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An average linear finite difference scheme for the numerical solution of the initial-boundary value problemofGeneralizedRosenau-
KdV equation is proposed. The existence, uniqueness, and conservation for energy of the difference solution are proved by the
discrete energy norm method. It is shown that the finite difference scheme is 2nd-order convergent and unconditionally stable.
Numerical experiments verify that the theoretical results are right and the numerical method is efficient and reliable.

1. Introduction

KdV equation has been used in very wide applications and
undergone research which can be used to describe wave
propagation and spread interaction as follows [1–4]:

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (1)

In the study of the dynamics of dense discrete systems,
the case of wave-wave and wave-wall interactions cannot be
described using the well-known KdV equation. To overcome
this shortcoming of the KdV equation, Rosenau [5, 6]
proposed the so-called Rosenau equation:

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥𝑥𝑡

= 0. (2)

The existence and the uniqueness of the solution for (2)
were proved by Park [7]. But it is difficult to find the analytical
solution for (2). Since then, much work has been done on
the numerical method for (2) ([8–13] and also the references
therein). On the other hand, for the further consideration
of the nonlinear wave, the viscous term 𝑢

𝑥𝑥𝑥
needs to be

included [14]:

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢𝑢
𝑥
= 0. (3)

This equation is usually called the Rosenau-KdV equa-
tion. Zuo [14] discussed the solitary wave solutions and

periodic solutions for Rosenau-KdV equation. In [15], a
conservative linear finite difference scheme for the numerical
solution for an initial-boundary value problem of Rosenau-
KdV equation is considered. In this paper, we consider the
following Generalized Rosenau-KdV equation:

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ (𝑢
𝑝
)
𝑥
= 0, (4)

where 𝑝 ≥ 2 is an integer. When 𝑝 = 2, (4) is called usual
Rosenau-KdV (3).

In [16, 17], authors discussed the solitary solutions for
the Generalized Rosenau-KdV equation with usual solitary
ansatz method. The authors also gave the two invariants for
theGeneralizedRosenau-KdVequation. In particular, in [17],
the authors not only studied the two types of soliton solution,
one is solitary wave solution and the other is singular soliton.
Furthermore, they also used the perturbation theory and the
semivariation principle to study the perturbed Generalized
Rosenau-KdV equation analytically. In [18], only ansatz
method was applied to obtain the topological soliton solution
or the shock solution of this equation.Three methods, ansatz
method, 𝐺󸀠/𝐺-expansion method, and the exp-function
method, were applied to extract a few more solutions to this
equation in [19].

As we all know, most of the time, we need to think of the
numerical solution of nonlinear evolution equations. Many
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scholars in this field have a good work. In [20], the authors
simulate the numerical solution of the Klein-Gordon equa-
tion by using the spectral method where rational Chebyshev
functions are used as basic functions. In [21], the authors
study the numerical solution of the two-dimensional Sine-
Gordon equation (SGE) using a split-stepChebyshev Spectral
Method. In [22], the authors develop a Galerkin spectral
technique for computing localized solutions of equation with
Sixth-Order Generalized Boussinesq Equation (6GBE). In
[15], the authors propose a conservative three-level linear
finite difference schemewith second-order convergent for the
numerical solution of the initial-boundary value problem of
Rosenau-KdV equation.

But the numerical method of the initial-boundary value
problem of Generalized Rosenau-KdV equation has not been
studied till now. In this paper, we propose an average three-
level linear finite difference scheme for (4) with the boundary
conditions
𝑢 (𝑋
𝑙
, 𝑡) = 𝑢 (𝑋

𝑟
, 𝑡) = 0, 𝑢

𝑥
(𝑋
𝑙
, 𝑡) = 𝑢

𝑥
(𝑋
𝑟
, 𝑡) = 0,

𝑢
𝑥𝑥
(𝑋
𝑙
, 𝑡) = 𝑢

𝑥𝑥
(𝑋
𝑟
, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

(5)

and initial condition
𝑢 (𝑥, 0) = 𝑢

0
(𝑥) . (6)

The initial-boundary value problem (3)–(5) possesses the
following conservative properties [16, 17]:

𝑀(𝑡) = ∫

𝑋
𝑟

𝑋
𝑙

𝑢 𝑑𝑥 = ∫

𝑋
𝑟

𝑋
𝑙

𝑢
0
𝑑𝑥 = 𝑀(0) , (7)

𝐸 (𝑡) = ∫

𝑋
𝑟

𝑋
𝑙

(𝑢
2
+ 𝑢
2

𝑥𝑥
) 𝑑𝑥 = ‖𝑢‖

2

𝐿
2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

𝐿
2

= 𝐸 (0) . (8)

When 𝑋
𝑙
≪ 0, 𝑋

𝑟
≫ 0, the initial-boundary value problem

(4)–(6) and the Cauchy problem (4) are consistent, so the
boundary conditions (5) are reasonable.

Compared to the implicit C-N nonlinear scheme, the
scheme in this paper is linear and it can reduce computing
cost. We will prove existence, uniqueness, and stability of the
numerical solution.The studies show that the convergence of
the scheme is 2nd-order rate.Themost important point is that
the scheme is conservative for energy.

