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We consider a kind of support vector machines regression (SVMR) algorithms associated with 𝑙
𝑞
(1 ≤ 𝑞 < ∞) coefficient-based

regularization and data-dependent hypothesis space. Compared with former literature, we provide here a simpler convergence
analysis for those algorithms. The novelty of our analysis lies in the estimation of the hypothesis error, which is implemented by
setting a stepping stone between the coefficient regularized SVMR and the classical SVMR. An explicit learning rate is then derived
under very mild conditions.

1. Introduction

Recall the regression setting in learning theory, and let𝑋 be a
compact subset ofR𝑛, 𝑌 ⊂ [−𝑀,𝑀], for some𝑀 > 0. 𝜌 is an
unknown probability distribution endowed on 𝑍 := 𝑋 × 𝑌,
and z := {𝑧𝑖}

𝑚

𝑖=1
= {(𝑥𝑖, 𝑦𝑖)}

𝑚

𝑖=1
∈ 𝑍

𝑚 is a set of samples
independently drawn according to 𝜌. Given samples z, the
regression problem aims to find a function 𝑓z : 𝑋 → R,
such that 𝑓z(𝑥) is a satisfactory estimate of output 𝑦 when a
new input 𝑥 is given.

Support vector machines regression (SVMR) is a kind
of kernel-based regression algorithms with the 𝜀-insensitive
loss defined by 𝑉(𝑦, 𝑡) = max{0, |𝑦 − 𝑡| − 𝜀} for some
fixed 𝜀 ≥ 0. A function 𝐾 : 𝑋 × 𝑋 → R is called a
Mercer kernel if it is continuous, symmetric, and positive
semidefinite; that is, for any finite set of distinct points
{𝑥1, 𝑥2, . . . , 𝑥𝑙} ⊂ 𝑋, the matrix (𝐾(𝑥𝑖, 𝑥𝑗))

𝑙

𝑖,𝑗=1
is positive

semidefinite. The reproducing kernel Hilbert space (RKHS)
H𝐾 associated with a Mercer kernel 𝐾 is defined (see [1]) to
be the completion of the linear span of the set of functions
{𝐾𝑥 := 𝐾(𝑥, ⋅) : 𝑥 ∈ 𝑋} with the inner product ⟨⋅, ⋅⟩𝐾
satisfying

⟨𝐾𝑥, 𝐾𝑢⟩𝐾
= 𝐾 (𝑥, 𝑢) , (1)

and the reproducing property is given by

⟨𝐾𝑥, 𝑓⟩
𝐾

= 𝑓 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑓 ∈ H𝐾. (2)

Let

𝜅 := sup
𝑥∈𝑋

√𝐾 (𝑥, 𝑥) < ∞, (3)

and then the reproducing property tells us the following:
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∞ ≤ 𝜅
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐾, ∀𝑓 ∈ H𝐾. (4)

The classical SVMR proposed by Vapnik and his cowork-
ers [2, 3] is given by the following regularization scheme:

𝑓z,𝜇 := arg min
𝑓∈H𝐾

{Ez (𝑓) + 𝜇
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐾
} , (5)

whereEz(𝑓) := (1/𝑚)∑
𝑚

𝑖=1
𝑉(𝑦𝑖, 𝑓(𝑥𝑖)) is the empirical error

with respect to z and 𝜇 is a regularization parameter. It is
well known, see for example, [4, Proposition 6.21], that the
solution is of the form

𝑓z,𝜇 =

𝑚

∑

𝑖=1

𝛼̃𝑖𝐾(𝑥𝑖, ⋅) , (6)
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where the coefficients 𝛼̃𝑖 are a solution of the optimization
problem

maximize
𝑚

∑

𝑖=1

𝛼𝑖𝑦𝑖 − 𝜀

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨 −
1

2

𝑚

∑

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

subject to 󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨 ≤
1

2𝜇𝑚
∀𝑖 = 1, 2, . . . , 𝑚.

(7)

Remark 1. The equality constraint ∑𝑚

𝑖=1
𝛼𝑖 = 0 needed in [4,

Proposition 6.21] is superfluous since we do not include an
offset term 𝑏 in the primal problem (5).

The mathematical analysis of algorithm (5) has been well
understood with various techniques in extensive literature;
see, for example, [5–7]. In this paper, we are interested in
a different regularized SVMR algorithm. In our setting, the
regularizer is not the RKHS norm but an 𝑙

𝑞-norm of the
coefficients in the kernel ensembles.

Definition 2. For 1 ≤ 𝑞 < ∞, let

H𝐾,z := {

𝑚

∑

𝑖=1

𝛼𝑖𝐾𝑥𝑖
: 𝛼𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑚} ,

Ωz (𝑓) = inf {
𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨
𝑞
: 𝑓 =

𝑚

∑

𝑖=1

𝛼𝑖𝐾𝑥𝑖
} .

(8)

Then, the SVMR with 𝑙
𝑞-coefficient regularization learning

algorithm that we study in this paper takes the form

𝑓z,𝜆 := arg min
𝑓∈H𝐾,z

{Ez (𝑓) + 𝜆Ωz (𝑓)} . (9)

Remark 3. The regularization parameter 𝜆 in (9) may be
different from 𝜇 in scheme (5), but a relationship between 𝜆

and 𝜇 will be given in Section 3 as we derive the learning rate
of algorithm (9).

