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This paper is concerned with a predator-prey system with Beddington-DeAngelis functional response on time scales. By using the
theory of exponential dichotomy on time scales and fixed point theory based on monotone operator, some simple conditions are
obtained for the existence of at least one positive (almost) periodic solution of the above system. Further, by means of Lyapunov
functional, the global attractivity of the almost periodic solution for the above continuous system is also investigated. The main
results in this paper extend, complement, and improve the previously known result. And some examples are given to illustrate the
feasibility and effectiveness of the main results.

1. Introduction

Let

𝑓− = inf
𝑠∈T

𝑓 (𝑠) , 𝑓+ = sup
𝑠∈T

𝑓 (𝑠) ,

𝑚 (𝑓) = lim
𝑙→∞

1

𝑙
∫
𝑙

0

𝑓 (𝑠) d𝑠,
(1)

where 𝑓 is a continuous bounded function defined on T and
T is a time scale.

The dynamic relationship between predators and their
prey has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology
due to its universal existence and importance. One significant
component of the predator-prey relationship is the functional
responses. In general, the functional responses can be either
prey dependent or predator dependent. However, the prey-
dependent ones fail to model the interference among preda-
tors and have been facing challenges from the biology and
physiology communities.The predator-dependent functional
responses can provide better descriptions of predator feeding

over a range of predator-prey abundances as is supported
by much significant laboratory and field evidence. The
Beddington-DeAngelis functional response, first proposed
by Beddington [1] and DeAngelis et al. [2], performed even
better. So, the dynamics of predator-prey systems with the
Beddington-DeAngelis response have been studied exten-
sively in the literature [3–10].

In [8], Cui and Takeuchi considered the following
predator-prey systemwith Beddington-DeAngelis functional
response:

𝑥󸀠 (𝑡) = 𝑥 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

𝑦󸀠 (𝑡) = 𝑦 (𝑡) [−𝑑 (𝑡) +
𝑓 (𝑡) 𝑥 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

(2)

where all the coefficients of system (2) are positive𝜔-periodic
functions. Cui and Takeuchi obtained the following.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 204564, 9 pages
http://dx.doi.org/10.1155/2014/204564

http://dx.doi.org/10.1155/2014/204564


2 Abstract and Applied Analysis

Theorem 1 (see [8]). System (2) has at least one positive 𝜔-
periodic solution provided

(𝐶) ∫
𝜔

0

[−𝑑 (𝑡) +
𝑓𝑥

0

(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
0

(𝑡)
] d𝑡 > 0, 𝑤ℎ𝑒𝑟𝑒

𝑥
0

(𝑡) =
1 − 𝑒−∫

𝜔

0
𝑎(𝑠)d𝑠

∫
𝜔

0

𝑏 (𝑡 − 𝑠) 𝑒−∫
𝑠

0
𝑎(𝑡−𝑢) d𝑢d𝑠

.

(3)

In real world phenomenon, the environment varies due to
the factors such as seasonal effects of weather, food supplies,
mating habits, and harvesting. So it is usual to assume the
periodicity of parameters in system (2). However, if the var-
ious constituent components of the temporally nonuniform
environment are with incommensurable (nonintegral multi-
ples) periods, then one has to consider the environment to be
almost periodic since the assumption of almost periodicity is
more realistic, more important, and more general when we
consider the effects of the environmental factors. However,
to the best of the author’s knowledge, up to date, there
are few works on the existence of positive almost periodic
solution of system (2). Therefore, the aim of this paper is
to use the fixed point theory based on monotone operator
and Lyapunov functional to investigate the positive (almost)
periodic solutions of system (2).

In fact, continuous and discrete systems are very impor-
tant in implementing and applications. It is well known that
the theory of time scales has received a lot of attention which
was introduced by Hilger [11] in order to unify continuous
and discrete analyses. Therefore, it is meaningful to study
dynamic systems on time scales which can unify differential
and difference systems. Recently, the topic on the dynamics of
predator-prey systemwith Beddington-DeAngelis functional
response on time scales has been investigated in some papers
(see [9, 10]). Stimulated by the previous reasons, in this
paper we will study the following predator-prey system with
Beddington-DeAngelis functional response on time scales:

𝑥Δ (𝑡) = 𝑥 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

𝑦Δ (𝑡) = 𝑦 (𝑡) [−𝑑 (𝑡) +
𝑓 (𝑡) 𝑥 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

(4)

where 𝑡 ∈ T is a periodic time scale; all the coefficients of
system (4) are nonnegative almost periodic functions. From
the point of view of biology, we focus our discussion on the
existence of positive almost periodic solution of system (4)
by using the theory of exponential dichotomy on time scales
and fixed point theory based on monotone operator. Further,
with the help of Lyapunov functional, the global attractivity
of a unique positive almost periodic solution of system (2) is
considered.

The remainder of this paper is organized in the following
ways. In Section 2, we will introduce some necessary nota-
tions, definitions, and lemmaswhichwill be used in the paper.