The rest of this paper is organized as follows. In Section 2,
we propose a three-level average implicit linear finite dif-
ference scheme for Generalized Rosenau-KdV equation and
discuss the discrete conservative properties for energy. In
Section 3, we prove that the scheme is uniquely solvable. In
Section 4, we prove that the finite difference scheme is 2nd-
order convergent and unconditionally stable. In Section 5,
we give some numerical simulation to verify our theoretical
analysis. Finally, in Section 6, we get our conclusion.

2. Difference Scheme and Some Properties of
Its Solution

In this section, we first give some notation which will be used
in this paper and propose an average linear difference scheme
for the problem of (4)–(6).

As usual, denote 𝑥
𝑗
= 𝑋
𝑙
+ 𝑗ℎ, 𝑡

𝑛
= 𝑛𝜏, 0 ≤ 𝑗 ≤ 𝐽, 0 ≤ 𝑛 ≤

𝑁, where ℎ = (𝑋
𝑟
−𝑋
𝑙
)/𝐽 and let 𝜏 be the uniform, the spatial,

and the temporal step size, respectively. Let 𝑢𝑛
𝑗
≈ 𝑢(𝑗ℎ, 𝑛𝜏),

𝑍
0

ℎ
= {𝑢 = (𝑢

𝑗
) | 𝑢
−1
= 𝑢
0
= 𝑢
𝐽
= 𝑢
𝐽+1

= 0, −1 ≤ 𝑗 ≤ 𝐽 + 1}.
Throughout this paper, we will denote𝐶 as a generic constant
independent of ℎ and 𝜏 that varies in the context.

We define the difference operators, inner product, and
norms that will be used in this paper as follows:

(𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗

ℎ

, (𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗
− 𝑢
𝑛

𝑗−1

ℎ

,

(𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗−1

2ℎ

, (𝑢
𝑛

𝑗
)
𝑡
=

𝑢
𝑛+1

𝑗
− 𝑢
𝑛

𝑗

𝜏

,

(𝑢
𝑛

𝑗
)
𝑡̂
=

𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗

2𝜏

, (𝑢
𝑛

𝑗
)
𝑥𝑥
=

𝑢
𝑛

𝑗+1
− 2𝑢
𝑛

𝑗
+ 𝑢
𝑛

𝑗−1

ℎ
2

,

𝑢
𝑛

𝑗
=

𝑢
𝑛+1

𝑗
+ 𝑢
𝑛−1

𝑗

2

, 𝑢
𝑛+(1/2)

𝑗
=

𝑢
𝑛+1

𝑗
+ 𝑢
𝑛

𝑗

2

,

⟨𝑢
𝑛
, V𝑛⟩ = ℎ

𝐽−1

∑

𝑗=1

𝑢
𝑛

𝑗
V𝑛
𝑗
,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

= ⟨𝑢
𝑛
, 𝑢
𝑛
⟩ ,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩∞

= max
0≤𝑗≤𝐽−1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
.

(9)

Since (𝑢𝑝)
𝑥
= (𝑝/(𝑝+1))[𝑢

𝑝−1
𝑢
𝑥
+(𝑢
𝑝
)
𝑥
], the following finite

difference scheme for the problem (4)–(6) is considered:

(𝑢
𝑛

𝑗
)
𝑡̂
+ (𝑢
𝑛

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
)
𝑥𝑥𝑥

+ (𝑢
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+

𝑝

𝑝 + 1

{(𝑢
𝑛

𝑗
)

𝑝−1

(𝑢
𝑛

𝑗
)
𝑥
+ [(𝑢
𝑛

𝑗
)
𝑝−1
𝑢
𝑛

𝑗
]
𝑥
} = 0,

(10)

𝑢
0

𝑗
= 𝑢
0
(𝑥
𝑗
) , 1 ≤ 𝑗 ≤ 𝐽 − 1, (11)

𝑢
𝑛

0
= 𝑢
𝑛

𝐽
= 0, (𝑢

𝑛

0
)
𝑥
= (𝑢
𝑛

𝐽
)
𝑥
= 0,

(𝑢
𝑛

0
)
𝑥𝑥
= (𝑢
𝑛

𝐽
)
𝑥𝑥
= 0.

(12)

Lemma 1 (see [23]). For any two mesh functions, 𝑢, V ∈ 𝑍0
ℎ
,

one has

⟨V
𝑥
, 𝑢⟩ = − ⟨V, 𝑢

𝑥
⟩ , ⟨𝑢

𝑥
, V⟩ = − ⟨𝑢, V

𝑥
⟩ ,

⟨𝑢, V
𝑥𝑥
⟩ = − ⟨𝑢

𝑥
, V
𝑥
⟩ .

