) has a unique POC;
(2) if the pair (𝑆, 𝑇) is nontrivially weakly compatible, then

𝑆 and 𝑇 have a unique common fixed point.

Remark 9. Notice that in Theorem 7 we cannot replace non-
trivially weakly compatiblemappings by OWC. In fact, under
the 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair of Theorem 6, assumption of
OWC and the existence of a unique common fixed point are
equivalent conditions. To see this, first suppose that 𝐴 and
𝑆 satisfy the 𝜓-(𝛼, 𝛽, 𝛾)-contraction condition of Theorem 6
above. If 𝐴 and 𝑆 have a common fixed point, say 𝑧, then
= 𝐴𝑧 = 𝑆𝑧,√𝑖𝐴𝑆𝑧 = 𝑆𝐴𝑧 = 𝑧, and 𝐴 and 𝑆 are, therefore,
OWC mappings. On the other hand, if 𝐴 and 𝑆 are OWC
mappings such that 𝐴𝑥 = 𝑆𝑥 and 𝐴𝑆𝑥 = 𝑆𝐴𝑥 = 𝐴𝐴𝑥 = 𝑆𝑆𝑥

for some 𝑥 then, using 𝜓-(𝛼, 𝛽, 𝛾)-contraction condition, we
get

𝜓 (𝑑 (𝑆𝑥, 𝑆𝑆𝑥)) ≤ 𝛼 (𝑑 (𝑇𝑥, 𝑇𝑆𝑥)) 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑆𝑥))

+ 𝛽 (𝑑 (𝑇𝑥, 𝑇𝑆𝑥)) 𝜓 (𝑑 (𝑆𝑥, 𝑇𝑥))

+ 𝛾 (𝑑 (𝑇𝑥, 𝑇𝑆𝑥)) 𝜓 (𝑑 (𝑆𝑆𝑥, 𝑇𝑆𝑥))

= 𝛼 (𝑑 (𝑇𝑥, 𝑇𝑆𝑥)) 𝜓 (𝑑 (𝑆𝑥, 𝑆𝑆𝑥)) .

(28)

That is, 𝑆𝑥 = 𝑆𝑆𝑥. Since 𝜓-(𝛼, 𝛽, 𝛾)-contraction condition
excludes the existence of two coincidence points 𝑥, 𝑦 for 𝐴

and 𝑆, we get 𝑆𝑥 = 𝑆𝑆𝑥(= 𝐴𝑆𝑥). This means that 𝑆𝑥 = 𝐴𝑥

is a common fixed point of 𝐴 and 𝑆. Therefore, one should
be really careful before using OWC under any contractive
conditions (see, also, [11]).
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Theorem 10. Let (𝑀, 𝑑) be a metric space and 𝑆, 𝑇 : 𝑀 →

𝑀 nontrivially weakly compatible mappings satisfying the
property (E.A.). Let one suppose that the pair (𝑆, 𝑇) is a
𝜓-(𝛼, 𝛽, 𝛾)-contraction pair. If 𝑇(𝑀) ⊂ 𝑀 is closed, then 𝑆 and
𝑇 have a unique common fixed point.

Proof. Since the pair (𝑆, 𝑇) satisfies the property (E.A.), then
there exists a sequence (𝑥

𝑛
) ⊂ 𝑀 such that

lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛
= 𝑧 (29)

for some 𝑧 ∈ 𝑀. Since 𝑇(𝑀) is closed, then 𝑧 ∈ 𝑇(𝑀) and
𝑧 = 𝑇𝑢 for some 𝑢 ∈ 𝑀. As in the proof of Theorem 7, we
can prove that 𝑧 = 𝑇𝑢 = 𝑆𝑢 and that 𝑧 is the unique POC
of 𝑆 and 𝑇. The rest of the proof of the theorem follows from
Theorem 6.

Remark 11. Since two noncompatible self-mappings on a
metric space (𝑀, 𝑑) satisfy the property (E.A.), then the
conclusion of Theorem 10 remains valid if we consider 𝑆 and
𝑇 noncompatible self-mappings.

In the next theorem we drop closeness of the range of
mapping and replace property (E.A.) with 𝐶𝐿𝑅

𝑇
property.

Theorem 12. Let (𝑀, 𝑑) be ametric space and 𝑆, 𝑇 : 𝑀 → 𝑀

satisfying the𝐶𝐿𝑅
𝑇
property. Let us suppose that the pair (𝑆, 𝑇)

is a𝜓-(𝛼, 𝛽, 𝛾)-contraction pair. If the pair (𝑆, 𝑇) is nontrivially
weakly compatible, then 𝑆 and 𝑇 have a unique common fixed
point.