In Section 3, some easy conditions are derived ensuring the
existence of at least one positive (almost) periodic solution of
system (4) by using the theory of exponential dichotomy on
time scales and fixed point theorem of monotone operator.
In Section 4, we establish sufficient conditions for the global
attractivity of a unique positive (almost) periodic solution
of the corresponding continuous system (4) (i.e., system
(2)) by means of Lyapunov functional. The main results are
illustrated by giving some examples in Section 5.

2. Preliminaries

Now, let us state the following definitions and lemmas, which
will be useful in proving our main result.

Definition 2 (see [12]). A time scale T is an arbitrary
nonempty closed subset of the real set R with the topology
and ordering inherited from R. The forward and backward
jump operators 𝜎, 𝜌 : T → T and the graininess 𝜇, ] : T →
R+ are defined, respectively, by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡, ] (𝑡) := 𝑡 − 𝜌 (𝑡) .

(5)

Thepoint 𝑡 ∈ T is called left-dense, left-scattered, right-dense,
or right-scattered if 𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡, or 𝜎(𝑡) > 𝑡,
respectively. Points that are right-dense and left-dense at the
same time are called dense. If T has a left-scatteredmaximum
𝑚
1

, define T𝜅 = T − {𝑚
1

}; otherwise, set T𝜅 = T . If T has a
right-scatteredminimum𝑚

2

, defineT
𝜅

= T−{𝑚
2

}; otherwise,
set T

𝜅

= T .

Definition 3 (see [12]). A function 𝑝: T → R is said to be re-
gressive provided 1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝑘, where 𝜇(𝑡) =
𝜎(𝑡) − 𝑡 is the graininess function.The set of all regressive rd-
continuous functions 𝑓 : T → R is denoted byR while the
set R+ is given by {𝑓 ∈ R : 1 + 𝜇(𝑡)𝑓(𝑡) > 0} for all 𝑡 ∈ T .
Let 𝑝 ∈ R. The exponential function is defined by

𝑒
𝑝

(𝑡, 𝑠) = exp(∫
𝑡

𝑠

𝜉
𝜇(𝜏)

(𝑝 (𝜏)) Δ𝜏) , (6)

where 𝜉
ℎ(𝑧)

is the so-called cylinder transformation.

Lemma 4 (see [12]). Let 𝑝, 𝑞 ∈ R. Then

(i) 𝑒
0

(𝑡, 𝑠) ≡ 1 and 𝑒
𝑝

(𝑡, 𝑡) ≡ 1;

(ii) 1/𝑒
𝑝

(𝑡, 𝑠) = 𝑒
⊖𝑝

(𝑡, 𝑠), where ⊖𝑝(𝑡) = −𝑝(𝑡)/(1 +
𝜇(𝑡)𝑝(𝑡));

(iii) 𝑒
𝑝

(𝑡, 𝑠)𝑒
𝑝

(𝑠, 𝑟) = 𝑒
𝑝

(𝑡, 𝑟);

(iv) 𝑒Δ
𝑝

(⋅, 𝑠) = 𝑝𝑒
𝑝

(⋅, 𝑠).

Definition 5 (see [12]). For 𝑓 : T → R and 𝑡 ∈ T𝑘, the delta
derivative of𝑓 at 𝑡, denoted by𝑓Δ(𝑡), is the number (provided
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it exists) with the property that, given any 𝜖 > 0, there is a
neighborhood 𝑈 ⊂ T of 𝑡 such that

󵄨󵄨󵄨󵄨󵄨𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓
Δ

(𝑡) [𝜎 (𝑡) − 𝑡]
󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖 |𝜎 (𝑡) − 𝑠| ,

∀𝑠 ∈ 𝑈.
(7)

Lemma 6 (see [12]). Assume that 𝑝(𝑡) ≥ 0 for 𝑡 ≥ 0. Then
𝑒
𝑝

(𝑡, 𝑠) ≥ 1.

Lemma 7 (see [12]). Suppose that 𝑝 ∈ R+. Then

(i) 𝑒
𝑝

(𝑡, 𝑠) > 0 for all 𝑡, 𝑠 ∈ T ;
(ii) if 𝑝(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ T , then 𝑒

𝑝

(𝑡, 𝑠) ≤
𝑒
𝑞

(𝑡, 𝑠) for all 𝑡 ≥ 𝑠.

Lemma 8 (see [12]). Suppose that 𝑝 ∈ R and 𝑎, 𝑏, 𝑐 ∈ T ; then

[𝑒
𝑝

(𝑐, ⋅)]
Δ

= −𝑝[𝑒
𝑝

(𝑐, ⋅)]
𝜎

,

∫
𝑏

𝑎

𝑝 (𝑡) 𝑒
𝑝

(𝑐, 𝜎 (𝑡)) Δ𝑡 = 𝑒
𝑝

(𝑐, 𝑎) − 𝑒
𝑝

(𝑐, 𝑏) .