(13)

Then we have

⟨𝑢, 𝑢
𝑥𝑥
⟩ = − ⟨𝑢

𝑥
, 𝑢
𝑥
⟩ = −

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩

2

. (14)

Furthermore, if (𝑢𝑛
0
)
𝑥𝑥
= (𝑢
𝑛

𝐽
)
𝑥𝑥
= 0, then

⟨𝑢, 𝑢
𝑥𝑥𝑥𝑥

⟩ =
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

. (15)

Lemma 2. Suppose that 𝑢 ∈ 𝐻2
0
[𝑋
𝑙
, 𝑋
𝑟
]; then the solution of

the initial-boundary value problem (4)–(6) satisfies

‖𝑢‖
𝐿
2

≤ 𝐶,
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶, ‖𝑢‖
∞
≤ 𝐶. (16)
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Proof. It follows from the conservative law (8) that we get

‖𝑢‖
𝐿
2

≤ 𝐶,
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩𝐿
2

≤ 𝐶. (17)

Using part integration method, Hölder inequality, and
Schwartz inequality, we get

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩

2

𝐿
2

= ∫

𝑋
𝑟

𝑋
𝑙

𝑢
𝑥
𝑢
𝑥
𝑑𝑥 = 𝑢𝑢

𝑥

󵄨
󵄨
󵄨
󵄨

𝑋
𝑟

𝑋
𝑙

− ∫

𝑋
𝑟

𝑋
𝑟

𝑢𝑢
𝑥𝑥
𝑑𝑥

= −∫

𝑋
𝑟

𝑋
𝑙

𝑢𝑢
𝑥𝑥
𝑑𝑥 ≤ ‖𝑢‖

𝐿
2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩𝐿
2

≤

1

2

(‖𝑢‖
2

𝐿
2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

𝐿
2

) .

(18)

Hence, ‖𝑢
𝑥
‖
𝐿
2

≤ 𝐶. According to Sobolev’s inequality, we
have ‖𝑢‖

∞
≤ 𝐶.

Theorem 3. Supposing 𝑢
0
∈ 𝐻
2

0
[𝑋
𝑙
, 𝑋
𝑟
], then the scheme

(10)–(12) is conservative for discrete energy; that is,

𝐸
𝑛
=

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

) +

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

)

= 𝐸
𝑛−1

= ⋅ ⋅ ⋅ = 𝐸
0
.

(19)

Proof. Computing the inner product of (10) with 2𝑢𝑛 (i.e.,
𝑢
𝑛+1

+ 𝑢
𝑛−1), we have

ℎ

𝐽−1

∑

𝑗=1

{

1

2𝜏

(𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗
) ⋅ 2𝑢
𝑛

𝑗
+ ((𝑢
𝑛

𝑗
)
𝑥
⋅ 2𝑢
𝑛

𝑗
)

+ ((𝑢
𝑛

𝑗
)
𝑥𝑥𝑥

⋅ 2𝑢
𝑛

𝑗
) +

1

2𝜏

((𝑢
𝑛+1

𝑗
)
𝑥𝑥𝑥𝑥

− (𝑢
𝑛−1

𝑗
)
𝑥𝑥𝑥𝑥

) ⋅ 2𝑢
𝑛

𝑗

+ (𝑃
𝑗
⋅ 2𝑢
𝑛

𝑗
)} = 0,

(20)

where

𝑃
𝑗
=

𝑝

𝑝 + 1

{(𝑢
𝑛

𝑗
)

𝑝−1

⋅ (𝑢
𝑛

𝑗
)
𝑥
+ [(𝑢

𝑛

𝑗
)

𝑝−1

⋅ (𝑢
𝑛

𝑗
)]

𝑥

} . (21)

By the definition of (𝑢𝑛
𝑗
)
𝑡̂
, it follows from the first term of (20)

that

ℎ

𝐽−1

∑

𝑗=1

(

1

2𝜏

(𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗
) ⋅ 2𝑢
𝑛

𝑗
) =

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) .

(22)

By the definition of 𝑢
𝑥
, (14), and Lemma 1, it follows from the

second and the third term of (20) that

𝐽−1

∑

𝑗=1

((𝑢
𝑛

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
)
𝑥
) ⋅ 𝑢
𝑛

𝑗
=

𝐽−1

∑

𝑗=1

(𝑢
𝑛

𝑗
)
𝑥
⋅ 𝑢
𝑛

𝑗
+

𝐽−1

∑

𝑗=1

(𝑢
𝑛

𝑗
)
𝑥
⋅ 𝑢
𝑛

𝑗
= 0,

𝐽−1

∑

𝑗=1

(𝑢
𝑛

𝑗
)
𝑥𝑥𝑥

⋅ 2𝑢
𝑛

𝑗
= 0.

(23)

According to the boundary condition (12) and (14) of
Lemma 1, it follows from the forth term that

ℎ

𝐽−1

∑

𝑗=1

1

2𝜏

((𝑢
𝑛+1

𝑗
)
𝑥𝑥𝑥𝑥

− (𝑢
𝑛−1

𝑗
)
𝑥𝑥𝑥𝑥

) ⋅ 2𝑢
𝑛

𝑗

=

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

) .