Learning with coefficient-based regularization has
attracted a considerable amount of attention in recent years,
on both theoretical analysis and applications. It was pointed
out in [8] that by taking 𝑞 < 2, and especially for the limit
value 𝑞 = 1, the proposed minimization procedure in (9)
can promote the sparsity of the solution; that is, it tends
to result in a solution with a few nonzero coefficients [9].
This phenomenon has been also observed in the LASSO
algorithm [10] and the literature of compressed sensing [11].

However, it should be noticed that there are essential
differences between the learning schemes (9) and (5). On
one hand, the regularizer Ωz(𝑓) is not a Hilbert space
norm, which causes a technical difficulty for mathematical
analysis. On the other hand, both hypothesis spaceH𝐾,z and
regularizer Ωz(𝑓) depend on samples z, and this increases
the flexibility and adaptivity of algorithm (9) but causes the
standard error analysis methods for scheme (5) which are
not appropriate to scheme (9) any longer. To overcome these

difficulties, [12] introduces a Banach spaceH of all functions
of the form

𝑓 (𝑥) =

∞

∑

𝑗=1

𝛼𝑗𝐾(𝑢𝑗, 𝑥) , 𝑢𝑗 ∈ 𝑋, (10)

with norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = inf

{

{

{

∞

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
: 𝑓 =

∞

∑

𝑗=1

𝛼𝑗𝐾𝑢𝑗

}

}

}

. (11)

An error analysis framework is established and then a series
of papers start to investigate the performance of kernel
learning scheme with coefficient regularization (see [13–16]).
In those literatures, an 𝐿𝜏 condition imposed on themarginal
distribution of 𝜌 on𝑋 plays a critical role in the error analysis.
A probability measure 𝜌𝑋 on𝑋 is said to satisfy 𝐿𝜏 condition
if there exist some 𝜏 > 0 and 𝑐𝜏 > 0 such that

𝜌𝑋 ({𝑢 ∈ 𝑋 : |𝑢 − 𝑥| < 𝑟}) ≥ 𝑐𝜏𝑟
𝜏
, ∀𝑥 ∈ 𝑋, 0 < 𝑟 ≤ 1.

(12)

In general, the index 𝜏 is hard to estimate. If𝑋 satisfies some
regularity conditions (such as an interior cone condition)
and 𝜌𝑋 is uniform distribution on 𝑋, then (12) holds with
𝜏 = 𝑛. It leads to a low convergence rate and depends on 𝑛,
the dimension of the input space 𝑋, which is often large in
learning problem.

In this paper, we succeed to remove 𝐿𝜏 condition (12) and
provide a simpler error analysis for scheme (9). The novelty
of our analysis is a stepping stone technique applied to bound
the hypothesis error. As a result, we derive an explicit learning
rate of (9) under very mild conditions.

2. Error Decomposition and Hypothesis Error

The main purpose of this paper is to provide a convergence
analysis of the learning scheme (9). With respect to the 𝜀-
insensitive loss 𝑉, the prediction ability of a measurable
function 𝑓 is measured by the following generalization error:

E (𝑓) := ∫
𝑍

𝑉 (𝑦, 𝑓 (𝑥)) 𝑑𝜌

= ∫
𝑋

∫
𝑌

𝑉 (𝑦, 𝑓 (𝑥)) 𝑑𝜌 (𝑦 | 𝑥) 𝑑𝜌𝑋 (𝑥) ,

(13)

where 𝜌𝑋 is the marginal distribution on𝑋 and 𝜌(⋅ | 𝑥) is the
conditional probability measure at 𝑥 induced by 𝜌. Let 𝑓∗ be
aminimizer ofE(𝑓) among all measurable functions on𝑋. It
was proved in [6] that |𝑓∗

(𝑥)| ≤ 𝑀+𝜀 for almost every𝑥 ∈ 𝑋.
To make full use of the feature of the target function 𝑓

∗, one
can introduce a projection operator, which was extensively
used to the error analysis of learning algorithm; see, for
example, [17, 18].

Definition 4. The projection operator 𝜋 = 𝜋𝑀+𝜀 is defined on
the space of measurable functions 𝑓 : 𝑋 → R as

𝜋 (𝑓) (𝑥) =

{{

{{

{

𝑀 + 𝜀, if 𝑓 (𝑥) > 𝑀 + 𝜀,

−𝑀 − 𝜀, if 𝑓 (𝑥) < −𝑀 − 𝜀,

𝑓 (𝑥) , if − 𝑀 − 𝜀 ≤ 𝑓 (𝑥) ≤ 𝑀 + 𝜀.

(14)
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It is easy to see that 𝑉(𝑦, 𝜋(𝑓)(𝑥)) ≤ 𝑉(𝑦, 𝑓(𝑥)), so

E (𝜋 (𝑓)) ≤ E (𝑓) , Ez (𝜋 (𝑓)) ≤ Ez (𝑓) . (15)

We thus take 𝜋(𝑓z,𝜆) instead of 𝑓z,𝜆 as our empirical target
function and analyze the related learning rates.