(8)

Definition 9 (see [13]). A time scale T is called a periodic time
scale if

Π := {𝜏 ∈ R : 𝑡 + 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (9)

Definition 10 (see [14]). Let T be a periodic time scale. A
function 𝑥 : T → R𝑛 is called almost periodic on T , if, for
any 𝜖 > 0, the set

𝐸 (𝜖, 𝑥) = {𝜏 ∈ Π: |𝑥 (𝑡 + 𝜏) − 𝑥 (𝑡)| < 𝜖, ∀𝑡 ∈ T} (10)

is relatively dense inT ; that is, there exists a constant 𝑙 = 𝑙(𝜖) >
0, for any interval with length 𝑙(𝜖); there exists a number 𝜏 =
𝜏(𝜖) in this interval such that

‖𝑥 (𝑡 + 𝜏) − 𝑥 (𝑡)‖ < 𝜖, ∀𝑡 ∈ T . (11)

The set 𝐸(𝜖, 𝑥) is called the 𝜖-translation set of 𝑥; 𝜏 is called
the 𝜖-translation number of 𝑥, and 𝑙(𝜖) is called the inclusion
of 𝐸(𝜖, 𝑥).

Definition 11 (see [15]). Let 𝑦 ∈ 𝐶(T ,R𝑛) and let 𝑃(𝑡) be 𝑛 × 𝑛
continuous matrix defined on T . The linear system

𝑦Δ (𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) , 𝑡 ∈ T , (12)

is said to be an exponential dichotomy on T if there exist
constants 𝑘, 𝜆 > 0, projection 𝑆, and the fundamental matrix
𝑌(𝑡) satisfying

󵄩󵄩󵄩󵄩󵄩𝑌 (𝑡) 𝑆𝑌
−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘𝑒

⊖𝜆

(𝑡, 𝑠) , ∀𝑡 ≥ 𝑠,

󵄩󵄩󵄩󵄩󵄩𝑌 (𝑡) (𝐼 − 𝑆) 𝑌
−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘𝑒

⊖𝜆

(𝑠, 𝑡) , ∀𝑡 ≤ 𝑠, 𝑡, 𝑠 ∈ T .
(13)

Lemma 12 (see [16]). If the linear system 𝑦Δ(𝑡) = 𝑃(𝑡)𝑦(𝑡) has
an exponential dichotomy, then almost periodic system

𝑦Δ (𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑡 ∈ T , (14)

has a unique almost periodic solution 𝑦(𝑡) which can be
expressed as follows:

𝑦 (𝑡) = ∫
𝑡

−∞

𝑌 (𝑡) 𝑆𝑌
−1

(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠

− ∫
∞

𝑡

𝑌 (𝑡) (𝐼 − 𝑆) 𝑌
−1

(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠.

(15)

Lemma 13 (see [15]). If 𝑃(𝑡) = (𝑎
𝑖𝑗

(𝑡))
𝑛×𝑛

is a uniformly
bounded rd-continuous matrix-valued function on T and there
is a 𝛿 > 0 such that

󵄨󵄨󵄨󵄨𝑎𝑖𝑖 (𝑡)
󵄨󵄨󵄨󵄨 − ∑

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨 −

1

2
𝜇 (𝑡) [

[

∑
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨
]

]

2

− 𝛿2𝜇 (𝑡) ≥ 2𝛿,

𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑛,

(16)

then 𝑦Δ(𝑡) = 𝑃(𝑡)𝑦(𝑡) admits an exponential dichotomy on T .

Lemma 14 (see [12]). Suppose that 𝑟 : T → R is regressive.
Let 𝑡

0

∈ T and 𝑦
0

∈ R. The unique solution of the initial value
problem

𝑦Δ (𝑡) = 𝑟 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑦 (𝑡
0

) = 𝑦
0

(17)

is given by

𝑦 (𝑡) = 𝑒
𝑟

(𝑡, 𝑡
0

) 𝑦
0

+ ∫
𝑡

𝑡

0

𝑒
𝑟

(𝑡, 𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠. (18)

Similar to the proof as that in [14, 16], we can easily obtain
from Lemmas 12–14 the following.

Lemma 15. Assume that (𝐻
1

)-(𝐻
2

) hold; then system (4) has
a unique almost periodic solution 𝑧 = (𝑥, 𝑦)𝑇 which can be
expressed as follows:

𝑥 (𝑡) = ∫
+∞

𝑡

𝑒
𝑎

(𝑡, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠,

𝑦 (𝑡) = ∫
𝑡

−∞

𝑒
−𝑑

(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
Δ𝑠.

(19)

In order to obtain the existence of positive almost
periodic solution of system (4), we first make the following
preparations.

