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Metabolic syndrome is worldwide public health problem and is a serious threat to people’s health and lives. Understanding the
relationship between metabolic syndrome and the physical symptoms is a difficult and challenging task, and few studies have
been performed in this field. It is important to classify adults who are at high risk of metabolic syndrome without having to use
a biochemical index and, likewise, it is important to develop technology that has a high economic rate of return to simplify the
complexity of this detection. In this paper, an artificial intelligence model was developed to identify adults at risk of metabolic
syndrome based on physical signs; this artificial intelligence model achieved more powerful capacity for classification compared to
the PCLR (principal component logistic regression) model. A case study was performed based on the physical signs data, without
using a biochemical index, that was collected from the staff of Lanzhou Grid Company in Gansu province of China. The results
show that the developed artificial intelligence model is an effective classification system for identifying individuals at high risk of

metabolic syndrome.

1. Introduction

With the rapid development of world economy and the
constant pursuit of a high quality of life, human health
has become a main focus of attention. However, a growing
number of diagnosed chronic diseases are resulting in a
lower quality of life, and the resulting social and economic
burden have become a huge obstacle in the pursuit of human
progress.

L1. Cardiovascular Risk Associated with Metabolic Syndrome.
Metabolic syndrome (MetS) is a clustering of factors charac-
terized by central obesity, lipid abnormalities, hypertension,
impaired glucose metabolism, and insulin resistance, which
is associated with an increased risk of type 2 diabetes mellitus
(T2DM), cardiovascular disease (CVD), and mortality due
to CVD. Other comorbidities include a proinflammatory
state, prothrombotic state, nonalcoholic fatty liver disease,
and reproductive dysfunction [1, 2]. Insulin resistance,
metabolism disorders of the visceral adipose tissue, and
inflammatory status are involved in the early stages of MetS.

Insulin resistance, obesity, hypertension, and diabetes
are high risk factors for cardiovascular disease. While MetS
encompasses all of the above syndromes, its effects on
cardiovascular disease are exponential. In 2006, Butler et al.
[3] sought to assess the impact of metabolic syndrome on
cardiovascular outcomes in 3,031 individuals aged 70 to 79
years and found that metabolic syndrome was independently
associated not only with coronary events (CE), myocardial
infarction (MI), heart failure (HF), and all-cause hospital
stays but also with cardiovascular and coronary mortality. In
the same year, Ingelsson et al. [4] studied 2,314 middle-aged
men without baseline HF or coronary heart disease. They
found that metabolic syndrome was a significant predictor of
HF and was independent of established risk factors for HE,
including an interim myocardial infarction. A recent longi-
tudinal study reported that people with metabolic syndrome
had a 127%, 64%, 48%, and 39% greater risk of diabetes,
ischemic heart disease, cardiovascular disease, and stroke,
respectively, than normal controls [5]. All of these data imply
that individuals with metabolic syndrome are at increased
risk of morbidity and mortality from a variety of health
conditions.
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However, more worrying is that a relatively high preva-
lence of MetS has become a global phenomenon. Obesity is
the pivotal driver of MetS development, and, as obesity levels
increase, it will likely result in a parallel rise in the prevalence
of metabolic syndrome. Available evidence demonstrates
that, in most countries, 20% to 30% of adult population
suffers from metabolic syndrome [6]. In the United States,
an estimated 20% to 30% of adults suffer from metabolic
syndrome. In Europe, the prevalence is between 19.8% and
24%. In some areas of Brazil, the prevalence is as high
as 18% to 30%. Other population statistics report that the
prevalence for Mexican, American, and Asian populations
ranges between 12.4% and 28.5% among males and from
10.7% to 40.5% among females [7]. Not only is this a serious
global public health problem but also it will greatly increase
the economic burden on society. Healthcare costs for patients
with MetS or other diseases were 3.36 times greater than those
without MetS [8].

China is now facing the ageing of its population. Changes
in lifestyle and longer life expectancy have led to an increased
burden of cardiovascular and other chronic diseases, espe-
cially metabolic syndrome and a collection of multiple car-
diovascular risk factors. A population-based cross-sectional
study using the new International Diabetes Federation (IDF)
definition of MetS shows that MetS has a higher prevalence
in elderly people in Beijing, particularly in women. The
prevalence rate in the elderly is as high as 46.3% (34.8% in
men, 54.1% in women). Odds ratios (OR) for coronary heart
disease (CHD), stroke, peripheral arterial disease (PAD), and
CVD in patients who also had MetS were 1.69, 1.58, 1.42, and
1.73, respectively [9].

1.2. Various Definitions of the Metabolic Syndrome. Metabolic
syndrome as a constellation of a clustering of cardiovascular
risk factors (central obesity, lipid abnormalities, hyperten-
sion, impaired glucose metabolism, and insulin resistance)
greatly increases the risk of mortality from CVD. Because
of the resulting social and economic burden, scholars have
been trying to find a more proper definition of the metabolic
syndrome, but, for now, numerous debates still exist over
disparity in the definitions.

The first widely used MetS criteria were developed by
the World Health Organization (WHO) in 1998, with an
emphasis on risk factors for type 2 diabetes mellitus [10].
In 2001, the National Cholesterol Education Program-Adult
Treatment Panel III (NCEP ATP III) presented a MetS
definition which focused on cardiovascular diseases [11].
Finally, in 2005, the International Diabetes Federation (IDF)
proposed a new definition of MetS that includes central obe-
sity as a prerequisite and gender- and ethnicity-specific cutoft
points for central obesity as measured by waist circumference
[12]. The WHO criteria are more complex than the NCEP
criteria, because the former contains measurement of plasma
insulin levels and microalbuminuria. It seems that the NCEP
guidelines are more preferable.