2.1. Error Decomposition. Theerror decomposition is a useful
approach to the error analysis for the regularized learning
schemes. With sample-dependent hypothesis space H𝐾,z,
[12] proposes a modified error decomposition with an extra
hypothesis error term, by introducing a regularization func-
tion as

𝑓𝜇 := arg min
𝑓∈H𝐾

{E (𝑓) + 𝜇
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐾
} , 𝜇 > 0. (16)

We can conduct the error decomposition for scheme (9) with
the same underlying idea of [12].

Proposition 5. Let 𝑓z,𝜆, 𝑓𝜇 be defined in (9) and (16). Then,

E (𝜋 (𝑓z,𝜆)) −E (𝑓
∗
) ≤ 𝑆 (z, 𝜆, 𝜇) + 𝑃 (z, 𝜆, 𝜇) + 𝐷 (𝜇) .

(17)

Here,

𝑆 (z, 𝜆, 𝜇) := {E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))}

+ {Ez (𝑓𝜇) −E (𝑓𝜇)} ,

𝑃 (z, 𝜆, 𝜇) := {Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆)}

− {Ez (𝑓𝜇) + 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑓𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
} ,

𝐷 (𝜇) := E (𝑓𝜇) −E (𝑓
∗
) + 𝜇

󵄩󵄩󵄩󵄩󵄩
𝑓𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾

= inf
𝑓∈H𝐾

{E (𝑓) −E (𝑓
∗
) + 𝜇

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐾
} .

(18)

Proof. A direct computation shows that

E (𝜋 (𝑓z,𝜆)) −E (𝑓
∗
)

≤ E (𝜋 (𝑓z,𝜆)) −E (𝑓
∗
) + 𝜆Ωz (𝑓z,𝜆)

= {E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))}

+ {Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆)}

+ {Ez (𝑓𝜇) −E (𝑓𝜇)} − {Ez (𝑓𝜇) + 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑓𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
}

+ {E (𝑓𝜇) −E (𝑓
∗
) + 𝜇

󵄩󵄩󵄩󵄩󵄩
𝑓𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
}

= 𝑆 (z, 𝜆, 𝜇) + 𝑃 (z, 𝜆, 𝜇) + 𝐷 (𝜇) .

(19)

This proves the proposition.

𝑆(z, 𝜆, 𝜇) is usually called the sample error; it will be
estimated by some concentration inequality in the next
section. 𝐷(𝜇) is independent of the sample and is often

called the approximation error, the decay of 𝐷(𝜇), as 𝜇 →

0 characterizes the approximation ability of H𝐾. We will
assume that, for some 0 < 𝛽 ≤ 1 and 𝑐𝛽 > 0,

𝐷(𝜇) ≤ 𝑐𝛽𝜇
𝛽
, ∀𝜇 > 0. (20)

Remark 6. SinceE(𝑓)−E(𝑓
∗
) ≤ ‖𝑓 − 𝑓

∗
‖
𝐿1
𝜌𝑋

,𝐷(𝜇) concerns
the approximation of 𝑓∗ in 𝐿

1

𝜌𝑋
by functions from H𝐾. In

fact, (20) can be satisfied when 𝑓
∗ is in some interpolation

spaces of the pair (𝐿1

𝜌𝑋
,H𝐾) (see, e.g., [19, 20]).

𝑃(z, 𝜆, 𝜇) is called hypothesis error since the regulariza-
tion function𝑓𝜇 maynot be in the hypothesis spaceH𝐾,z.The
major contribution we make in this paper is to give a simpler
estimation of 𝑃(z, 𝜆, 𝜇) by a stepping stone between 𝑓z,𝜆 and
𝑓z,𝜇.

2.2. Hypothesis Error Estimate. The solution 𝑓z,𝜆 of scheme
(9) has a representation similar to 𝑓z,𝜇 in scheme (5); it is
reasonable to expect close relations between the two schemes.
So, the latter may play roles in the analysis of the former.

Theorem 7. Let 𝜆, 𝜇 > 0, 1 ≤ 𝑞 < ∞, and then

𝑃 (z, 𝜆, 𝜇) ≤
𝑚𝜆

(2𝑚𝜇)
𝑞 . (21)

Proof. Let 𝑓z,𝜇 = ∑
𝑚

𝑖=1
𝛼̃𝑖𝐾𝑥𝑖

be the solution to (5). By (7), we
have

Ωz (𝑓z,𝜇) ≤

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼̃𝑖

󵄨󵄨󵄨󵄨
𝑞
≤

𝑚

(2𝑚𝜇)
𝑞 . (22)

Noting that 𝑓z,𝜇 ∈ H𝐾,z, it can be derived from (15), (9), and
(22) that

Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆) ≤ Ez (𝑓z,𝜆) + 𝜆Ωz (𝑓z,𝜆)

≤ Ez (𝑓z,𝜇) + 𝜆Ωz (𝑓z,𝜇)

≤ Ez (𝑓z,𝜇) +
𝑚𝜆

(2𝑚𝜇)
𝑞

≤ Ez (𝑓z,𝜇) + 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑓z,𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
+

𝑚𝜆

(2𝑚𝜇)
𝑞 .