Let 𝐸 be a Banach space and let 𝐾 be a cone in 𝐸. The
semiorder induced by the cone 𝐾 is denoted by “≤”. That is,
𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝐾. 𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦.
𝑥 ≫ 𝑦 if 𝑥 − 𝑦 ∈ 𝐾̂, where 𝐾̂ is the interior of the cone 𝐾.
A cone 𝐾 is called minihedral if, for any pair {𝑥, 𝑦}, 𝑥, 𝑦 ∈
𝐸, bounded above in order that there exists the least upper
bound sup{𝑥, 𝑦}. A cone 𝐾 is called normal if there exists a
constant 𝑁 > 0 such that 𝑥 ≤ 𝑦, 𝑥, 𝑦 ∈ 𝐾 implies ‖𝑥‖

𝐸

≤
𝑁‖𝑦‖

𝐸

.
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Definition 16 (see [17]). Φ : 𝐾 → 𝐾 is said to be monotone
increasing, if, for ∀𝑥

1

, 𝑥
2

∈ 𝐾, 𝑥
1

≤ 𝑥
2

, one has Φ𝑥
1

≤ Φ𝑥
2

.

The following two lemmas cited from [18] are useful for
the proof of our main results in this section.

Lemma 17 (see [18]). Let 𝐸 be a real Banach space with an
order cone 𝐾 satisfying the following:

(a) 𝐾 has a nonempty interior,
(b) 𝐾 is normal and minihedral.

Assume that there are two points in 𝐸, 𝑥
∗

≪ 𝑥∗, and a mon-
otone increasing complete continuous operatorΦ: [𝑥

∗

, 𝑥∗] →
𝐸. If

Φ𝑥
∗

≪ 𝑥
∗

, 𝑥∗ ≪ Φ𝑥∗, (20)

then Φ has a fixed point 𝑥 ∈ [𝑥
∗

, 𝑥∗]. Here [𝑥
∗

, 𝑥∗] denotes
the order interval {𝑥 ∈ 𝐾: 𝑥

∗

≤ 𝑥 ≤ 𝑥∗}.

Consider the Banach space 𝐸 = AP(T ,R𝑛)with the norm

‖𝑥‖ = max {𝑥+, 𝑦+} , ∀𝑧 = (𝑥, 𝑦)
𝑇

∈ 𝐸. (21)

Define the cone 𝐾 in 𝐸 by

𝐾 = {𝑧 = (𝑥, 𝑦)
𝑇

∈ 𝐸: 𝑥 ≥ 0, 𝑦 ≥ 0} . (22)

It is not difficult to verify that 𝐾 is normal and minihedral
and has a nonempty interior.

Let the map 𝐿 be defined by

(𝐿𝑧) (𝑡) = ((Φ𝑧) (𝑡) , (Ψ𝑧) (𝑡))
𝑇, (23)

where
(Φ𝑧) (𝑡)

= ∫
+∞

𝑡

𝑒
𝑎

(𝑡, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠,

(Ψ𝑧) (𝑡) = ∫
𝑡

−∞

𝑒
−𝑑

(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
Δ𝑠,

(24)

where 𝑧 ∈ 𝐾, 𝑡 ∈ T .
By (𝐻

1

)-(𝐻
2

), one could choose some positive constants
𝑥
∗

< 𝑥∗ and 𝑦
∗

< 𝑦∗ satisfying

[𝑏+𝑥
∗

+
𝑐+𝑦

∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

] < 𝑎−,

𝑓+𝑥
∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

< 𝑑−,

[𝑏−𝑥∗ +
𝑐−𝑦∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
] > 𝑎+,

𝑓−𝑥∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
> 𝑑+.

(25)

Lemma 18. 𝐿 : 𝐷 → 𝐸 is monotone increasing, where 𝐷 =

[𝑧
∗

, 𝑧∗], 𝑧
∗

= (𝑥
∗

, 𝑦
∗

)𝑇, and 𝑧∗ = (𝑥∗, 𝑦∗)
𝑇.

Proof. Let𝐹
1

(𝑡, 𝑥, 𝑦) = 𝑥[𝑏(𝑡)𝑥+(𝑐(𝑡)𝑦/(𝛼(𝑡)+𝛽(𝑡)𝑥+𝛾(𝑡)𝑦))]
and 𝐹

2

(𝑡, 𝑥, 𝑦) = (𝑓(𝑡)𝑥𝑦/(𝛼(𝑡)+𝛽(𝑡)𝑥+𝛾(𝑡)𝑦)), ∀𝑡 ∈ T .Then

(Φ𝑧) (𝑡) = ∫
+∞

𝑡

𝑒
𝑎

(𝑡, 𝜎 (𝑠)) 𝐹
1

(𝑠, 𝑥, 𝑦) Δ𝑠,

(Ψ𝑧) (𝑡) = ∫
𝑡

−∞

𝑒
−𝑑

(𝑡, 𝜎 (𝑠)) 𝐹
2

(𝑠, 𝑥, 𝑦) Δ𝑠.