However, Tan et al. [13] confirmed that the NCEP ATP
III definition, when applied to Chinese and other Asian
populations, underestimates the prevalence of the metabolic
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syndrome and fails to identify many individuals at risk of
future CVD. This is due to the recommended cutoff points for
waist circumference. It is inappropriate for Asian populations
because Asian people have a higher percentage of body fat,
especially abdominal visceral fat, than white people with
the same body mass index (BMI) and also because Asians
are prone to disorders such as diabetes, dyslipidemia, and
hypertension at lower BMI levels than white people.

However, most current studies use WHO- or NCEP ATP
[II-modified Asian criteria to define MetS. The question
remains if there is a more suitable definition for Chinese
people. He et al. [9] analyzed the prevalence of MetS based
on the IDF and NCEP ATP III criteria to verify the relation
between MetS and CVD in a population-based survey of
elderly Chinese people in Beijing, China. The study found
that the prevalence of MetS defined by the IDF criteria was
similar to that in the U.S. population in the same group
defined by the NCEP criteria. Additionally, nearly 20% of the
subjects met the IDF criteria but not the NCEP criteria; these
subjects had significantly increased odds of CHD and stroke.

All of these data indicate that the new IDF criteria are
more suitable than the NCEP criteria for screening higher-
risk individuals and for estimating the risk of CVD from MetS
in the Chinese population.

In summary, metabolic syndrome is a serious threat
to human health, causing high morbidity and mortality,
greatly reducing people’s quality of life and survival beliefs,
and causing huge medical expenses to families and society.
Therefore, early diagnosis, early treatment, and a reduction
in the risk of cardiovascular disease are urgently needed
for the metabolic syndrome population. However, all of the
diagnostic criteria include a variety of biochemical indices,
which make these tests economically unfeasible for some
populations, especially in rural areas of developing countries.
Thus, an effective screening method has been sought to
quickly identify those at high risk of MetS in underdeveloped
countries and areas.

1.3. Mathematical Model in the Application of the Metabolic
Syndrome. Based on the above global trends, many scholars
have conducted research in preventive measures. Hirose et al.
[14] have successfully predicted the 6-year incidence of MetS
in Japanese male subjects using an artificial neural network
(ANN) system and multiple logistic regression (MLR) anal-
ysis based on clinical data, including HOMA-IR and serum
adiponectin. An artificial neural network is a computational
methodology that performs multifactorial analyses and is
characterized by self-learning and self-adapting. It has an
excellent ability to learn and to generalize from experiences
and to describe the highly nonlinear and strongly coupled
relationships between multiinput and multioutput variables
(15, 16]. Compared with other prediction methods, ANN
methods are superior in terms of high data error tolerance,
easy adaptability to online measurements, and no need
for additional information other than body physical signs
data. ANN is trained to “think” like humans by weakening
or strengthening interconnected weights that connect its
processing elements [17]. ANN has been widely applied
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in pattern recognition and classification, prediction, and
signal processing, among other applications. The applications
for ANN in medicine are growing and include medical
decision support, such as identifying and diagnosing cancer,
hypertension, type 2 diabetes mellitus, and other diseases
[16, 18]. A back propagation neural network (BPNN) is a
classic artificial neural network. However, there are almost
no studies addressing the use of artificial neural networks
for rapid identification of those at high risk of metabolic
syndrome without the use of biochemical parameters, partic-
ularly in rural residents.

Logistic regression analysis is a statistical method that
uses the maximum likelihood to estimate regression coef-
ficients. It does not require variables to obey the equal
covariance matrix or residuals to follow a normal distri-
bution, and therefore it has a wide range of applications
in epidemiological studies. The logistic regression model
requires that a nonlinear function relationship exists between
the explanatory variables. However, in many studies, the
variables often do not exist alone; there is a certain degree
of linear dependence. This phenomenon is called multi-
collinearity. Multicollinearity often increases the standard
error of estimated parameters, reduces the stability of the
model, and even leads to the opposite result. Therefore,
to reasonably estimate and interpret a regression model,
we need to deal with multicollinearity between variables.
Principal component analysis (PCA) is a common method
to solve the collinearity problem in regression analysis. It is
a multivariate technique introduced by Aguilera et al. that
explains the variability of a set of variables in terms of a
reduced set of uncorrelated linear spans of such variables
with maximum variance, known as principal components
(PCs) [19]. By principal component transformation, the
highly relevant information of the variables is integrated
into principal components with low correlation and then
replaces the original variables in regression with the principal
component.

1.4. The Structure of Paper. The remainder of this paper is
organized as follows. The material and data are described
in Section 2. The principal component regression and neural
network are introduced in Sections 3 and 4, respectively. The
ROC figure isillustrated in Section 5. The statistical analysis is
explained in Section 6. Section 7 describes the results of the
two models. We discuss the model and results in Section 8,
and the conclusions are in Section 9. Finally, the limitations
of the model are discussed in Section 10.

2. Material and Data Description

ANN and PCLR are used here for the first time to classify
those at high risk of metabolic syndrome. The data and
indices in the models are described here.

2.1. Study Population. In 2008, 2,107 subjects from a staff of
Lanzhou Grid Company in Gansu province of China, with
23-60 years of age at baseline, were selected randomly and
invited to participate in a MetS health survey. To be eligible,

candidates had to be free of the following conditions: severe
kidney, liver disease, cancer, psychological disorders, and
infectious diseases. After candidates with severe kidney/liver
disease (n = 13), cancer (n = 9), psychological disorders
(n = 4), and infectious diseases (n = 7) were excluded, 2,074
individuals (male: 1,495, female: 579) who met the criteria
were enrolled for analysis.