(23)

By taking 𝑓 = 𝑓𝜇 in (5), one can get

Ez (𝑓z,𝜇) + 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑓z,𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
≤ Ez (𝑓𝜇) + 𝜇

󵄩󵄩󵄩󵄩󵄩
𝑓𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
. (24)

Putting (24) into (23), one then has

Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆) ≤ Ez (𝑓𝜇) + 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑓𝜇

󵄩󵄩󵄩󵄩󵄩

2

𝐾
+

𝑚𝜆

(2𝑚𝜇)
𝑞 .

(25)

This proves the theorem.



4 Abstract and Applied Analysis

Remark 8. The stepping stone method was first introduced
in [21] to the error analysis of linear programming SVM
classifiers.This techniquewas also used in [22, 23] to study 𝑙𝑞-
coefficient regularized least square regression with 𝑞 ∈ [1, 2].
While, in this paper, we extend the index 𝑞 to a large range
[1, +∞), it will be helpful to improve the understanding of
those coefficient-based regularized algorithms.

Remark 9. Theorem 7 presents a simpler approach for esti-
mating the hypothesis error. Different from the former liter-
ature (see, e.g., [13–16]), we conduct the estimation without
imposing any assumptions on the input space 𝑋, kernel 𝐾,
and marginal distribution 𝜌𝑋.

3. Sample Error and Learning Rate

This section is devoted to estimating the sample error
𝑆(z, 𝜆, 𝜇) and deriving the learning rate of algorithm (9).

3.1. Sample Error Estimate. We will adopt some results from
the literature to estimate the sample error. To this end, we
need some definitions and assumptions. For a measurable
function 𝑓 : 𝑍 → R, denote E𝑓 := ∫

𝑍
𝑓(𝑧)𝑑𝜌.

Definition 10. A variance power 𝑠 of the pair (𝑉, 𝜌) is a
number in [0, 1] such that for any 𝑓 : 𝑋 → [−𝑀− 𝜀,𝑀 + 𝜀],
there exists some constant 𝑐𝑠 > 0 satisfying

E[𝑉 (𝑦, 𝑓 (𝑥)) − 𝑉 (𝑦, 𝑓
∗
(𝑥))]

2
≤ 𝑐𝑠[E (𝑓) −E (𝑓

∗
)]

𝑠
.

(26)

Equation (26) is usually called a variance-expectation
condition for the pair (𝑉, 𝜌). It is easy to see that (26) always
holds for 𝑠 = 0 and 𝑐𝑠 = 4(𝑀 + 𝜀)

2. When 𝜀 = 0, the target
function 𝑓

∗ becomes the median 𝑓𝜌,1/2 of 𝜌 (see, [6]). In this
case, as it points out in [24], if 𝜌 has a median 𝑓𝜌,1/2 of 𝑎-
average type 𝑏 for some 𝑎 ∈ (0,∞] and 𝑏 ∈ [1,∞), then (26)
can be satisfied with 𝑠 = min{2/𝑏, 𝑎/(𝑎 + 1)} ∈ (0, 1]. Here,
we say 𝜌 has a median 𝑓𝜌,1/2 of 𝑎-average type 𝑏 if, for every
𝑥 ∈ 𝑋, there exist constants 𝑐𝑥 ∈ (0, 2] and 𝑑𝑥 > 0 such that,
for all V ∈ [0, 𝑐𝑥],

𝜌 ({𝑦 ∈ (𝑓𝜌,1/2 (𝑥) − V, 𝑓𝜌,1/2 (𝑥)) | 𝑥}) ≥ 𝑑𝑥V
𝑏−1

,

𝜌 ({𝑦 ∈ (𝑓𝜌,1/2 (𝑥) , 𝑓𝜌,1/2 (𝑥) + V) | 𝑥}) ≥ 𝑑𝑥V
𝑏−1

,

(27)

and that the function on 𝑋 taking value (𝑑𝑥𝑐
𝑏−1

𝑥
)
−1

at 𝑥 ∈ 𝑋

lies in 𝐿
𝑎

𝜌𝑋
. But for 𝜀 > 0, as we know, it is still open to find a

meaningful condition for 𝜌 to guarantee that (26) holds with
a positive index 𝑠 > 0.

Definition 11. Let F be a class of functions on 𝑍 and let z =

{𝑧𝑖}
𝑚

𝑖=1
∈ 𝑍

𝑚. The 𝑙
2-metric 𝑑2,z is defined onF by

𝑑2,z (𝑓, 𝑔) := {
1

𝑚

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑧𝑖) − 𝑔 (𝑧𝑖)
󵄨󵄨󵄨󵄨
2
}

1/2

, ∀𝑓, 𝑔 ∈ F.