Proof. Since the pair (𝑆, 𝑇) satisfies the 𝐶𝐿𝑅
𝑇
property, then

there exists a sequence (𝑥
𝑛
) ⊂ 𝑀 such that

lim
𝑛→∞

𝑆𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛
= 𝑇𝑧 (30)

for some 𝑧 ∈ 𝑀.
The rest of the proof of the theorem follows easily.

4. Controlling by Altering Distance Functions

In 1976, Delbosco [12] initiated the study of fixed point
for contractive conditions using altering distance functions;
however, his study was limited to some power functions only.
Subsequently, his result was extended by Skof [13] and Khan
et. al [2] in 1977 and 1984, respectively. Since then, it has been
used to solve several problems in themetric fixedpoint theory
(see, e.g., [14–21]).

Definition 13. A function 𝜓 : R
+

→ R
+
is called an altering

distance function if the following properties are satisfied:

(Ψ
1
) 𝜓(𝑡) = 0 if and only if 𝑡 = 0;

(Ψ
2
) 𝜓 is monotonically nondecreasing;

(Ψ
3
) 𝜓 is continuous.

By Ψ we are going to denote the set of all the altering
distance functions.

Since every nondecreasing map 𝜓 satisfies (11) (but the
converse is not true), then all the previous results are valid,

in particular, if we replace functions satisfying the condition
(11) for altering distance functions.

On the other hand, in 2002, Branciari [22] extended
the Banach-Caccioppoli theorem by using some Lebesgue
integrable functions. Since then, several well-known fixed
point criteria for contractive type of mappings have been
generalized in this way. See, for example, [5, 10, 16, 17, 23–
27] and a lot of references therein. In 2009, Jachymski [28]
showed that most contractive conditions of integral type
given by many authors are mere consequences of classical
known ones (see [28] and references therein).

By Φ is denoted the set of all mappings 𝜙 : R
+

→ R
+

satisfying the following conditions:

(Φ
1
) 𝜙 is a Lebesgue integrable mapping which is
summable on each compact subset of R

+
;

(Φ
2
) 𝜙 is nonnegative;

(Φ
3
) for each 𝜀 > 0, ∫𝜀

0
𝜙(𝑡)𝑑𝑡 > 0.

A relation between these two classes of functions Ψ and Φ is
given in the following result ([29, 30]).

Lemma 14. For each 𝜑 ∈ Φ, the function 𝜓
0

: R
+

→ R
+

defined by 𝜓
0
(𝑠) = ∫

𝑠

0
𝜑(𝑡)𝑑𝑡, 𝑠 ∈ R

+
is such that 𝜓

0
∈ Ψ.

In this way, additionally to the class of 𝜓-(𝛼, 𝛽, 𝛾)-
contraction pairs, we can consider a type of pair of mappings
satisfying the following inequality contraction of integral
type:

∫

𝜓(𝑑(𝑆𝑥,𝑆𝑦))

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑑 (𝑇𝑥, 𝑇𝑦)) ∫

𝜓(𝑑(𝑇𝑥,𝑇𝑦))

0

𝜑 (𝑡) 𝑑𝑡 + 𝛽 (𝑑 (𝑇𝑥, 𝑇𝑦))

× ∫

𝑑(𝑆𝑥,𝑇𝑥)

0

𝜑 (𝑡) 𝑑𝑡 + 𝛾 (𝑑 (𝑇𝑥, 𝑇𝑦))

× ∫

𝜓(𝑑(𝑆𝑦,𝑇𝑦))

0

𝜑 (𝑡) 𝑑𝑡

(31)

for all𝑥, 𝑦 ∈ 𝑀, where𝜓 ∈ Ψ,𝜑 ∈ Φ, and𝛼, 𝛽, 𝛾 are functions
satisfying (9). Since this class can be rewritten as

𝜓
0
(𝜓 (𝑑 (𝑆𝑥, 𝑆𝑦))) ≤ 𝛼 (𝑑 (𝑇𝑥, 𝑇𝑦)) 𝜓

0
(𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)))

+ 𝛽 (𝑑 (𝑇𝑥, 𝑇𝑦)) 𝜓
0
(𝜓 (𝑑 (𝑆𝑥, 𝑇𝑥)))

+ 𝛾 (𝑑 (𝑇𝑥, 𝑇𝑦)) 𝜓
0
(𝜓 (𝑑 (𝑆𝑦, 𝑇𝑦)))

(32)

for all 𝑥, 𝑦 ∈ 𝑀, where 𝜓
0

∈ Ψ is the function defined in
Lemma 14, then we have that all the conclusions given for
𝜓-(𝛼, 𝛽, 𝛾)-contraction pairs are automatically valid for pair
of mappings satisfying the inequality contraction (31).
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5. Conclusions and Examples

Notice that due to the minor restrictions on the func-
tions involved in the definition of the class of 𝜓-(𝛼, 𝛽, 𝛾)-
contraction pairs and the minimal commutative require-
ments of the mappings, our results extend several common
fixed point theorems for classes of well-known contractive
type of mappings, including various classes of contractive
mappings with inequalities controlled by altering distance
functions as well as contractivemappings of the integral type.
Even more, the mappings 𝑇 and 𝑆 considered here are not
necessarily continuous, so in this way our results are more
general compared with other results in this line of research.

