Research Article

The Smarandache Curves on S_{1}^{2} and Its Duality on H_{0}^{2}

Atakan Tuğkan Yakut, ${ }^{1}$ Murat Savaş, ${ }^{2,3}$ and Tuğba Tamirci ${ }^{1}$
${ }^{1}$ Department of Mathematics, Arts and Sciences Faculty, Niğde University, 51240 Niğde, Turkey
${ }^{2}$ Department of Mathematics, Columbia University, New York, NY 10027, USA
${ }^{3}$ Department of Mathematics, Gazi University, 06500 Ankara, Turkey

Correspondence should be addressed to Murat Savaş; murat@math.columbia.edu
Received 20 March 2014; Revised 18 July 2014; Accepted 22 July 2014; Published 21 August 2014
Academic Editor: Fernando Simões
Copyright © 2014 Atakan Tuğkan Yakut et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce special Smarandache curves based on Sabban frame on S_{1}^{2} and we investigate geodesic curvatures of Smarandache curves on de Sitter and hyperbolic spaces. The existence of duality between Smarandache curves on de Sitter space and Smarandache curves on hyperbolic space is shown. Furthermore, we give examples of our main results.

1. Introduction

Curves as a subject of differential geometry have been intriguing for researchers throughout mathematical history and so they have been one of the interesting research fields. Regular curves play a central role in the theory of curves in differential geometry. In the theory of curves, there are some special curves such as Bertrand curves, Mannheim curves, involute and evolute curves, and pedal curves in which differential geometers are interested. A common approach to characterization of curves is to consider the relationship between the corresponding Frenet vectors of two curves. Bertrand and Mannheim curves are excellent examples for such cases. In the study of fundamental theory and the characterizations of space curves, the corresponding relations between the curves are a very fascinating problem. Recently, a new special curve is named according to the Sabban frame in the Euclidean unit sphere; Smarandache curve has been defined by Turgut and Yilmaz in Minkowski space-time [1]. Ali studied Smarandache curves with respect to the Sabban frame in Euclidean 3-space [2]. Then Taşköprü and Tosun studied Smarandache curves on S^{2} [3]. Smarandache curves have also been studied by many researchers [1, 47]. Smarandache curves are one of the most important tools in Smarandache geometry. Smarandache geometry has an important role in the theory of relativity and parallel universes. There are many results related to Smarandache curves
in Euclidean and Minkowski spaces, but Smarandache curves are getting more tedious and complicated when de Sitter space is concerned. A regular curve in Minkowski space-time, whose position vector is associated with Frenet frame vectors on another regular curve, is called a Smarandache curve [1].

In this paper, we define Smarandache curves on de Sitter surface according to the Sabban frame $\{\alpha, t, \eta\}$ in Minkowski 3 -space. We obtain the geodesic curvatures and the expressions for the Sabban frame's vectors of special Smarandache curves on de Sitter surface. Furthermore, we give some examples of special de Sitter and hyperbolic Smarandache curves in Minkowski 3-space.

2. Preliminaries

In this section, we prepare some definitions and basic facts. For basic concepts and details of properties, see [8, 9]. Consider \mathbb{R}^{3} as a three-dimensional vector space. For any vectors $\vec{x}=\left(x_{0}, x_{1}, x_{2}\right)$ and $\vec{y}=\left(y_{0}, y_{1}, y_{2}\right)$ in \mathbb{R}^{3} the pseudoscalar product of \vec{x} and \vec{y} is defined by $\langle\cdot, \cdot\rangle_{L}=-x_{0} y_{0}+$ $x_{1} y_{1}+x_{2} y_{2}$. It is called $E_{1}^{3}=\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle_{L}\right)$ Minkowski 3-space. Recall that a nonzero vector $\vec{x} \in E_{1}^{3}$ is spacelike if $\langle\vec{x}, \vec{x}\rangle_{L}>0$, timelike if $\langle\vec{x}, \vec{x}\rangle_{L}<0$, and null (lightlike) if $\langle\vec{x}, \vec{x}\rangle_{L}=0$. The norm (length) of a vector $\vec{x} \in E_{1}^{3}$ is given by $\|\vec{x}\|_{L}=$ $\sqrt{\left|\langle\vec{x}, \vec{x}\rangle_{L}\right|}$ and two vectors \vec{x} and \vec{y} are said to be orthogonal if $\langle\vec{x}, \vec{y}\rangle_{L}=0$. Next, we say that an arbitrary curve $\alpha=\alpha(s)$ in
E_{1}^{3} can locally be spacelike, timelike, or null (lightlike) if all of its velocity vectors $\alpha^{\prime}(s)$ are, respectively, spacelike, timelike, or null (lightlike) for all $s \in I$. If $\left\|\alpha^{\prime}(s)\right\|_{L} \neq 0$ for every $s \in I$, then α is a regular curve in E_{1}^{3}. A spacelike (timelike) regular curve α is parameterized by a pseudoarclength parameter s which is given by $\alpha: I \subset \mathbb{R} \rightarrow E_{1}^{3}$, and then the tangent vector $\alpha^{\prime}(s)$ along α has unit length; that is, $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle_{L}=$ $1\left(\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle_{L}=-1\right)$ for all $s \in I$.