(26)

Notice that

𝜕𝐹
1

𝜕𝑥
= 2𝑏 (𝑡) 𝑥 +

𝑐 (𝑡) 𝑦 [𝛼 (𝑡) + 𝛾 (𝑡) 𝑦]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2

≥ 0,

𝜕𝐹
1

𝜕𝑦
=

𝑐 (𝑡) 𝑥 [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2

≥ 0,

𝜕𝐹
2

𝜕𝑥
=

𝑓 (𝑡) 𝑦 [𝛼 (𝑡) + 𝛾 (𝑡) 𝑦]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2

≥ 0,

𝜕𝐹
2

𝜕𝑦
=

𝑓 (𝑡) 𝑥 [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2

≥ 0,

(27)

which implies that (𝐿𝑧)(𝑡) = ((Φ𝑧)(𝑡), (Ψ𝑧)(𝑡))𝑇 is monotone
increasing. This completes the proof.

Lemma 19. Φ: 𝐷 → 𝐸 is complete continuous.

Proof. First, we show that 𝐿maps bounded set into bounded
sets. For ∀𝑧 ∈ 𝐷, we have

sup
𝑡∈T

(Φ𝑧) (𝑡) ≤ 𝑥∗ [𝑏+𝑥∗ +
𝑐+𝑦∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

]

× sup
𝑡∈T

∫
+∞

𝑡

𝑒
𝑎

− (𝑡, 𝜎 (𝑠)) Δ𝑠

≤
1

𝑎−
𝑥∗ [𝑏+𝑥∗ +

𝑐+𝑦∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

] ,

sup
𝑡∈T

(Ψ𝑧) (𝑡) ≤
𝑓+𝑥∗𝑦∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

sup
𝑡∈T

∫
𝑡

−∞

𝑒
−𝑑

− (𝑡, 𝜎 (𝑠)) Δ𝑠

≤
1

𝑑−
𝑓+𝑥∗𝑦∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

.

(28)
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That is, 𝐿𝐷 is uniformly bounded. In addition, for ∀𝑡
1

, 𝑡
2

∈ T

and 𝑡
1

≤ 𝑡
2

, notice that

󵄨󵄨󵄨󵄨(Φ𝑧) (𝑡1) − (Φ𝑧) (𝑡2)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
+∞

𝑡

1

𝑒
𝑎

(𝑡
1

, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

− ∫
+∞

𝑡

2

𝑒
𝑎

(𝑡
1

, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

+ ∫
+∞

𝑡

2

𝑒
𝑎

(𝑡
1

, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

− ∫
+∞

𝑡

2

𝑒
𝑎

(𝑡
2

, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

2

𝑡

1

𝑒
𝑎

(𝑡
1

, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
+∞

𝑡

2

[𝑒
𝑎

(𝑡
2

, 𝜎 (𝑠)) − 𝑒
𝑎

(𝑡
1

, 𝜎 (𝑠))] 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑥∗ [𝑏+𝑥∗ +
𝑐+𝑦∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

]
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨

+
𝑥∗

𝑎−
[𝑏+𝑥∗ +

𝑐+𝑦∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

]

×
󵄨󵄨󵄨󵄨1 − 𝑒𝑎+ (𝑡1, 𝑡2)

󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑡
1

󳨀→ 𝑡
2

.

(29)

Similarly, one could easily obtain that

󵄨󵄨󵄨󵄨(Ψ𝑧) (𝑡1) − (Ψ𝑧) (𝑡2)
󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑡

1

󳨀→ 𝑡
2

. (30)

So 𝐿𝑧 is equicontinuous for any 𝑧 ∈ 𝐷. Using Arzela-Ascoli
theorem on time scales [19], we obtain that 𝐿𝐷 is relatively
compact. In view of Lebesgue’s dominated convergence theo-
remon time scales [20], it is easy to prove that𝐿 is continuous.
Hence, 𝐿 is complete continuous. The proof of this lemma is
complete.

3. Almost Periodic Solution

In this section, we will utilize Lemma 17 which is given in the
previous section to establish some sufficient criteria for the
existence of positive (almost) periodic solutions of system (4).

Theorem 20. Assume that the following conditions hold:

(𝐻
1

) 𝑓− > 𝛽+𝑑+,

(𝐻
2

) 𝑎− > 0, 𝑑− > 0, and 𝛼− > 0.

Then system (4) has at least one positive almost periodic
solution.

Proof. Now, we should use Lemma 17 to prove the existence
of positive almost periodic solutions of system (4). By
Lemmas 18 and 19, we know that 𝐿 is a monotone increasing
complete continuous operator on𝐷. It remains to prove that

𝐿𝑧
∗

≪ 𝑧
∗

, 𝑧∗ ≪ 𝐿𝑧∗. (31)

On the one hand, by the definition of 𝑧
∗

= (𝑥
∗

, 𝑦
∗

)𝑇, it
follows that

Φ𝑧
∗

= Φ(𝑥
∗

, 𝑦
∗

)
𝑇

= ∫
∞

𝑡

𝑒
𝑎

(𝑡, 𝜎 (𝑠)) 𝑥
∗

× [𝑏 (𝑠) 𝑥
∗

+
𝑐 (𝑠) 𝑦

∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥
∗

+ 𝛾 (𝑠) 𝑦
∗

]Δ𝑠

≤
1

𝑎−
𝑥
∗

[𝑏+𝑥
∗

+
𝑐+𝑦

∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

]