2.2. Data Acquisition. Anthropometry and biochemical data
parameters were collected the morning after overnight fasting
by trained physicians using standardized methods.

Height and body weight were measured twice with
clothing (heavy clothing removed and 1.0 kg deducted for
remaining garments) but without shoes to the nearest 0.1cm
and 0.1kg, respectively. Body mass index (BMI) was calcu-
lated according to the following formula:

Bodyweight (kg)

BMI =
Height? (m?)

)

Waist circumference (WC) was measured twice on stand-
ing subjects with a tape measure to the nearest 1cm in
the horizontal plane at the midpoint between the lowest
rib and the iliac crest [18]. Hip circumference (HC) was
measured twice to the nearest 1cm at the widest part over
the trochanters [20]. Blood pressure (BP) was measured twice
from the right arm to the nearest 2 mm/Hg using a mercury
sphygmomanometer, with subjects sitting and having relaxed
for at least 30 min. BP measurements were taken in 10 min
intervals, and mean values were calculated.

The blood specimens were collected using venipuncture
after overnight fasting. Plasma glucose was determined using
a modified hexokinase enzymatic method. Total choles-
terol, triglycerides, high-density lipoprotein (HDL), and low-
density lipoprotein (LDL) were measured enzymatically with
commercially available reagents. Determination of above
indicators was completed using an automatic biochemical
analyzer (instrument model: Hitachi automatic analyzer
7600-010).

2.3. Definition of Metabolic Syndrome. The International
Diabetes Federation (IDF) criteria, which have been shown
to be more suitable for Chinese people, were used in this
study. The IDF criteria are as follows [12]: waist circumference
>90cm in males and 80cm in females plus any two of
the following criteria: triglyceride levels >1.7 mmol/L; HDL-
cholesterol levels <1.04 mmol/L in males and <1.30 mmol/L
in females; treatment of previously diagnosed hypertension
and systolic BP > 130 mmHg or diastolic BP > 85 mmHg;
fasting plasma glucose >5.6 mmol/L or previously diagnosed
type 2 diabetes.

3. Principal Component Logistic Regression

The principal component logistic regression was introduced
to establish a classification model. This method consists of
two modules: principal component and logistic regression.



3.1. Principal Component. Different than the traditional
logistic regression in which the variables are the explanatory
variables, principal component logistic regression employs
the principal components of the variables as the explanatory
variables.

3.1.1. Introduction of Principal Component. Multivariate prin-
cipal component analysis (PCA) is a multivariate technique to
explain a set of correlated variables using a reduced number of
uncorrelated variables with maximum variance, called PCs,
introduced by Pearson at the beginning of the 20th century
and developed by Hétteling in 1933 [21, 22].

PCA is defined from the sample point of view in this
paper; namely, it is computed from a sample of observations
about a set of variables [19]. Then, given a set of p continuous
variables and n observations of such variables, a statistic
matrix X = (xij)nxp in which x;; is the ith observation of the

jth variable is derived. The column vectors of such a matrix
are denoted by X;,X,,...,X,, where each vector corresponds
to a variable.

The sample covariance matrix is denoted by § = (sj)
whose elements are defined in the form of Sik = 1/(n -
1))2?:1(99-]. - Ej)(xik — X;.), where the sample means are
computed by X; = (1/n) YL, x; (j = 1,..., p). Without
loss of generality, if the observations are centered; namely,

X, = -+ = X, = 0, the sample covariance matrix can be

simplified as S = (1/(n — 1))X'X.

The principal components (PCs) of the sample are defined
as orthogonal linear spans with maximum variance of the
columns of the matrix X, denoted by Z; = XV, (j =
L,..., p). The coeflicient vectors Vi, ..., V,,, which define the
PCs, are the eigenvectors of the sample covariance matrix S
related to their corresponding eigenvalues A, > ---> 1, >0,
which are the variances of the corresponding PCs. Then, the
matrix Z whose columns are the sample PCs can be calculated
as Z = XV, whereV = (ij)PXP is the matrix that contains

the eigenvectors of the sample covariance matrix columns.
The sample covariance matrix can be decomposed as S =
VAV', where V is orthogonal and A = diag(},,.. - Ap) so

that the matrix of observations can be given by X = ZV'.

Based on the PC decomposition, an approximated recon-
struction of each original observation can be obtained in
terms of a reduced number of PCs as follows:

S
X] = ZZijk, j= 1,-~~)P~ (2)
k=1

The percentage of the total variability of the PCs account-
ing is given by the following:

S
[;jl A’_ x 100], s<p. (3)

J=170

3.2. Binary Logistic Regression. Binary logistic regression is a
type of regression analysis where the dependent variable is a
dummy variable (coded 0, 1). This method is used to establish
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and evaluate the relationship between the binary variable and
the explanatory variables.