(28)

For every 𝜂 > 0, the covering number of F with respect to
𝑑2,z is

N2,z (F, 𝜂) := inf {𝑙 ∈ N : ∃{𝑓𝑖}
𝑙

𝑖=1
such that

F =

𝑙

⋃

𝑖=1

{𝑓 ∈ F : 𝑑2,z (𝑓, 𝑓𝑖) ≤ 𝜂}} .

(29)

LetB𝑅 := {𝑓 ∈ H𝐾 : ‖𝑓‖
𝐾

≤ 𝑅}. The 𝑙
2-empirical covering

number of the unit ballB1 is defined as

N (B1, 𝜂) := sup
𝑚∈N

sup
x∈𝑋𝑚

N2,x (B1, 𝜂) . (30)

We assume thatH𝐾 satisfies the following capacity assump-
tion.

There exists an exponent 𝑝 with 0 < 𝑝 < 2 and a constant
𝑐𝑝 > 0 such that

logN (B1, 𝜂) ≤ 𝑐𝑝𝜂
−𝑝

, ∀𝜂 > 0. (31)

We now set out to bound the sample error. Write 𝑆(z, 𝜆, 𝜇) as

𝑆 (z, 𝜆, 𝜇) = {[Ez (𝑓𝜇) −Ez (𝑓
∗
)] − [E (𝑓𝜇) −E (𝑓

∗
)]}

+ {[E (𝜋 (𝑓z,𝜆)) −E (𝑓
∗
)]

− [Ez (𝜋 (𝑓z,𝜆)) −Ez (𝑓
∗
)]}

=: 𝑆1 (z, 𝜇) + 𝑆2 (z, 𝜆) .
(32)

Applying [6, Proposition 4.1], we yield the following estima-
tion for 𝑆1(z, 𝜇).

Lemma 12. For any 𝑡 > 0, under the assumption (26), with
confidence 1 − 2𝑒

−𝑡, one has

𝑆1 (z, 𝜇) ≤
7𝜅𝑡

6𝑚
√

𝐷 (𝜇)

𝜇
+

8 (𝑀 + 𝜀) 𝑡

3𝑚

+ (
2𝑐𝑠𝑡

𝑚
)

1/(2−𝑠)

+ 𝐷 (𝜇) .

(33)

The estimation for 𝑆2(z, 𝜆) is based on the following
concentration inequality which can be found in [25].

Lemma 13. LetF be a set of measurable functions on 𝑍, and
let 𝐵, 𝑐 > 0, and 𝑠 ∈ [0, 1] be constants such that each 𝑓 ∈ F

satisfies ‖𝑓‖
∞

≤ 𝐵 and E(𝑓2
) ≤ 𝑐(E𝑓)

𝑠. If, for some𝐴 > 0 and
𝑝 ∈ (0, 2),

sup
𝑚∈N

sup
z∈𝑍𝑚

logN2,z (F, 𝜂) ≤ 𝐴𝜂
−𝑝

, ∀𝜂 > 0, (34)
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then there exists a constant 𝑐󸀠
𝑝
depending only on 𝑝 such that

for any 𝑡 > 0, with probability 1 − 𝑒
−𝑡, there holds

E𝑓 −
1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑧𝑖) ≤
1

2
𝜃
1−𝑠

(E𝑓)
𝑠
+ 𝑐

󸀠

𝑝
𝜃

+ 2(
𝑐𝑡

𝑚
)

1/(2−𝑠)

+
18𝐵𝑡

𝑚
, ∀𝑓 ∈ F,

(35)

where 𝜃 = max{𝑐(2−𝑝)/(4−2𝑠+𝑝𝑠)
(𝐴/𝑚)

2/(4−2𝑠+𝑝𝑠)
, 𝐵

(2−𝑝)/(2+𝑝)
(𝐴/

𝑚)
2/(2+𝑝)

}.

We may apply Lemma 13 to a set of functions F𝑅 with
𝑅 > 0, where

F𝑅 := {𝑉 (𝑦, 𝜋 (𝑓) (𝑥)) − 𝑉 (𝑦, 𝑓
∗
(𝑥)) : 𝑓 ∈ B𝑅} . (36)

Proposition 14. If assumptions (26) and (31) are satisfied,
then for any 𝑡 > 0, with confidence 1 − 𝑒

−𝑡, there holds

[E (𝜋 (𝑓)) −E (𝑓
∗
)] − [Ez (𝜋 (𝑓)) −Ez (𝑓

∗
)]

≤
1

2
[E (𝜋 (𝑓)) −E (𝑓

∗
)] + (

1

2
+ 𝑐

󸀠

𝑝
) 𝜃𝑅

+ 2(
𝑐𝑠𝑡

𝑚
)

1/(2−𝑠)

+
36 (𝑀 + 𝜀) 𝑡

𝑚

(37)

for all 𝑓 ∈ B𝑅, where

𝜃𝑅 = max
{

{

{

𝑐
(2−𝑝)/(4−2𝑠+𝑝𝑠)

𝑠
(
𝑐𝑝𝑅

𝑝

𝑚
)

2/(4−2𝑠+𝑝𝑠)

,

[2 (𝑀 + 𝜀)]
(2−𝑝)/(2+𝑝)

(
𝑐𝑝𝑅

𝑝

𝑚
)

2/(2+𝑝)
}

}

}

.