< 𝑥
∗

,

Ψ𝑧
∗

= Ψ(𝑥
∗

, 𝑦
∗

)
𝑇

= ∫
𝑡

−∞

𝑒
−𝑑

(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥
∗

𝑦
∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥
∗

+ 𝛾 (𝑠) 𝑦
∗

Δ𝑠

≤
1

𝑑−
𝑓+𝑥

∗

𝑦
∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

< 𝑦
∗

,

(32)

which implies that

𝐿𝑧
∗

= (Φ𝑧
∗

, Ψ𝑧
∗

)
𝑇

< (𝑥
∗

, 𝑦
∗

)
𝑇

= 𝑧
∗

󳨐⇒ 𝐿𝑧
∗

≪ 𝑧
∗

. (33)

On the other hand, one has from the definition of 𝑧∗ =
(𝑥∗, 𝑦∗)

𝑇 that

Φ𝑧∗ = Φ(𝑥∗, 𝑦∗)
𝑇

= ∫
∞

𝑡

𝑒
𝑎

(𝑡, 𝜎 (𝑠)) 𝑥
∗
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× [𝑏 (𝑠) 𝑥
∗ +

𝑐 (𝑠) 𝑦∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥∗ + 𝛾 (𝑠) 𝑦∗
]Δ𝑠

≥
1

𝑎+
𝑥∗ [𝑏−𝑥∗ +

𝑐−𝑦∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
]

> 𝑥∗,

Ψ𝑧∗ = Ψ(𝑥∗, 𝑦∗)
𝑇

= ∫
𝑡

−∞

𝑒
−𝑑

(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥∗𝑦∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥∗ + 𝛾 (𝑠) 𝑦∗
Δ𝑠

≥
1

𝑑+
𝑓−𝑥∗𝑦∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗

> 𝑦∗,

(34)

which implies that

𝐿𝑧∗ = (Φ𝑧∗, Ψ𝑧∗)
𝑇

> (𝑥∗, 𝑦∗)
𝑇

= 𝑧∗ 󳨐⇒ 𝐿𝑧∗ ≫ 𝑧∗. (35)

Applying Lemma 17, we see that 𝐿 has at least one positive
fixed point in [𝑧

∗

, 𝑧∗]. Therefore, system (4) has at least one
positive almost periodic solution. This completes the proof.

FromTheorem 20, we can easily obtain the following.

Theorem 21. Assume that (𝐻
1

)-(𝐻
2

) hold. Suppose further
that all the coefficients of system (4) are nonnegative𝜔-periodic
functions; then system (4) has at least one positive 𝜔-periodic
solution.

If T = R in system (4), thenTheorem 21 is changed to the
following theorem.

Theorem 22. Assume that (𝐻
1

)-(𝐻
2

) hold. Suppose further
that all the coefficients of system (2) are nonnegative𝜔-periodic
functions; then system (2) has at least one positive 𝜔-periodic
solution.

Remark 23. Clearly, the validity of condition (𝐶) in
Theorem 1 depends on coefficients 𝑎, 𝑏, 𝑑, 𝑓, 𝛼, and 𝛽 of
system (2). But condition (𝐻

1

) in Theorem 22 only depends
on coefficients 𝑑, 𝑓, and 𝛽. Therefore, compared with
Theorem 1, Theorem 22 is easy to verify and then has an
extensive application. Sometimes one cannot judge the
existence of the periodic solution for some system in the
form of (2) by Theorem 1. However, it can be done by the
result in the present theorem.The following example is given
to illustrate this point in detail.

Example 24. Let 𝑎(𝑡) = 0.1, 𝑏(𝑡) = 2, 𝑐(𝑡) = 2, 𝑑(𝑡) = (1 +
1/2 sin 𝑡)/10, 𝑓(𝑡) = 2, 𝛼(𝑡) = 3 + sin 𝑡, 𝛽(𝑡) = 8 + sin 𝑡, and
𝛾(𝑡) = 2 + cos 𝑡; then system (2) becomes

𝑥󸀠 (𝑡)

= 𝑥 (𝑡) [0.1 − 2𝑥 (𝑡)

−
2𝑦 (𝑡)

3 + sin 𝑡 + (8 + sin 𝑡) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] ,

𝑦󸀠 (𝑡)

= 𝑦 (𝑡) [−
1 + 1/2 sin 𝑡

10

+
2𝑥 (𝑡)

3 + sin 𝑡 + (8 + sin 𝑡) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] .

(36)

We have 𝑓− = 2 > 9 × 0.15 = 𝛽+𝑑+, which implies from
Theorem 22 that system (36) has at least one positive 2𝜋-
periodic solution.