3.21 Logit Transformation. The relationship between a
binary dependent variable probability (P) and the continuous
predictor (X) in logistic regression is usually an S-shaped
curve generated by a Logit transformation function with
asymptotes at 0 and 1, which is different than in a linear
relationship between a continuous response variable (Y)
and continuous predictor (X) within linear regression [23,
24]. The Logit transformation function of probability (P) is
defined as follows:

=) (4)

p

The Logit transformation is used to linearize the rela-
tionship between P and X, hence modifying the curved
nature of the response. Consequently, logistic regression is
constructed in the form of a linear function associating
Logit(P) with the explanatory continuous variables. If the
number of the independent variable X; is #, then the linear
function becomes the following:

Logit (P) = In < I

Logit(P) = by + b X, + b, X, +---+b,X,. (5)

The direction of the relationship between the continuous
X; predictor and the Logit(P) is determined by the sign
of coeflicient b,. To obtain the desired probability P as a
function of the explanatory variable, we can change the form
of formula (5); thereafter, the Logit(P) can be changed back
into the probability scale as follows:

1
T 11 e b Xt X5, X,) (6)

3.2.2. Maximum Likelihood Estimation (MLE). To calculate
the coefficient estimates in binary logistic regression, the
maximum likelihood estimation (MLE) procedure is used
because it yields the most likely estimates of the unknown
coefficients b; in the binary regression model in which the
probability of obtaining the observed set of data is maximized
[24, 25]. The likelihood function is defined as follows [24, 25]:

L=[][B" x(1-P)"™]. )

In (7), L is defined as the likelihood function, Y; is the
observed value (0 or 1) of the binary variable, P, refers to
the predicted probability of the case i (using the logistic
regression model), and IT is the multiplicative equivalent to
the summation sign and means that the function multiplies
the values for each case [25]. The likelihood function L
ranges from 0 to 1. To simplify the calculation and avoid the
typically exceedingly small numbers, the likelihood function
L is changed into a log likelihood function (In L) as follows
[24, 25]:

In L= [(%xB) +(1-¥) xln(1-B)]. (&

Because the range of L is from 0 to 1, In L varies from
negative infinity to zero. The closer the value of L to 1,
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the closer the value of In L to 0 and the more likely the
parameters produce the observed data [25]. In practice,
iterative techniques are used to estimate the coeflicients b, in
the binary logistic regression model by maximizing In L.

3.2.3. Goodness of Fit. In binary logistic regression, the
Hosmer-Lemeshow test is introduced to assess how well the
regression model explains the observed data by comparing
the observed and the expected frequencies (by the model).
For this, the expected probabilities of the event’s occurrence
are grouped from lowest to highest [24]. At the beginning,
the data are dispersed over a finite number (g which is not less
than 6) groups containing an equal number of data, with the
cases with the lowest expected probabilities being contained
in the first group, the next lowest expected probabilities are
in the second group, and so on. Then, for the data in each
group where Y; = 1 (the event occurred), the estimates of the
expected values can be obtained by summing the estimated
probabilities over all of the data in a group. For the data
in each group where Y; = 0 (the event did not occur), the
estimated expected value is obtained by summing over all
data in the group, one minus the estimated probability [24].
Finally, a x* test statistic is calculated based on observed and
expected frequencies in a g x 2 table, which follows a (g — 2)
degrees of freedom chi-squared distribution. If the P value is
high (>0.05), it means that that the model describes the data
well [26].

3.2.4. Test of Significance Using Log Likelihood Values. The
question whether a variable is significant or not should be
answered using the MLE method after the coefficients b, in
the model are inferred. In another words, does the model
that includes the predictor variables tell us more about the
response variable than a model which does not include
these variables? [24]. If the predicted values are better with
the independent variable contained in the model, then the
predictor variable in question is considered “significant.”

In contrast to the significance test in linear regression in
which ANOVA (analysis of variance) is commonly used in
the assessment of the significance of the coeflicients, in binary
logistic regression, a two-stage procedure is employed. First,
the G statistic is calculated based on the difference between
the log likelihood of the base model (in this case, there are
no predictors) and the model including the predictors. The
statistic is given by the following:

G=-2In Lbase model — (_2 In Lwith variable)

likelihood of base model )

=2 likelihood with variable |~

This G statistic follows a 2(DF) chi-square distribution,
where the DF denotes the degrees of freedom and is just
equal to the number of predictors [25]. If the probability of
[2(DF) > G] < 0.05, then it is convincing evidence that the
predictor included in the model significantly influences the
dependent variable. If there are more predictors, a significant
result suggests that at least one of the predictor variables is
significantly associated with the response variable.

Second, if the predictor variable in the first step has been
identified as significant, the significance of the individual
regression coefficient(s) will be estimated by calculating the
Wald test statistic, which is equal to the estimated regression
coeflicient b; divided by its standard error (SE), and compar-
ing with the standard normal z distribution [26].

3.3. Combination of the Two Methods. The principal com-
ponents logistic regression (PCLR) as an extension of the
principal component regression (PCR) model reduces the
dimension of a logistic regression model with continuous
covariates and provides an accurate estimation of the model
parameters while avoiding multicollinearity. Aguilera et al.
[19] proposed the PCLR model to address the collinearity in
the logistic model.

In preparation to define the PCLR model, the Logit model
is formulated in terms of all the PCs associated with the
observations matrix X of the continuous predictor variables.
Without loss of generality, the regressors are assumed to be
centered, and the probabilities of the Logit model can be
expressed in terms of all PCs as follows:

. exp {;80 + Z?:l 25:1 Zikvjkﬁj}
" l+exp {/30 + Zj?:l Py Ziijkﬁj}

_ exp {[30 + Z{Z:l Zika}
1 +exp {/30 +¥P Zik)’k}

(10)

zg (i =1,...,m k =1,..., p) is the element of the PCs
matrix Z = XV and y, = 25:1 vieBj(k=1,..., p). To express
the logistic model in matrix form, it can be given in terms of
the Logit transformations and the PCs as follows:

L=XB=2V'B=2y. 1)

Because the model employs all the PCs as covariates,
the parameters in the Logit model can be given as follows:
B = Vy. Then, based on the invariance property of maximum
likelihood estimates, the estimates of parameters can be
obtained as follows: B = V7, where the prediction of the
dependent variable is based on the equation Y = 7.