Next, we are going to show some examples in support of
our results.

Example 15. Let 𝑀 = [0, 1] be equipped with the Euclidean
metric. We consider the following mappings: 𝑆, 𝑇 : 𝑀 → 𝑀

defined by 𝑆𝑥 = 𝑥/16 and𝑇𝑥 = 𝑥/2 for all 𝑥 ∈ 𝑀. Let 𝛼, 𝛽, 𝛾 :

R
+

→ [0, 1) defined by 𝛼(𝑡) = 𝛽(𝑡) = 1/4 and 𝛾(𝑡) = 1/8 for
all 𝑥 ∈ R

+
and 𝜓 : R

+
→ R
+
given by the formula 𝜓(𝑡) = 𝑡

2,
𝑡 ∈ R
+
.

Notice that 𝜓 ∈ Ψ and the functions 𝛼, 𝛽, 𝛾 satisfy the
conditions (9); also note that 𝑆(𝑀) ⊂ 𝑇(𝑀) and 𝑇(𝑀) is a
complete subspace of 𝑀. Moreover, it is not difficult to show
that the pair (𝑆, 𝑇) is a 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair. Besides,
𝐶(𝑆, 𝑇) = {0} and 𝑆𝑇0 = 𝑇𝑆0 = 0, which mean that (𝑆, 𝑇) is
nontrivially weakly compatible. Then, Theorem 7 guarantees
that 𝑤 = 0 is the unique common fixed point of 𝑆 and 𝑇.

Example 16. As in the example before, 𝑀 = [0, 1] with the
usual metric. We define the self-maps 𝑆, 𝑇 on 𝑀 by

𝑆𝑥 =

{{{

{{{

{

0, if 0 ≤ 𝑥 ≤
1

2

1

16
, if 1

2
< 𝑥 ≤ 1

(33)

and𝑇𝑥 = 𝑥/2 for all 𝑥 ∈ 𝑀. Let 𝛼, 𝛽, 𝛾 : R
+

→ [0, 1) defined
as follows:

𝛼 (𝑡) =
1

8
, 𝛽 (𝑡) = 𝛾 (𝑡) =

1

4
, ∀𝑡 ∈ R

+
. (34)

Let 𝜓 : R
+

→ R
+
defined by 𝜓(𝑡) = 𝑡

2, 𝑡 ∈ R
+
. Then,

the pair (𝑆, 𝑇) is a 𝜓-(𝛼, 𝛽, 𝛾)-contraction pair satisfying the
hypotheses of Theorem 6; thus 𝑤 = 0 is the unique POC and
moreover the unique common fixed point of 𝑆 and 𝑇.

Example 17. Let 𝑀 = [1/2, 1] with the usual metric on R. In
this case we consider the mappings 𝑆, 𝑇 : 𝑀 → 𝑀 defined
by

𝑆𝑥 =

{{{

{{{

{

1

2
, if 1

2
≤ 𝑥 <

2

3

1 −
1

2
𝑥, if 2

3
≤ 𝑥 ≤ 1,

𝑇𝑥 =

{{{

{{{

{

1, if 1

2
≤ 𝑥 <

2

3

𝑥, if 2

3
≤ 𝑥 ≤ 1.

(35)

Let𝜓 : R
+

→ R
+
given by the formula𝜓(𝑡) = 𝑡

2, 𝑡 ∈ R
+
.

𝛼, 𝛽, 𝛾 : R
+

→ [0, 1) given by 𝛼(𝑡) = 𝛽(𝑡) = 1/4, 𝛾(𝑡) = 1/8,
𝑡 ∈ R

+
. Notice that 𝐶(𝑆, 𝑇) = {2/3} and 𝑆𝑇(2/3) = 𝑇𝑆(2/3).

Moreover,𝑤 = 2/3 is the unique POCof 𝑆 and𝑇; thus the pair
(𝑆, 𝑇) is nontrivially weakly compatible. On the other hand,
by considering the sequence 𝑥

𝑛
= 2/3 + 1/𝑛, 𝑛 ≥ 4 in 𝑀, it is

clear that the pair (𝑆, 𝑇) satisfies the property (E.A.). Finally,
it is easy to show that in fact the mappings 𝑆, 𝑇, 𝜓, 𝛼, 𝛽 and
𝛾 satisfy all the hypotheses of Theorem 10, so 𝑤 = 2/3 is the
unique common fixed point of 𝑆 and 𝑇.
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