However, the assumption of Theorem 1 does not hold for
system (36) because 𝑥

0

≡ 0.05 and

−𝑑 (𝑡) +
𝑓𝑥

0

(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
0

(𝑡)
≤ − 0.05 +

2 × 0.05

2 + 7 × 0.05

≈ − 0.0074 < 0.

(37)

Therefore one cannot judge the existence of positive periodic
solution of system (36) byTheorem 1.

4. Global Attractivity

In this section, we will construct a suitable Lyapunov func-
tional to establish some sufficient criteria for the global
attractivity of a unique positive (almost) periodic solution of
system (2).

Theorem 25. Assume that (𝐻
1

)-(𝐻
2

) hold; suppose further
that there exists a constant 𝜌 > 0 such that

inf
𝑡∈R

[𝑏 (𝑡) −
𝛼 (𝑡) 𝑓 (𝑡) + 𝑓 (𝑡) 𝛾 (𝑡) 𝑦∗ + 𝑐 (𝑡) 𝛽 (𝑡) 𝑦∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦
∗

]
] > 𝜌,

inf
𝑡∈R

[
𝛾 (𝑡) 𝑓 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦∗]

−
𝛼 (𝑡) 𝑐 (𝑡) + 𝑐 (𝑡) 𝛽 (𝑡) 𝑥∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦
∗

]
] > 𝜌,

(38)

where 𝑥
∗

, 𝑥∗, 𝑦
∗

, and 𝑦∗ are defined as those in Theorem 20.
Then system (2) has a unique positive almost periodic solution,
which is globally attractive.

Proof. By Theorem 20, system (2) has a unique positive
almost periodic solution (𝑥, 𝑦)𝑇 satisfying

𝑥
∗

≤ 𝑥 (𝑡) ≤ 𝑥∗, 𝑦
∗

≤ 𝑦 (𝑡) ≤ 𝑦∗, ∀𝑡 ∈ R. (39)

Suppose that (𝑢, V)𝑇 is another positive solution of system (2).
Define

𝑉 (𝑡) = |ln𝑥 (𝑡) − ln 𝑢 (𝑡)| + 󵄨󵄨󵄨󵄨ln𝑦 (𝑡) − ln V (𝑡)󵄨󵄨󵄨󵄨 , ∀𝑡 ∈ R.
(40)
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Calculating the upper right derivatives of 𝑉 along the
solution of system (2), it follows that

𝐷+𝑉 (𝑡)

= sgn [𝑥 (𝑡) − 𝑢 (𝑡)] [𝑥
󸀠 (𝑡)

𝑥 (𝑡)
−
𝑢󸀠 (𝑡)

𝑢 (𝑡)
]

+ sgn [𝑦 (𝑡) − V (𝑡)] [
𝑦󸀠 (𝑡)

𝑦 (𝑡)
−
V󸀠 (𝑡)
V (𝑡)

]

= sgn [𝑥 (𝑡) − 𝑢 (𝑡)]

× (−𝑏 (𝑡) [𝑥 (𝑡) − 𝑢 (𝑡)] −
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

+
𝑐 (𝑡) V (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑢 (𝑡) + 𝛾 (𝑡) V (𝑡)
)

+ sgn [𝑦 (𝑡) − V (𝑡)]

× [
𝑓 (𝑡) 𝑥 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

−
𝑓 (𝑡) 𝑢 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑢 (𝑡) + 𝛾 (𝑡) V (𝑡)
]

≤ −(𝑏 (𝑡) −
𝛼 (𝑡) 𝑓 (𝑡) + 𝑓 (𝑡) 𝛾 (𝑡) 𝑦∗ + 𝑐 (𝑡) 𝛽 (𝑡) 𝑦∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦
∗

]
)

× |𝑥 (𝑡) − 𝑢 (𝑡)|

− (
𝛾 (𝑡) 𝑓 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦∗]

−
𝛼 (𝑡) 𝑐 (𝑡) + 𝑐 (𝑡) 𝛽 (𝑡) 𝑥∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦
∗

]
)
󵄨󵄨󵄨󵄨𝑦 (𝑡) − V (𝑡)󵄨󵄨󵄨󵄨

≤ −𝜌 [|𝑥 (𝑡) − 𝑢 (𝑡)| +
󵄨󵄨󵄨󵄨𝑦 (𝑡) − V (𝑡)󵄨󵄨󵄨󵄨] .

(41)

Therefore, 𝑉 is nonincreasing. Integrating (41) from 0 to 𝑡
leads to

𝑉 (𝑡) + 𝜌∫
𝑡

0

[|𝑥 (𝑠) − 𝑢 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠) − V (𝑠)󵄨󵄨󵄨󵄨] d𝑠 ≤ 𝑉 (0) < +∞,

𝑡 ∈ [0,∞] .