In practice, extensive collinearity exists in the explanatory
variables, influencing the construction of the model. To
address this collinearity in the estimation of the original
parameters, the PCLR model is introduced by taking the
covariates of the Logit model as a reduced set of PCs of the
original predictors.

Matrices Z and V can be split in boxes as follows:

L oz o 2y Z1s+l Z1p
7 - L ozy oo 2y Z2s+1 Z2p
1 21 T Zps Zys+1 e an

:(Z(S) |Z(r))’ (r=p-s),

(12)
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1 0 --- 0 0 0
V= 0 Vip ot Vi Vierl le
1 Vpl e VPS VPS+1 e VPP
= (V(S) |V(r) ).

(13)

Because Z = XV, we can obtain Z, = XV, and Z,, =
XV,;), and then the original parameters can be expressed as
follows:

B=Vy=ViyYs + VYo (14)

wherey = (y 7, Yol Ve 1) = Wylvie)

Taking (14) into (11), the Logit model containing all the
PCs can be decomposed as L = Zy = Z)Y5) + Z(,)V(»)- Then
the PCLR model containing s PCs (PCLR(s)) is obtained
by getting rid of the r last PCs in the last equation, so the
dependent variables can be obtained as follows:

Vi = i) + () (15)

where

S
o eXp {Vo + Zj:l Zij)’j} . Y (16)

e exp {Yo + X Zij)’j}

Based on the vector of Logit transformations L, =
(ll(s)’ ey ln(s)) with COmpOnentS li(s) = ln(ﬂl(s)/(l - T[i(s)))’ the
model can be expressed in matrix form as follows:

Ly = ZyYe = XVig¥e = XBs)- 17)

Therefore, a reconstruction of the original parameters can
be given by f,) = V|,)¥(s)- In the new model, the parameters
of the PCLR model just contain the first s PCs as covariates.
An estimation of the original parameters 3 can be obtained
using the MLE method as follows:

B = Vio¥es- (18)

The estimation 3 can be improved if there is multi-
collinearity in the original variables [19]. In other words,
PCLR employs the first s PCs except for the original predictor
variables to explain the binary dependent variable.

4. Back Propagation Neural Network

As a typical artificial intelligent model, the back propagation
(BP) neural network is one type of neural network with wide
application. In this paper, a BP neural network is introduced
to establish the classification model of the MetS.

4.1. The Structure of BP Neural Network. The topology of the
BP neural network construction is shown in Figure 1. This
BP neural network consists of three layers: the input layer to
accept the input data, the hidden layer, and the output layer to
output the result of the network. The number of nodes in the
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Input layer

X1 —>
X2 —>

x; —>

FIGURE L: The topology of BP neural network. Note: x;,i = 1,2,..., p
is the ith input variable of neural network, w;,,h = 1,2,...,q is the
weight from the ith node in the input layer to Ath node in the hidden
layer, wy;, j = 1 is the weight from the hth node in the hidden layer
to the ith node in the output layer, and d is the output of the neural
network.

input layer is equal to the number of explanatory variables.
In designing the hidden layer, the Hecht-Nelson method is
employed, and 2i + 1 was chosen as the number of nodes in
the hidden layer; i is equal to the number of input nodes in
input layer [27].

4.1.1. Data Standardization. Data standardization or normal-
ization is the first step to use the neural network. Because
differences in the dimensions and numeric range of the
predictor variables usually exist, the appropriate processing
should be carried out to transform the raw data before the
network computes. In this paper, a method of normalization
is adopted.

The input vectors and output vector are normalized
according to the formula below, and then the final input and
output data to train the BP neural network are obtained as
follows:

e x; —min (x;,...,x,) 19)
" max(x;...,x,) - min(x;...,x,)

where x; is the ith sample value of a variable.

4.1.2. Networks Training. The network should be trained
before being used to forecast the dependent variable value.
First, the networK’s structure should be initialized according
to the rule of the BP algorithm in Section 4.1.3. Then, the
data used to train the network is introduced into the network.
Finally, the BP algorithm is employed to obtain the final
parameters in the network. In the process of training the
network, the number of nodes in the hidden layer is not
easily determined; in the previous study, this was still an open
question. In this paper, a trial and error method is employed
to confirm the number of nodes.

4.1.3. Description of BP Algorithm. As a type of back prop-
agation learning algorithm, BP algorithm is used in the BP
neural network to train the network to perform efficiently
to calculate the final parameters. In practice, the algorithm
is departed into two parts: network training and network
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testing. The steps of BP algorithm are described as follows
[28].

Step I (initialization of the network). The parameters such as
the net structure, layer numbers, number of nodes in each
layer, input vector(X, D), weight w;, between the input layer
and the hidden layer, weight w;,; between the hidden layer
and the output layer, learning rate 7, momentum coeflicient
«, greatest acceptable MSE of the network eps, and other
parameters are initialized in this step.

Step 2. Select a pattern and pass forward to calculate the
hidden layer output as follows:

s

(wfhxf - af‘), OZ =f (netl,j). (20)

k _
net, =
i=1

nety, is denoted as the input of the hth node in the hidden
layer, Oy, is the output of the hth node in the hidden layer, g;
is the threshold from the ith node in the input layer to the hth
node in the hidden layer, f(x) = 1/(1+e™), ¥ means the kth
iteration, and p is the number of nodes in input layer.

Then the output layer’s result is calculated as follows:

q
net? = Z (ijOZ - bik) s O? =¢ (net’;)

=

—
—~
N
—_
~

net; is denoted as the input of the jth node in the output
layer. Here, j = 1, O; is the output of the jth node in the
output layer, b; is the threshold from the hth node in the
hidden layer to the jth node in the hidden layer, ¢(x) =
1/(1 + e7™) or ¢(x) = x, and q is the number of nodes in
hidden layer.