(24)

According to (13) and (14), we have

⟨𝑃, 2𝑢
𝑛
⟩ =

2𝑝ℎ

𝑝 + 1

𝐽−1

∑

𝑗=1

[(𝑢
𝑛

𝑗
)

𝑝−1

⋅ (𝑢
𝑛

𝑗
)
𝑥
+ [(𝑢

𝑛

𝑗
)

𝑝−1

𝑢
𝑛

𝑗
]

𝑥

] ⋅ 𝑢
𝑛

𝑗

=

𝑝

𝑝 + 1

𝐽−1

∑

𝑗=1

[(𝑢
𝑛

𝑗
)

𝑝−1

⋅ (𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗−1
)

+(𝑢
𝑛

𝑗+1
)

𝑝−1

𝑢
𝑛

𝑗+1
− (𝑢
𝑛

𝑗−1
)

𝑝−1

𝑢
𝑛

𝑗−1
] 𝑢
𝑛

𝑗

=

𝑝

𝑝 + 1

𝐽−1

∑

𝑗=1

[(𝑢
𝑛

𝑗
)

𝑝−1

𝑢
𝑛

𝑗+1
𝑢
𝑛

𝑗
− (𝑢
𝑛

𝑗+1
)

𝑝−1

𝑢
𝑛

𝑗+1
𝑢
𝑛

𝑗
]

−

𝑝

𝑝 + 1

𝐽−1

∑

𝑗=1

[(𝑢
𝑛

𝑗−1
)

𝑝−1

𝑢
𝑛

𝑗
𝑢
𝑛

𝑗−1
− (𝑢
𝑛

𝑗
)

𝑝−1

𝑢
𝑛

𝑗
𝑢
𝑛

𝑗−1
]

= 0.

(25)

Substituting (22)–(25) into (20), we have

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) + (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

) = 0. (26)

By the definition of 𝐸𝑛, (19) holds. It implies that the
difference scheme is conservative for energy.

In order to prove the boundedness of the numerical
solution, we introduce the following lemma [23].

Lemma 4 (Discrete Sobolev’s inequality). There exist two
constants 𝐶

1
and 𝐶

2
such that

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩∞

≤ 𝐶
1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩
+ 𝐶
2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩
. (27)

Theorem 5. Suppose 𝑢
0
∈ 𝐻
2

0
[𝑋
𝑙
, 𝑋
𝑟
]; then the solution 𝑢𝑛 of

(10)–(12) satisfies ‖𝑢𝑛‖ ≤ 𝐶, ‖𝑢𝑛
𝑥
‖ ≤ 𝐶, which yield ‖𝑢𝑛‖

∞
≤

𝐶 (𝑛 = 1, 2, . . . , 𝑁).

Proof. It follows from (19) that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝐶. (28)

By Lemma 1 and Schwartz inequality, we get

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
) ≤ 𝐶. (29)

According to Lemma 4,we have ‖𝑢𝑛‖
∞
≤ 𝐶 (𝑛 = 1, 2, . . . , 𝑁).
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3. Solvability

Theorem 6. There exists 𝑢𝑛 ∈ 𝑍0
ℎ
(1 ≤ 𝑛 ≤ 𝑁) which satisfies

the difference scheme (10)–(12).

Proof. By mathematical induction, it is obvious that 𝑢0 is
uniquely determined by the initial condition (11). We can
choose a second-order method to compute 𝑢1 (such as C-
N scheme [10, 15]). It implies that 𝑢0, 𝑢1 are uniquely deter-
mined. Now assuming 𝑢0, 𝑢1, . . . , 𝑢𝑛 are uniquely solvable,
consider 𝑢𝑛+1 in (10) which satisfies
1

2𝜏

𝑢
𝑛+1

𝑗
+ (𝑢
𝑛+1

𝑗
)
𝑥
+ (𝑢
𝑛+1

𝑗
)
𝑥𝑥𝑥

+

1

2𝜏

(𝑢
𝑛+1

𝑗
)
𝑥𝑥𝑥𝑥

+

𝑝

2 (𝑝 + 1)

{(𝑢
𝑛

𝑗
)

𝑝−1

(𝑢
𝑛+1

𝑗
)
𝑥
+ [(𝑢
𝑛

𝑗
)
𝑝−1
𝑢
𝑛+1

𝑗
]
𝑥
} = 0.

(30)

Computing the inner product of (30) with 𝑢𝑛+1, by (23) and
(24), we obtain

1

2𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

1

2𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ⟨Φ (𝑢
𝑛
, 𝑢
𝑛+1
) , 𝑢
𝑛+1
⟩ = 0, (31)

where Φ(𝑢
𝑛
, 𝑢
𝑛+1
) = (𝑝/2(𝑝 + 1)){(𝑢

𝑛
)
𝑝−1
(𝑢
𝑛+1
)
𝑥
+

[(𝑢
𝑛
)
𝑝−1
𝑢
𝑛+1
]
𝑥
},

⟨Φ (𝑢
𝑛
, 𝑢
𝑛+1
) , 𝑢
𝑛+1
⟩

=

𝑝ℎ

2 (𝑝 + 1)

𝐽−1

∑

𝑗=1

{(𝑢
𝑛

𝑗
)