(42)

So

∫
∞

0

[|𝑥 (𝑠) − 𝑢 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠) − V (𝑠)󵄨󵄨󵄨󵄨] d𝑠 < +∞, (43)

which implies that

lim
𝑠→+∞

|𝑥 (𝑠) − 𝑢 (𝑠)| = lim
𝑠→+∞

󵄨󵄨󵄨󵄨𝑦 (𝑠) − V (𝑠)󵄨󵄨󵄨󵄨 = 0. (44)

Thus, the almost periodic solution of system (2) is globally
attractive. The global attractivity implies that the almost
periodic solution is unique. This completes the proof.

FromTheorem 25, we can easily obtain the following.

Theorem 26. Assume that all the conditions of Theorem 25
hold. Suppose further that all the coefficients of system (2) are
nonnegative𝜔-periodic functions; then system (2) has a unique
positive 𝜔-periodic solution, which is globally attractive.

5. Two Examples

Example 27. Consider the following almost periodic
predator-prey systemwith Beddington-DeAngelis functional
response on time scales:

𝑥Δ (𝑡)

= 𝑥 (𝑡)

× [0.1 − 2𝑥 (𝑡)

−
2𝑦 (𝑡)

3 + sin 𝑡 + (8 + sin (√2𝑡)) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] ,

𝑦Δ (𝑡)

= 𝑦 (𝑡)

× [−
1 + 1/2 sin (√3𝑡)

10

+
2𝑥 (𝑡)

3 + sin 𝑡 + (8 + sin (√2𝑡)) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] .

(45)

Similar to the argument as that in Example 24, system
(45) has at least one positive almost periodic solution by
Theorem 20.

Example 28. Consider the following almost periodic
predator-prey systemwith Beddington-DeAngelis functional
response:

𝑥󸀠 (𝑡)

= 𝑥 (𝑡)

× [1 − 5𝑥 (𝑡)

−
10−3𝑦 (𝑡)

3 + sin (√3𝑡) + 0.1𝑥 (𝑡) + (2 + cos (√2𝑡)) 𝑦 (𝑡)
] ,
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𝑦󸀠 (𝑡)

= 𝑦 (𝑡)

× [−5 +
2𝑥 (𝑡)

3 + sin (√3𝑡) + 0.1𝑥 (𝑡) + (2 + cos (√2𝑡)) 𝑦 (𝑡)
].

(46)

Then system (46) has a unique positive almost periodic
solution, which is globally attractive.

Proof. Corresponding to system (2), we have 𝑎− = 𝑎+ = 1,
𝑏− = 𝑏+ = 5, 𝑑− = 𝑑+ = 5, 𝑐− = 𝑐+ = 10−3, 𝑓− = 𝑓+ =
2, 𝛽− = 𝛽+ = 0.1, 𝛼− = 2, 𝛼+ = 4, 𝛾− = 1, and 𝛾+ = 3.
Obviously, 𝑓− > 𝛽+𝑑+. By Theorem 20, system (46) has
at least one positive almost periodic solution. Further, we
choose 𝑥

∗

= 𝑦
∗

= 0.1, 𝑥∗ = 20, and 𝑦∗ = 0.3; then

[𝑏+𝑥
∗

+
𝑐+𝑦

∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

] < 0.8 < 1 = 𝑎−,

𝑓+𝑥
∗

𝛼− + 𝛽−𝑥
∗

+ 𝛾−𝑦
∗

< 0.1 < 5 = 𝑑−,

[𝑏−𝑥∗ +
𝑐−𝑦∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
] > 5 > 1 = 𝑎+,

𝑓−𝑥∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
>
40

7
> 5 = 𝑑+,

(47)

which implies that (25) hold. And

inf
𝑡∈R

[𝑏 (𝑡) −
𝛼 (𝑡) 𝑓 (𝑡) + 𝑓 (𝑡) 𝛾 (𝑡) 𝑦∗ + 𝑐 (𝑡) 𝛽 (𝑡) 𝑦∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦
∗

]
]

> 5 − 2.5 = 2.5,

inf
𝑡∈R

[
𝛾 (𝑡) 𝑓 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦∗]

−
𝛼 (𝑡) 𝑐 (𝑡) + 𝑐 (𝑡) 𝛽 (𝑡) 𝑥∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗

+ 𝛾 (𝑡) 𝑦
∗

]
]

> 0.0117 − 0.001 = 0.0107.

(48)

Then all conditions of Theorem 25 are satisfied. By
Theorem 25, system (46) has a unique positive almost
periodic solution, which is globally attractive.This completes
the proof.

6. Conclusion

In this paper, some sufficient conditions are established
for the existence of positive almost periodic solution for a
predator-prey systemwith Beddington-DeAngelis functional
response on time scales by using the theory of exponential
dichotomy on time scales and fixed point theory based on
monotone operator. Further, the global attractivity of the
almost periodic solution for the above continuous system is
also investigated. The main results obtained in this paper are

completely new even in case of the time scale T = R or Z.
Besides, the method used in this paper may be used to study
the positive almost periodic solution ofmany other biological
models.
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