Step 3. Pass backward to calculate the neuron error begin-
ning from the output layer as follows:

8 = (d;-0))(0)),

Aw,]:j = 176§O£. (22)
9 is the error of the jth node in output layer and Awy,; is
the correction to wy,;.
Then, calculate the hidden layer’s error as follows:

& = <Z‘S§‘”£j> (o,’j), Al = ndixF,  (23)

j=1

where 6, is the error of the hth node in the output layer and
Awyy, is the correction to wy,;.

Step 4. Update the weights as follows:

ktl _ & k k-1
Wy = Wy + Awhj + ocAwhj s
(24)

k+1 k k k-1
wy, = wy, + Awy, + aAw;, .

TaBLE I: Calculation of the sensitivity and specificity for a specific
cut-off point of the predicted probability P.

Model result ) Reality
Metabolic No MetS Total cases
syndrome

Metabolic syndrome a (.tr‘ue b (false positive) a+b
positive)

No MetS ¢ (fa!se d (true negative) c+d
negative)

Total cases a+c b+d

Sensitivity = a/(a + ¢) = true positive rate.

Specificity = d/(b + d) = true negative rate.

1 — specificity = 1 — [d/(b + d)] = b/ (b + d) = false positive rate.

“a” cases have a P > cut-off point, which have an observed feather as well.
“b” cases havea P > cut-off point, although no feather was observed in reality.
“c” cases have a P < cut-off point, although feather was observed in reality.
“d” cases have a P < cut-off point, and for these cases no feather was
observed.

Step 5. Calculate the network’s output error as follows:

(/s -f)" (25)

o
Il
N =
M=

j=1

If this value is greater than eps, then go back to Step 2 or
the algorithm ends. After the above steps, the network will
be trained to arrive at the preset accuracy. Once tested and
assessed by a pile of patterns, the network can be in use [29].

5. The ROC Figure

The receiver operating characteristic (ROC) curve is com-
monly shown and discussed in reference handbooks on
logistic regression [23, 24] and in the study of medical
statistics. AUROC (the area under the ROC curve) provides a
measure of the model’s ability to correctly discriminate cases
into proper category. The ROC curve is drawn based on a
unique pair of values for sensitivity and specificity computed
from the predicted (modeled) probability (P) under a range
of cut-off points. For every cut-off point of the predicted
probability P, a table is obtained as described in Table 1.

A unique pair of values for sensitivity and specificity is
obtained for a series of cut-off points. Subsequently, the ROC
curve is obtained by plotting the sensitivity (true positive
rate) against one minus the specificity (the false positive rate)
[23, 24]. The best prediction method performance would
result in a point in the upper left corner of this plot, meaning
100% sensitivity and 100% specificity. If the ROC curve of a
model lies in the upper left-hand quadrant of the graph, then
the model has good discriminative ability, while if it lies along
the 45°diagonal, then the model’s discriminating ability is no
better than chance at will [26]. The AUROC is commonly
used for the validation of the predicted probabilities. To
interpret the AUROC, Hosmer and Lemeshow [24] propose
the general rule shown in Table 2.

The closer the curve is to the upper left corner of the
graph, the better the predictive ability of the model is [30].
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TABLE 2: The general assessment rule of AUROC.
Range of AUROC Discrimination ability
AUROC=0.5 No discrimination
0.7 <AUROC< 0.8 Acceptable
0.8 < AUROC < 0.9 Excellent
AUROC > 0.9 Outstanding

6. Statistical Analysis

Data were represented as the mean +SD and as percentages.
One-way ANOVA was applied to evaluate the comparability
of the training and validation data sets. The ANN and PCLR
models were performed with the probability of MetS. The area
under the receiver operating characteristic (ROC) curve was
applied to measure the discrimination of the models using the
validation data set. The PCLR model and ROC curve analysis
were constructed by SPSS 17.0 and MATLAB 2010b (Math-
Works Institute, USA). The ANN model was performed with
MATLAB 2010b (MathWorks Institute, USA). P values of less
than 0.05 were considered to be statistically significant.

7. Results

Two thousand and seventy-four individuals were included in
the training and validation sets (mean age: 46.93 years and
4706 years, resp.). The characteristics of all subjects are shown
in Table 3. The prevalence rate of MetS was 23.0% (n = 334)
and 20.0% (n = 124), respectively. Variables representing
gender, age, BMI, WC, HC, WHR, SBP, and DBP had no
significant differences between the training and validation
sets (P > 0.05), which means that the two sets of data are
comparable.

7.1 Classification Models and Predictive Performance. In this
paper, we compare two methods in the evaluation of the risk
of metabolic syndrome. The data flow in this paper is shown
in Figure 2.

We split the data into two parts: the training data (70% of
the data) and the testing data (30% of the data).

The response variable is MS, and the predictive variables
are Sex, Age, BMI, WC, HC, WH, SBP, and DBP.

711 Principal Component Logistic Regression Classification
Model. In this part, the data are organized in the form of
[Sex, Age, BMI, WC, HC, WHR, SBP, and DBP], where every
vector contains the sample data of the variable feather.

The training matrix contains the following data:
X = [SEX AGE BMI WC HC WHR SBP DBP],iyin,-

training —
The testing matrix contains the following data:
Xiesting = [SEX AGE BMI WC HC WHR SBP DBP]in,.

Step 1 (principal analysis). During the principal analysis, the
main principles are obtained as follows.