(38)

Proof. Each function 𝑔 ∈ F𝑅 has a form

𝑔 (𝑧) = 𝑉 (𝑦, 𝜋 (𝑓) (𝑥)) − 𝑉 (𝑦, 𝑓
∗
(𝑥)) (39)

with some 𝑓 ∈ B𝑅. We can easily see that ‖𝑔‖
∞

≤ 2(𝑀 + 𝜀)

and

E𝑔 = E (𝜋 (𝑓)) −E (𝑓
∗
) ,

1

𝑚

𝑚

∑

𝑖=1

𝑔 (𝑧𝑖) = Ez (𝜋 (𝑓)) −Ez (𝑓
∗
) .

(40)

The assumption (26) tells us that E(𝑔2
) ≤ 𝑐(E𝑔)

𝑠 with 𝑐 = 𝑐𝑠.
Moreover, for any 𝑓1, 𝑓2 ∈ B𝑅, and (𝑥, 𝑦) ∈ 𝑍,

󵄨󵄨󵄨󵄨𝑉 (𝑦, 𝜋 (𝑓1) (𝑥)) − 𝑉 (𝑦, 𝜋 (𝑓2) (𝑥))
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜋 (𝑓1) (𝑥) − 𝜋 (𝑓2) (𝑥)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑓1 (𝑥) − 𝑓2 (𝑥)

󵄨󵄨󵄨󵄨 ,

(41)

we get

N2,z (F𝑅, 𝜂) ≤ N2,x (B𝑅, 𝜂) = N2,x (B1,
𝜂

𝑅
) . (42)

This together with (31) implies

sup
𝑚∈N

sup
z∈𝑍𝑚

logN2,z (F𝑅, 𝜂) ≤ logN(B1,
𝜂

𝑅
) ≤ 𝑐𝑝𝑅

𝑝
𝜂
−𝑝

.

(43)

Hence, all the conditions in Lemma 13 hold, and we know
that, for any 𝑡 > 0, with confidence 1 − 𝑒

−𝑡, there holds, for
every 𝑓 ∈ B𝑅,

[E (𝜋 (𝑓)) −E (𝑓
∗
)] − [Ez (𝜋 (𝑓)) −Ez (𝑓

∗
)]

≤
1

2
𝜃
1−𝑠

𝑅
[E (𝜋 (𝑓)) −E (𝑓

∗
)]

𝑠
+ 𝑐

󸀠

𝑝
𝜃𝑅

+ 2(
𝑐𝑠𝑡

𝑚
)

1/(2−𝑠)

+
36 (𝑀 + 𝜀) 𝑡

𝑚
.

(44)

Here,

𝜃𝑅 = max
{

{

{

𝑐
(2−𝑝)/(4−2𝑠+𝑝𝑠)

𝑠
(
𝑐𝑝𝑅

𝑝

𝑚
)

2/(4−2𝑠+𝑝𝑠)

,

[2 (𝑀 + 𝜀)]
(2−𝑝)/(2+𝑝)

(
𝑐𝑝𝑅

𝑝

𝑚
)

2/(2+𝑝)
}

}

}

.

(45)

Recall an elementary inequality

1

𝜄
+

1

]
= 1, with 𝜄, ] > 1

󳨐⇒ 𝜓𝜔 ≤
1

𝜄
𝜓

𝜄
+

1

]
𝜔
]
, ∀𝜓, 𝜔 > 0.

(46)

Applying it with 𝜓 = [E(𝜋(𝑓)) − E(𝑓
∗
)]

𝑠, 𝜔 = 𝜃
1−𝑠

𝑅
, 𝜄 = 1/𝑠

to the first term of (44), we can derive the conclusion.

It remains to find a ball containing 𝑓z,𝜆 for all z ∈ 𝑍
𝑚.

Lemma 15. Let 1 ≤ 𝑞 < ∞, 𝑓z,𝜆 be defined by (9). Then, for
any z ∈ 𝑍

𝑚, one has

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩𝐾

≤ 𝜅𝑚
1−(1/𝑞)

(
𝑀

𝜆
)

1/𝑞

. (47)

Proof. For any 𝜁 > 0, there exists {𝛼𝑖}
𝑚

𝑖=1
∈ R𝑚, such that

𝑓z,𝜆 = ∑
𝑚

𝑖=1
𝛼𝑖𝐾𝑥𝑖

and

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨
𝑞
≤ Ωz (𝑓z,𝜆) + 𝜁. (48)

Taking 𝑓 = 0 in (9), we can see that

𝜆Ωz (𝑓z,𝜆) ≤ Ez (𝑓z,𝜆) + 𝜆Ωz (𝑓z,𝜆) ≤ Ez (0) ≤ 𝑀. (49)

It follows that
𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨
𝑞
≤

𝑀

𝜆
+ 𝜁. (50)
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When 𝑞 > 1, by the Hölder inequality, we can see that

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩𝐾

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑖=1

𝛼𝑖𝐾𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐾

≤ 𝜅

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨

≤ 𝜅𝑚
1−(1/𝑞)

{

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖

󵄨󵄨󵄨󵄨
𝑞
}

1/𝑞

≤ 𝜅𝑚
1−(1/𝑞)

{
𝑀

𝜆
+ 𝜁}

1/𝑞

.