𝑝−1

(𝑢
𝑛+1

𝑗
)
𝑥
+ [(𝑢

𝑛

𝑗
)

𝑝−1

𝑢
𝑛+1

𝑗
]

𝑥

} 𝑢
𝑛+1

𝑗

=

𝑝

4 (𝑝 + 1)

𝐽−1

∑

𝑗=1

{(𝑢
𝑛

𝑗
)

𝑝−1

(𝑢
𝑛+1

𝑗+1
− 𝑢
𝑛+1

𝑗−1
)

+ [(𝑢
𝑛

𝑗+1
)

𝑝−1

𝑢
𝑛+1

𝑗+1
− (𝑢
𝑛

𝑗−1
)

𝑝−1

𝑢
𝑛+1

𝑗−1
]} 𝑢
𝑛+1

𝑗

= 0.

(32)
It follows from (31) that

1

2𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

1

2𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0. (33)

That is, there uniquely exists trivial solution satisfying (30).
Therefore, 𝑢𝑛+1

𝑗
in (10) is uniquely solvable.

This completes the proof of Theorem 6.

4. The Convergence and Stability of
the Scheme

As usual, in order to prove the convergence and stability of
the average linear difference scheme, we need to introduce
the Discrete Gronwall inequality [23].

Lemma7. Suppose𝑤(𝑘), 𝜌(𝑘) are nonnegativemesh functions
and 𝜌(𝑘) is nondecreasing. If 𝐶 > 0 and

𝑤 (𝑘) ≤ 𝜌 (𝑘) + 𝐶𝜏

𝑘−1

∑

𝑙=0

𝑤 (𝑙) , ∀𝑘, (34)

then

𝑤 (𝑘) ≤ 𝜌 (𝑘) 𝑒
𝐶𝜏𝑘
, ∀𝑘. (35)

Now, we discuss the convergence of the scheme (10)–(12);
let V𝑛
𝑗
= V(𝑥
𝑗
, 𝑡
𝑛
) be the analytical solution of problem (3)–(5);

then the truncation error of the scheme (10)–(12) is

𝑅
𝑛

𝑗
= (V𝑛
𝑗
)
𝑡̂
+ (V𝑛
𝑗
)
𝑥
+ (V𝑛
𝑗
)
𝑥𝑥𝑥

+ (V𝑛
𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+

𝑝

1 + 𝑝

{(V𝑛
𝑗
)

𝑝−1

(V𝑛
𝑗
)
𝑥
+ [(V𝑛
𝑗
)

𝑝−1

(V𝑛
𝑗
)]

𝑥

} .

(36)

Using Taylor expansion, we know that 𝑅𝑛
𝑗
= 𝑂 (𝜏

2
+ ℎ
2
)

holds if 𝜏, ℎ → 0.

Theorem 8. Supposing 𝑢
0
∈ 𝐻
2

0
[𝑋
𝑙
, 𝑋
𝑟
], 𝑢(𝑥, 𝑡) ∈ 𝐶5,3, then

the solution 𝑢𝑛 of the scheme (10)–(12) converges to the solution
of problem (3)–(5) and the rate of convergence is 𝑅𝑛

𝑗
= 𝑂 (𝜏

2
+

ℎ
2
) by the ‖ ⋅ ‖

∞
norm.

Proof. Subtracting (10) from (36) and letting 𝑒𝑛
𝑗
= V𝑛
𝑗
− 𝑢
𝑛

𝑗
, we

have

𝑅
𝑛

𝑗
= (𝑒
𝑛

𝑗
)
𝑡̂
+ (𝑒
𝑛

𝑗
)
𝑥
+ (𝑒
𝑛

𝑗
)
𝑥𝑥𝑥

+ (𝑒
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+

𝑝

1 + 𝑝

{(V𝑛
𝑗
)

𝑝−1

(V𝑛
𝑗
)
𝑥
+ [(V𝑛
𝑗
)

𝑝−1

V𝑛
𝑗
]

𝑥

}

−

𝑝

1 + 𝑝

{(𝑢
𝑛

𝑗
)

𝑝−1

(𝑢
𝑛

𝑗
)
𝑥
+ [(𝑢

𝑛

𝑗
)

𝑝−1

𝑢
𝑛

𝑗
]

𝑥

} .

(37)

Computing the inner product of (37) with 2𝑒𝑛 and using

⟨(𝑒
𝑛
)
𝑥
, 2𝑒
𝑛
⟩ = 0, ⟨(𝑒

𝑛
)
𝑥𝑥𝑥
, 2𝑒
𝑛
⟩ = 0. (38)

Similar to (22) and (24), we get

⟨𝑅
𝑛
, 2𝑒
𝑛
⟩ =

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

)

+

𝛾

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

) + ⟨𝑄
1
+ 𝑄
2
, 2𝑒
𝑛
⟩ ,

(39)

where

𝑄
1
=

𝑝

1 + 𝑝

[(V𝑛)𝑝−1(V𝑛)
𝑥
− (𝑢
𝑛
)
𝑝−1

(𝑢
𝑛
)
𝑥
] ,

𝑄
2
=

𝑝

1 + 𝑝

{[(V𝑛)𝑝−1V𝑛]
𝑥
− [(𝑢
𝑛
)
𝑝−1

𝑢
𝑛
]
𝑥
} .