Abstract and Applied Analysis

The main principal in training data matrix is as follows:

PC, = -0.137Sex + 0.089Age + 0.231BMI + 0.251WC
+ 0.201HC + 0.181WHR + 0.175SBP + 0.165DBP
PC, = 0.194Sex + 0.439Age — 0.130BMI - 0.238WC
—0.077HC - 0.271WHR + 0.496SBP + 0.335DBP
PC; = 0.546Sex — 0.075Age + 0.338BMI + 0.048WC

+0.549HC - 0.436WHR - 0.090SBP — 0.146DBP.
(26)

The main principle in testing data matrix is as follows:

PC, = -0.142Sex + 0.093Age + 0.230BMI + 0.253WC
+0.192HC + 0.192WHR + 0.178SBP + 0.160DBP
PC, = 0.045Sex + 0.402Age — 0.192BMI - 0.255WC
—0.184HC - 0.199WHR + 0.494SBP + 0.394DBP
PC; = 0.543Sex + 0.241Age + 0.278BMI + 0.001WC

+0.513HC - 0.429WHR + 0.046SBP — 0.207DBP.
(27)

Step 2. Logistic regression based on the main principle in the
training data matrix and MS.

SPSS17.0 was used for the logistic regression with the
following result:

Logit (P) = —1.809 + 1.722PC, + 0.276PC, + 0.403PC;.
(28)

P represents the probability of MS, PC,, PC, and PC; to
be the main principle. Table 4 shows the significance of the
parameters in the logistic regression model.

From the table, every PC is significant to the response
variable. Model (28) is considered as the desired PCLR model.

Step 3. Predict MetS using the main principal components.

The main principal components in testing data matrix
were used as the input of model (28), and the predicted results
of MS were obtained. The ROC and discrimination result of
the PCLR model are shown in Figure 2.

71.2. Back Propagation Neural Network Classification Model.
Here, there are 8 input layer nodes because there are 8
explanatory variables (Sex, Age, BMI, WC, HC, WHR, SBP,
and DBP) as the input of the BP neural network. The number
of the hidden nodes of the BPANN is set in the range from
5 to 17 (2 times the number of input nodes). The number
of nodes in the output layer is set to be 1. The structure of
the BPANN we designed is shown in Figure 3. Here, MS is
referred to MetS.

Step 1 (data normalization). Here, the following formula is
used to normalize the data:
, x; —min (x;,...,x,)

.= . 29
x max (x;,...,x,) — min (x;...,x,) (29)
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TaBLE 3: Comparison of baseline characteristics between training and validation sets.

Variables Participants P value
Training set (N, = 1453) Validation set (N, = 621)
Sex 1.45 (0.4979) 1.42 (0.4937) 0.1514
Age 46.93 (12.2517) 47.06 (13.0362) 0.8294
BMI 23.78 (3.4992) 23.54 (3.4497) 0.1490
wC 84.69 (9.40180 84.55 (9.4059) 0.7627
HC 89.52 (6.2202) 89.30 (5.9638) 0.4457
WHR 0.95 (0.0726) 0.95 (0.0754) 0.8499
SBP 122.13 (20.0570) 121.57 (20.3817) 0.5663
DBP 78.39 (10.5885) 77.80 (10.9112) 0.2442
MS 0.23 (0.4231) 0.20 (0.3976) 0.0645
Flow chart in this paper

[ Loglstlc regression ]

PCLR

[ Principal analysis VI
/ PCL, PC2, PCS/

Depart the data
into two parts

BP neural network

Training data (70%) [ Training the BP neural
network

Trained BP

*Ib

? Testing data (30%/

/edlct result (PCLR /

Comparison of the results

)\

Predict using BP ]
et

/ Predict result (BV

0.8 1 AUC of el
I ANN = 0.9057 Pt
£ 061 AUC of T
§ 04 L PCLR = 0.88/6/9,/
3 e
02t -7
N =
0 0.2 0.4 0.6 0.8 1
1-specificity
—— ANN
—— PCLR
- - - Reference line
Variable PCLR model ANN model
Sensitivity 0.52892562 0.884297521
Specificity 0.922 0.836653386
PPV 0.621359223 0.566137566
NPV 0.88996139 0.967741935
AUC 0.8873 0.9043

FIGURE 2: Flow chart in this paper.
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TABLE 4: The significance of the parameters in the logistic regression
model.

Variable OR (95% CI) P value
PC, 5.596 (4.552-6.880) 0.0000
PC, 1.318 (1.147-1.514) 0.0000
PC, 1.497 (1.291-1.734) 0.0000

Step 2 (training the neural network). Here, the normalized
training data [SEX AGE BMI WC HC WHR SBP AND DBP]
(every node corresponds to one node in the input layer) and
training data MS are used as the output of the neural network
to train the network. The network with the largest sensitivity
was chosen as desired network in the case study, and the
number of hidden nodes in neural network was confirmed
to be 5.

Step 3 (predict MetS using predictive variables). The normal-
ized testing data [SEX AGE BMI WC HC WHR SBP AND
DBP] was used as the input of the desired network, and the
network was used to obtain the predicted result. The ROC
and discrimination result of the BP neural network model are
shown in Figure 2.

7.2. Comparison of the Two Methods. The ROC of the two
methods is shown in the Figure2; from the figure, the
AUROC of the BPANN is larger than PCLR. Thus, the
BPANN has a better predictive ability than PCLR. Sensitivity,
specificity, PPV, NPV and AUROC are depicted in Table 5.

From Table 5, BPANN has a higher predictive accuracy
than PCLR, with a larger sensitivity value (0.884297521) for
BPANN than for PCLR (0.52892562).