(51)

It is easy to check that (51) still holds for 𝑞 = 1. Let 𝜁 → 0;
we then get the assertion.

From Lemma 15 and Proposition 14, we can get the
following.

Corollary 16. If assumptions (26) and (31) hold, then, for any
𝑡 > 1, with confidence 1 − 𝑒

−𝑡, there holds

𝑆2 (z, 𝜆) ≤
1

2
[E (𝜋 (𝑓z,𝜆)) −E (𝑓

∗
)]

+ 𝐶1𝑡 {(𝑚
𝑝−(𝑝/𝑞)−1

𝜆
−𝑝/𝑞

)
2/(4−2𝑠+𝑝𝑠)

+(𝑚
𝑝−(𝑝/𝑞)−1

𝜆
−𝑝/𝑞

)
2/(2+𝑝)

+ 𝑚
1/(𝑠−2)

} ,

(52)

where

𝐶1 := (
1

2
+ 𝑐

󸀠

𝑝
){𝑐

(2−𝑝)/(4−2𝑠+𝑝𝑠)

𝑠
(𝑐𝑝𝜅

𝑝
𝑀

𝑝/𝑞
)
2/(4−2𝑠+𝑝𝑠)

+[2 (𝑀 + 𝜀)]
(2−𝑝)/(2+𝑝)

(𝑐𝑝𝜅
𝑝
𝑀

𝑝/𝑞
)
2/(2+𝑝)

}

+ 2𝑐
1/(2−𝑠)

𝑠
+ 36 (𝑀 + 𝜀) .

(53)

3.2. Deriving Learning Rates. Combining the estimation in
Sections 2.2 and 3.1, we can derive an explicit learning rate for
scheme (9) by suitably selecting the regularization parameters
𝜆 and 𝜇.

Theorem 17. Suppose that assumptions (20), (26), and (31)
are satisfied, for any 0 < 𝛿 < 1, by taking 𝜆 = 𝑚

𝑞−1
𝜇

𝛽+𝑞,
𝜇 = (1/𝑚)

min{2/(1+𝛽),2𝑞/((4−2𝑠+𝑝𝑠)𝛽𝑞+2𝑝(𝛽+𝑞))}, and we have, with
confidence 1 − 𝛿,

E (𝜋 (𝑓z,𝜆)) −E (𝑓
∗
)

≤ 𝐶 log 3

𝛿
(

1

𝑚
)

min{2𝛽/(1+𝛽),2𝑞𝛽/((4−2𝑠+𝑝𝑠)𝛽𝑞+2𝑝(𝛽+𝑞))}

,

(54)

where 𝐶 is a constant independent of 𝑚 or 𝛿.

Proof. Putting Theorem 7, Lemma 12, Corollary 16, and
assumption (20) into Proposition 5, by taking 𝜆 = 𝑚

𝑞−1
𝜇

𝛽+𝑞,
we find that, for any 𝑡 > 1, with confidence 1 − 3𝑒

−𝑡,

E (𝜋 (𝑓z,𝜆)) −E (𝑓
∗
)

≤ 2{𝐶1𝑡 [(𝑚
−1
𝜇

−(𝑝𝛽/𝑞)−𝑝
)
2/(4−2𝑠+𝑝𝑠)

+(𝑚
−1
𝜇

−(𝑝𝛽/𝑞)−𝑝
)
2/(2+𝑝)

+ 𝑚
1/(𝑠−2)

]

+

7𝜅𝑡√𝑐𝛽

6𝑚
𝜇

(𝛽−1)/2
+

8 (𝑀 + 𝜀) 𝑡

3𝑚

+(
2𝑐𝑠𝑡

𝑚
)

1/(2−𝑠)

+ 2𝑐𝛽𝜇
𝛽
+

𝜇
𝛽

2𝑞
}

≤ 𝐶2𝑡 {(
1

𝑚𝑞𝜇𝑝(𝛽+𝑞)
)

2/(4−2𝑠+𝑝𝑠)𝑞

+ (
1

𝑚𝑞𝜇𝑝(𝛽+𝑞)
)

2/(2+𝑝)𝑞

+ (
1

𝑚
)

1/(2−𝑠)

+
𝜇

(𝛽−1)/2

𝑚
+ 𝜇

𝛽
} .

(55)

Here, 𝐶2 := 2[𝐶1 + (7/6)𝜅√𝑐𝛽 + 8(𝑀 + 𝜀)/3 + (2𝑐𝑠)
1/(2−𝑠)

+

2𝑐𝛽 + 2
−𝑞

]. According to the choice of 𝜇, we can easily check
that

(
1

𝑚
)

1/(2−𝑠)

≤ 𝜇
𝛽
,

𝜇
(𝛽−1)/2

𝑚
≤ 𝜇

𝛽
,

(
1

𝑚𝑞𝜇𝑝(𝛽+𝑞)
)

2/(2+𝑝)𝑞

≤ (
1

𝑚𝑞𝜇𝑝(𝛽+𝑞)
)

2/(4−2𝑠+𝑝𝑠)𝑞

≤ 𝜇
𝛽
.