(40)

Therefore, we get

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) + (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

= 2𝜏 ⟨𝑟
𝑛
, 2𝑒
𝑛
⟩ − 2𝜏 ⟨𝑄

1
+ 𝑄
2
, 2𝑒
𝑛
⟩ .

(41)
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According to Lemma 2, Theorem 5, and Schwartz inequality,
we have

− ⟨𝑄
1
, 2𝑒
𝑛
⟩ =

−2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[(V𝑛
𝑗
)

𝑝−1

(V𝑛
𝑗
)
𝑥
− (𝑢
𝑛

𝑗
)

𝑝−1

(𝑢
𝑛

𝑗
)
𝑥
] 𝑒
𝑛

𝑗

=

−2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

(V𝑛
𝑗
)

𝑝−1

(𝑒
𝑛

𝑗
)
𝑥
𝑒
𝑛

𝑗

+

−2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[(V𝑛
𝑗
)

𝑝−1

− (𝑢
𝑛

𝑗
)

𝑝−1

] (𝑢
𝑛

𝑗
)
𝑥
𝑒
𝑛

𝑗

=

−2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

(V𝑛
𝑗
)

𝑝−1

(𝑒
𝑛

𝑗
)
𝑥
𝑒
𝑛

𝑗

+

−2𝑝

1 + 𝑝

ℎ

𝐽−1

∑

𝑗=0

[𝑒
𝑛

𝑗

𝑝−2

∑

𝑘=0

(V𝑛
𝑗
)

𝑝−2−𝑘

(𝑢
𝑛

𝑗
)

𝑘

] (𝑢
𝑛

𝑗
)
𝑥
𝑒
𝑛

𝑗

≤ 𝐶ℎ

𝐽−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
𝑛

𝑗
)
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝐶ℎ

𝐽−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑒
𝑛

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑒
𝑛

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 [
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

]

≤ 𝐶 [

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

] .

(42)

Similarly,

− ⟨𝑄
2
, 2𝑒
𝑛
⟩ ≤ 𝐶 [

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

] .

(43)

Furthermore,

⟨𝑅
𝑛
, 2𝑒
𝑛
⟩ = ⟨𝑅

𝑛
, 𝑒
𝑛+1

+ 𝑒
𝑛−1
⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛󵄩
󵄩
󵄩
󵄩

2

+

1

2

[

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

] .

(44)

Substituting (42)–(44) into (41), we get

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) + (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤ 𝐶𝜏 [

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

] + 2𝜏
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛󵄩
󵄩
󵄩
󵄩

2

.

(45)

Similar to the proof of (29)

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
) ≤ 𝐶. (46)

It follows from (45) that

[(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

) + 𝛾 (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

)]

− [(
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) + 𝛾 (
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

)]

≤ 𝐶𝜏 [

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

] + 2𝜏
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛󵄩
󵄩
󵄩
󵄩

2

.

(47)

Let 𝐵𝑛 = ‖𝑒𝑛‖2+‖𝑒𝑛+1‖2+‖𝑒𝑛
𝑥𝑥
‖
2
+‖𝑒
𝑛+1

𝑥𝑥
‖

2; it follows from (47)
that

(1 − 𝐶𝜏) (𝐵
𝑛+1

− 𝐵
𝑛
) ≤ 2𝐶𝜏𝐵

𝑛
+ 2𝜏

󵄩
󵄩
󵄩
󵄩
𝑅
𝑛󵄩
󵄩
󵄩
󵄩

2

. (48)

If 𝜏 is sufficiently small which satisfies 1 − 𝐶𝜏 > 0, we get

𝐵
𝑛+1

− 𝐵
𝑛
≤ 𝐶𝜏𝐵

𝑛
+ 𝐶𝜏

󵄩
󵄩
󵄩
󵄩
𝑅
𝑛󵄩
󵄩
󵄩
󵄩

2

. (49)

Summing up (49) from 0 to 𝑛 − 1, we get

𝐵
𝑛
≤ 𝐵
0
+ 𝐶𝜏

𝑛−1

∑

𝑙=0

𝐵
𝑛
+ 𝐶𝜏

𝑛−1

∑

𝑙=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
𝑙󵄩󵄩
󵄩
󵄩
󵄩

2

. (50)

Choose a second-order method to compute 𝑢1 (such as C-N
scheme) and notice that

𝜏

𝑛−1

∑

𝑙=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
𝑙󵄩󵄩
󵄩
󵄩
󵄩

2

≤ 𝑛𝜏 max
0≤𝑙≤𝑛−1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
𝑙󵄩󵄩
󵄩
󵄩
󵄩

2

≤ 𝑇 ⋅ 𝑂 (𝜏
2
+ ℎ
2
)

2

. (51)