8. Discussion

Neural network models have been widely used in a variety
of clinical medicine settings, such as cancer patient sur-
vival estimation, medical prognosis, predicting mortality,
and evaluation of quality of life [31-34]. However, to our
knowledge, this is the first study to establish and evaluate an
effective quantitative model without biochemical parameters
to predict individuals at high risk of MetS using the ANN
model.

Neural networks have played a key role in medical
decision making because they are effective in multifactorial
analysis. They can consider many factors at the same time by
combining and recombining the factors in different ways to
provide appropriate decision supportive tools for prediction,
classification, function fitting, and diagnostic tasks [16].
Model sensitivity and specificity are quite important when
testing whether a model can accurately recognize positive
and negative outcomes [35]. A successful model has both
high sensitivity and high specificity [36]. In the current study;,
the results of the predictive performance showed that the
ANN model had a higher predictive rate for identifying true
positive or negative patients from undiagnosed MetS patients
because it had sufficient sensitivity (88.42%) and specificity
(83.66%) compared to the PCLR model (52.89% and 92.2%).

Abstract and Applied Analysis

Input layer

Hidden layer W

Sex —
Age —
BMI —

WC —

HC —
WHR —
SBP —
DBP —

\ﬁ —MS

FIGURE 3: The structure of the designed BPANN.

TABLE 5: The result comparison of the two models.

Variable ANN model PCLR model
Sensitivity 0.884297521 0.52892562
Speciﬁcity 0.836653386 0.922
PPV 0.566137566 0.621359223
NPV 0.967741935 0.88996139
AUC 0.9043 0.8873

The ROC (receiver operating characteristic) curve is a
valuable tool that plays a central role in the evaluation of
the performance of a classification rule, especially in medical
diagnoses [37]. The area under the ROC curve (AUC) can be
defined as the probability of the classifier ranking a randomly
chosen positive example higher than a randomly chosen
negative example, and higher AUC values can be interpreted
as having higher predictive accuracy [38, 39]. Our study used
AUC values for performance comparisons of two prediction
models. AUC values (AUC = 0.9043) obtained by the ANN
model for identifying MetS were superior to values obtained
by the PCLR model (AUC = 0.8873), which means that the
ANN model had a higher predictive accuracy compared to
the PCLR model.

Thus, the above comparisons confirm that the sensitivity,
specificity, and the area under the ROC curve of the ANN
model were significantly higher than those of the PCLR
model. We can infer that the ANN model outperformed the
PCLR model for screening those at high risk of MetS.

The practicality of the indicators is critical when evalu-
ating whether a model can accurately distinguish between
positive and negative results. Our study verified the feasibility
of the predictors of risk of MetS. The input variables con-
tained eight parameters significantly associated with MetS:
age, gender, BMI, WC, HC, WHR, SBP, and DBP. Compared
to Hirose et al. [14], all of the predictors without biochemical
parameters, such as insulin resistance index and serum
adiponectin, were more readily and quickly obtained in a
population through data that is routinely collected in general
practice or through epidemiology survey data.

MetS is thought to be a driver of the modern epidemics
of CVD and has become a significant public health chal-
lenge around the world. According to the IDF criteria, the
prevalence of MetS is 44% for men and 21% for women,
and the morbidity rates will likely increase as people age
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[40]. A systematic review and meta-analysis have confirmed
that the MetS is associated with a 2-fold increase in risk
of CVD, CVD mortality, myocardial infarction, and stroke,
and a 1.5-fold increase in risk of all-cause mortality [41].
Therefore, the need for alow cost, fast, and effective predictive
method for MetS is particularly urgent. Our ANN model
identified an important gap in the literature. We suggest that
healthcare workers use the ANN model as a forecasting tool
for identifying patients who are at high risk of metabolic
syndrome and cardiovascular events. There is an urgent need
to use the predictive expressions developed here; this model
will help physicians motivate individuals at annual health
check-ups to change their lifestyles and diets and implement
prevention and treatment strategies to reduce the prevalence
of the metabolic syndrome and its associated cardiovascular
risk.

9. Conclusions

The prevalence of MetS as a worldwide public health problem
with high morbidity, high mortality, and high cost highlights
the urgency of efforts to identify and modify risk factors for
MetS. Convincing evidence has shown that, in developing
countries, the incidences of metabolic syndrome are still
rising and China is no exception. For early prevention and
treatment to reduce the risk of CVD, stroke, myocardial
infarction, and other diseases, it is important to develop
effective public health strategies to quickly identify those at
high risk of MetS in underdeveloped countries and areas.
In this paper, we first use BPANN model and principal
component analysis to forecast the high risk populations
of MetS based on physical data without using biochemical
parameters. From the experiment, we found that the principal
component analysis is more scientific than the traditional
logistic regression analysis, and the BPANN model is an
effective classification approach for identifying those at high
risk of metabolic syndrome; this system could help to reduce
the social and medical burden of MetS in China.

Our Contribution. This is the first introduction of the BP
artificial neural network in the study of MetS. To solve the
commonly existing multicollinearity in the medical statistical
data, the principal component analysis was employed to
estimate the statistical model with satisfactory results.

10. Limitations

Although we took the lead in research and development of the
ANN model without biochemical indicators for predicting
an individual’s risk of metabolic syndrome, study limitations
should be considered. The main limitation to our study is
that we did not include lifestyle (smoking, drinking, physical
activity status, and fat intake); this is because of the lack of
this clinical information, and we believe these data could be
easily incorporated once available. Additionally, evaluations
of the different models were based on a cross-sectional survey
without long-term follow-up data.

The subjects, who were all from a Lanzhou electric
power company, were limited ethnically and geographically.

1

In spite of this, the ANN model based on a large population-
based study was reliable and effective to screen undiagnosed
metabolic syndrome patients.
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