(56)

So, our theorem follows by taking 𝐶 = 5𝐶2 and 𝑡 = log(3/𝛿).

Remark 18. Theorem 17 provides an explicit learning rate for
𝑙
𝑞
(1 ≤ 𝑞 < ∞) coefficient-based regularized SVMR. This

learning rate is independent of the dimension 𝑛 of the input
space𝑋. We do not require the marginal distribution 𝜌𝑋 and
the kernel 𝐾 to satisfy any additional regularity condition,
such as the 𝐿𝜏 condition.

Remark 19. Another advantage of coefficient-based regular-
ization scheme is its flexibility in choosing the kernel. For
instance, [26, 27] consider the least square regression with
indefinite kernels and an 𝑙

2-coefficient regularization, where
they relax the requirement of the kernel to be only continuous
and uniformly bounded bivariate function on 𝑋. It will be a
very interesting topic in future work to extend the method in
this paper to the indefinite kernel setting.

Let us end this paper by comparing our result with the
learning rate presented in [7] in a special case 𝜀 = 0. To this
end, we reformulate [7, Theorem 2.3] for 𝜀 = 0 as follows.
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Proposition 20. If 𝐾 ∈ 𝐶
∞
(𝑋 × 𝑋), 𝑓𝜌,1/2 ∈ H𝐾, and

𝑓𝜌,1/2 is of 𝑎-average of type 2 for some 𝑎 ∈ (0,∞], taking
𝜇 = 𝑚

−(𝑎+1)/(𝑎+2), 0 < 𝜍 < (𝑎 + 1)/2(𝑎 + 2), then, with 𝑎
∗

=

2𝑎/(𝑎 + 1), for any 0 < 𝛿 < 1, with confidence 1 − 𝛿, one has

󵄩󵄩󵄩󵄩󵄩
𝜋(𝑓z,𝜇) − 𝑓𝜌,1/2

󵄩󵄩󵄩󵄩󵄩𝐿𝑎
∗

𝜌𝑋

≤ 𝐶1 log
3

𝛿
𝑚

𝜍−(𝑎+1)/2(𝑎+2)
, (57)

where 𝐶1 is a constant independent of 𝑚 or 𝛿.

ByTheorem 17, we can see the following.

Corollary 21. Under the same conditions of Proposition 20, for
𝜀 = 0, by taking 𝜆 = 𝑚

(𝑞−2𝑎−3)/(𝑎+2), one has, for any 0 < 𝛿 < 1,
with confidence 1 − 𝛿,

󵄩󵄩󵄩󵄩󵄩
𝜋(𝑓z,𝜆) − 𝑓𝜌,1/2

󵄩󵄩󵄩󵄩󵄩𝐿𝑎
∗

𝜌𝑋

≤ 𝐶2
√log 3

𝛿
𝑚

−(𝑎+1)/2(𝑎+2)
, (58)

where 𝐶2 is a constant independent of 𝑚 or 𝛿.

Proof. Note that 𝑓∗
= 𝑓𝜌,1/2 when 𝜀 = 0. From [24, Theorem

2.7], we know that

󵄩󵄩󵄩󵄩󵄩
𝜋(𝑓z,𝜆) − 𝑓𝜌,1/2

󵄩󵄩󵄩󵄩󵄩𝐿𝑎
∗

𝜌𝑋

≤ 𝑐𝜌(E(𝜋(𝑓z,𝜆)) −E(𝑓𝜌,1/2))
1/2

, (59)

and here 𝑐𝜌 is a constant independent of𝑚 or 𝛿.
Since 𝑓𝜌,1/2 ∈ H𝐾, we know that (20) holds with 𝛽 =

1. 𝑓𝜌,1/2 is 𝑎-average type 2which implies that (26) is satisfied
with 𝑠 = 𝑎/(𝑎 + 1). Since 𝑋 ⊂ R𝑛 and 𝐾 ∈ 𝐶

∞
(𝑋 × 𝑋), we

know from [28] that (31) holds true for any 𝑝 > 0. Therefore,
let 𝑝 → 0; according toTheorem 17, by taking 𝜆 = 𝑚

𝑞−1
𝜇

1+𝑞,
𝜇 = 𝑚

−(𝑎+1)/(𝑎+2), we have, for any 0 < 𝛿 < 1, with confidence
1 − 𝛿,

E (𝜋 (𝑓z,𝜆)) −E (𝑓𝜌,1/2) ≤ 𝐶 log 3

𝛿
(

1

𝑚
)

(𝑎+1)/(𝑎+2)

. (60)

This together with (59) proves the corollary with the constant
𝐶2 = 𝑐𝜌

√𝐶.

Corollary 21 shows us that the learning rate presented in
Theorem 17 for 𝑙𝑞-coefficient regularized SVMR is faster than
the one given in [7] for RKHS norm regularized learning
schemes at least in the case of 𝜀 = 0.
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