From the discrete initial conditions, we know that 𝑒0 = 0;
then we have

𝐵
0
= 𝑂 (𝜏

2
+ ℎ
2
)

2

. (52)

Therefore,

𝐵
𝑛
≤ 𝑂 (𝜏

2
+ ℎ
2
)

2

+ 𝐶𝜏

𝑛−1

∑

𝑙=0

𝐵
𝑙
. (53)

According to Lemma 7, we get

𝐵
𝑛
≤ 𝑂 (𝜏

2
+ ℎ
2
)

2

. (54)

It implies

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩
≤ 𝑂 (𝜏

2
+ ℎ
2
) ,

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝑂 (𝜏

2
+ ℎ
2
) . (55)

It follows from (29) that
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝑂 (𝜏

2
+ ℎ
2
) . (56)

By Lemma 4, we have

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩∞

≤ 𝑂 (𝜏
2
+ ℎ
2
) . (57)

This completes the proof of Theorem 8.
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Figure 1: Wave graph of 𝑢 (𝑥, 𝑡) at various times when 𝑝 = 3 and
𝜏 = ℎ = 0.25.
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Figure 2: Wave graph of 𝑢 (𝑥, 𝑡) at various times when 𝑝 = 3 and
𝜏 = ℎ = 0.0625.

In order to prove the stability of the difference scheme, we
import the initial-boundary problem

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ (𝑢
𝑝
)
𝑥
= 𝜔 (𝑥, 𝑡) ,

𝑢 (𝑋
𝑙
, 𝑡) = 𝑢 (𝑋

𝑟
, 𝑡) = 0,

𝑢
𝑥
(𝑋
𝑙
, 𝑡) = 𝑢

𝑥
(𝑋
𝑟
, 𝑡) = 0,

𝑢
𝑥𝑥
(𝑋
𝑙
, 𝑡) = 𝑢

𝑥𝑥
(𝑋
𝑟
, 𝑡) = 0,

𝑡 ∈ [0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) + 𝜓 (𝑥) , 𝑥 ∈ [𝑋

𝑙
, 𝑋
𝑟
] ,

(58)

where 𝜔 (𝑥, 𝑡), 𝜓 (𝑥) are smooth enough.
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Figure 3: Wave graph of 𝑢 (𝑥, 𝑡) at various times when 𝑝 = 5 and
𝜏 = ℎ = 0.25.
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Figure 4: Wave graph of 𝑢 (𝑥, 𝑡) at various times when 𝑝 = 5 and
𝜏 = ℎ = 0.03125.

We propose the difference scheme of the problem (58)

(𝑈
𝑛

𝑗
)
𝑡̂
+ (𝑈

𝑛

𝑗
)
𝑥
+ (𝑈

𝑛

𝑗
)
𝑥𝑥𝑥

+ (𝑈
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+

𝑝

1 + 𝑝

{(𝑈
𝑛

𝑗
)

𝑝−1

(𝑈

𝑛

𝑗
)
𝑥
+ [(𝑈

𝑛

𝑗
)

𝑝−1

𝑈

𝑛

𝑗
]

𝑥

} + (𝜔
𝑛

𝑗
) = 0,

𝑈
0

𝑗
= 𝑈
0
(𝑥
𝑗
) + 𝜓
𝑗
, 0 ≤ 𝑗 ≤ 𝐽 − 1,



Journal of Applied Mathematics 7

Table 1: The errors estimated in the sense of 𝐿
∞
for 𝑝 = 3 at 𝑇 = 40.

ℎ 𝜏 ‖𝑒
𝑁
‖
∞

‖𝑒
𝑁
(ℎ, 𝜏)‖

∞
/‖𝑒
2𝑁
(ℎ/2, 𝜏/2)‖

∞

0.25 0.25 1.34986𝑒 − 002 —
0.125 0.125 3.42489𝑒 − 003 3.94134
0.0625 0.0625 8.59570𝑒 − 004 3.98441
0.03125 0.03125 2.15150𝑒 − 004 3.99521

Table 2: The errors estimated in the sense of 𝐿
∞
for 𝑝 = 5 at 𝑇 = 40.

ℎ 𝜏 ‖𝑒
𝑁
‖
∞

‖𝑒
𝑁
(ℎ, 𝜏)‖

∞
/‖𝑒
2𝑁
(ℎ/2, 𝜏/2)‖

∞

0.25 0.25 1.79985𝑒 − 002 —
0.125 0.125 4.56804𝑒 − 003 3.94009
0.0625 0.0625 1.14689𝑒 − 003 3.98299
0.03125 0.03125 2.87085𝑒 − 004 3.99494

𝑈
𝑛

0
= 𝑈
𝑛

𝐽
= 0, (𝑈

𝑛

0
)
𝑥
= (𝑈
𝑛

𝐽
)
𝑥
= 0,

(𝑈
𝑛

0
)
𝑥𝑥
= (𝑈
𝑛

𝐽
)
𝑥𝑥
= 0,

(59)

where 𝜔𝑛
𝑗
= 𝜔 (𝑥

𝑗
, 𝑡
𝑛
), 𝜓
𝑗
= 𝜓 (𝑥

𝑗
).

Similar to the proof of Theorem 8, we can prove the
stability Theorem 9.

Theorem 9. Supposing {𝑢𝑛
𝑗
} is the solution of the scheme (10)–

(12) and {𝑈𝑛
𝑗
} is the solution of the scheme (59), denote 𝜀𝑛

𝑗
=

𝑈
𝑛

𝑗
− 𝑢
𝑛

𝑗
. If the mesh steps ℎ, 𝜏 are small enough, we can get the

stability result

󵄩
󵄩
󵄩
󵄩
𝜀
𝑛󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝜀
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝐶(

󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩

2

+ 𝜏

𝑛−1

∑

𝑙=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜔
𝑙󵄩󵄩
󵄩
󵄩
󵄩

2

) . (60)

5. Numerical Validation

In this section, we conduct some numerical experiments to
verify theoretical results obtained in the previous sections.
We take 𝑋

𝑙
= −60, 𝑋

𝑟
= 90 and consider the two cases

𝑝 = 3, 5, respectively.
According to [16, 17], when 𝑝 = 3, the soliton solution is

as follows:

𝑢 (𝑥, 𝑡) =

1

4

√
−15 + 3√41

× sec ℎ2 1
4

√
−5 + √41

2

[𝑥 −

1

10

(5 + √41) 𝑡] ,

(61)

and the initial condition is

𝑢 (𝑥, 0) =

1

4

√
−15 + 3√41 sec ℎ2 1

4

√
−5 + √41

2

𝑥.
(62)

When 𝑝 = 5, the soliton solution is

𝑢 (𝑥, 𝑡) =
4

√
4

15

(−5 + √34)

× sec ℎ1
3

√
−5 + √34 [𝑥 −

1

10

(5 + √34) 𝑡] ,

(63)

and initial condition is

𝑢 (𝑥, 0) =
4

√
4

15

(−5 + √34) sec ℎ1
3

√
−5 + √34𝑥. (64)

Since the three-level implicit finite difference scheme
cannot start by itself, we need to select other two-level
schemes (such as the C-N Scheme) to get 𝑢1. Then, reusing
initial value 𝑢0, we apply the average implicit linear three-
level difference scheme (10)–(12) for the problem (4)–(6) to
work out 𝑢2, 𝑢3, . . .. Iterative method is not required for the
linear scheme, so it saves computing time.

First of all, we simulate the wave graph of the numerical
solution to the average linear implicit scheme (10)–(12).
The wave graph comparison of numerical solution 𝑢 (𝑥

𝑗
, 𝑡
𝑛
)

between different time step and space step at various times
is given in Figures 1, 2, 3, and 4 for 𝑝 = 3 and 𝑝 = 5. The
figures show that the height of thewave graph at different time
is almost identical. It implies that the energy is conservative.

Secondly, we conduct numerical simulations in different
time step and space step for 𝑝 = 3 and 𝑝 = 5, respectively,
when time is 40 s.We list some results in Tables 1 and 2 for𝑝 =
3 and 𝑝 = 5, respectively. All results show that the numerical
solution is 2nd-order convergent and unconditionally stable.
Meanwhile, we also list the conservative invariants 𝐸𝑛 at
different time in Tables 3 and 4 for 𝑝 = 3 and 𝑝 = 5.
These results testify that the studied scheme is conservative
for energy.

6. Conclusions

In brief, we first proposed an average linear implicit scheme
for the Generalized Rosenau-KdV equation, which has a
wide range of applications in various areas of scientific
researches.The solvability, convergence, energy conservation,
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Table 3: The energy of different time in different time step and space step for 𝑝 = 3.

(ℎ, 𝜏) 𝑇 = 10 s 𝑇 = 20 s 𝑇 = 30 s 𝑇 = 40 s
(0.25, 0.25) 1.682528993311382 1.682528993311723 1.682528993311437 1.682528993311429
(0.125, 0.125) 1.682543082559648 1.682543082567992 1.682543082564207 1.682543082565549
(0.0625, 0.0625) 1.682546611032036 1.682546611133070 1.682546611138651 1.682546611129625
(0.03125, 0.03125) 1.682547494622366 1.682547493895496 1.682547493110830 1.682547493646520

Table 4: The energy of different time in different time step and space step for 𝑝 = 5.

(ℎ, 𝜏) 𝑇 = 10 s 𝑇 = 20 s 𝑇 = 30 s 𝑇 = 40 s
(0.25, 0.25) 3.110674902410195 3.110674902410293 3.110674902409525 3.110674902410005
(0.125, 0.125) 3.110702938793859 3.110702938807032 3.110702938804688 3.110702938809395
(0.0625, 0.0625) 3.110709964290841 3.110709964308914 3.110709964158443 3.110709964168867
(0.03125, 0.03125) 3.110711721444649 3.110711720432934 3.110711717170060 3.110711718996421

and stability with 𝑂 (𝜏2 + ℎ2) of the discrete solutions were
analyzed in detail. Numerical simulations were carried out to
testify that the theoretical analyses are right and our scheme
is accurate and reliable.
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