Let $\vec{x}=\left(x_{0}, x_{1}, x_{2}\right), \vec{y}=\left(y_{0}, y_{1}, y_{2}\right) \in E_{1}^{3}$. The Lorentzian vector cross-product is defined as follows:

$$
\vec{x} \wedge \vec{y}=\left|\begin{array}{ccc}
-e_{0} & e_{1} & e_{2} \tag{1}\\
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2}
\end{array}\right|,
$$

and also the following relations hold:
(i) $\langle\vec{x} \wedge \vec{y}, \vec{z}\rangle_{L}=\left|\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ y_{0} & y_{1} & y_{2} \\ z_{0} & z_{1} & z_{2}\end{array}\right|$,
(ii) $\vec{x} \wedge(\vec{y} \wedge \vec{z})=\langle\vec{x}, \vec{y}\rangle_{L} \vec{z}-\langle\vec{x}, \vec{z}\rangle_{L} \vec{y}$,
where $\vec{x}=\left(x_{0}, x_{1}, x_{2}\right), \vec{y}=\left(y_{0}, y_{1}, y_{2}\right), \vec{z}=\left(z_{0}, z_{1}, z_{2}\right) \in E_{1}^{3}$.
We now define de Sitter 2-space by

$$
\begin{equation*}
S_{1}^{2}=\left\{\vec{x} \in \mathbb{R}_{1}^{3}:-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=1\right\} \tag{2}
\end{equation*}
$$

and hyperbolic space in Minkowski 3-space by

$$
\begin{equation*}
H_{0}^{2}=\left\{\vec{x} \in \mathbb{R}_{1}^{3}:-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=-1, x_{0}>0\right\} . \tag{3}
\end{equation*}
$$

We can express a new frame different from the Frenet frame for a regular curve. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed curve lying fully on S_{1}^{2}. Then its position vector α is spacelike, which implies that the tangent vector $\alpha^{\prime}=t$ is the unit timelike, spacelike, or null vector for all $s \in I$.

In our work, we are concerned with the vector $\alpha^{\prime}=t$ which may be the unit timelike or spacelike.

Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed curve lying fully on S_{1}^{2} for all $s \in I$ and its position vector α a unit spacelike vector; then $\alpha^{\prime}=t$ is a unit timelike and so η is a unit spacelike vector. In this case, the curve α is called a timelike curve. If $\alpha^{\prime}=t$ is a unit spacelike vector, then η is a unit timelike vector. In this case, the curve α is called a spacelike curve and we have an orthonormal Sabban frame $\{\alpha(s), t(s), \eta(s)\}$ along the curve α, where $\eta(s)=\alpha(s) \wedge t(s)$ is the unit spacelike or timelike vector. Then Frenet formulas of α are given by

$$
\left[\begin{array}{c}
\alpha^{\prime} \tag{4}\\
t^{\prime} \\
\eta^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\varepsilon & 0 & \varepsilon \kappa_{g} \\
0 & \varepsilon \kappa_{g} & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
t \\
\eta
\end{array}\right],
$$

where $\varepsilon= \pm 1$, the curve α is timelike for $\varepsilon=1$ and spacelike for $\varepsilon=-1$, and $\kappa_{g}(s)$ is the geodesic curvature of α on S_{1}^{2}, which is given by $\kappa_{g}(s)=\operatorname{det}\left(\alpha(s), t(s), t^{\prime}(s)\right)$, where s is the arc length parameter of α. This relation is also given by $[10,11]$ for $\varepsilon=1$. In particular, by using equation (ii), the following relations hold:

$$
\begin{equation*}
\varepsilon \alpha=t \wedge \eta, \quad t=\alpha \wedge \eta, \quad \eta=\alpha \wedge t \tag{5}
\end{equation*}
$$

Definition 1. A unit speed regular curve $\beta(\bar{s}(s))$ lying fully in Minkowski 3-space, whose position vector is associated with Sabban frame vectors on another regular curve $\alpha(s)$, is called a Smarandache curve [1].

Based on this definition, if a regular unit speed curve α : $I \subset \mathbb{R} \rightarrow S_{1}^{2}$ is lying fully on S_{1}^{2} for all $s \in I$ and its position vector α is a unit spacelike, then the Smarandache curve $\beta=$ $\beta(\bar{s}(s))$ of curve α is a regular unit speed curve lying fully on S_{1}^{2} or H_{0}^{2}. In this case we have the following:
(a) the Smarandache curve $\beta(\bar{s}(s))$ may be a timelike curve on S_{1}^{2},
(b) the Smarandache curve $\beta(\bar{s}(s))$ may be a spacelike curve on S_{1}^{2}, or
(c) the Smarandache curve $\beta(\bar{s}(s))$ is in H_{0}^{2} for all $s \in I$.

Let $\{\alpha, t, \eta\}$ and $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ be the moving Sabban frames of α and β, respectively. Then we have the following definitions and theorems of Smarandache curves $\beta=\beta(\bar{s}(s))$ given in Section 3. In Section 3, we deal with Smarandache curves on de Sitter and hyperbolic spaces for timelike curves. Similar results are given for spacelike curves in the Appendix.

3. De Sitter and Hyperbolic Smarandache Curves for Timelike Curves

In this section we give different Smarandache curves on de Sitter and hyperbolic spaces in Minkowski-space. Let α be a timelike curve on S_{1}^{2}; then the Smarandache partner curve of α is either timelike/spacelike or hyperbolic curve. We refer to the hyperbolic Smarandache curve of a timelike curve α as the hyperbolic duality of α.

To avoid repetition we use $\varepsilon= \pm 1$ in the following theorems in this section. If we take $\varepsilon=1$, then the Smarandache curve β is timelike or spacelike, and if we take $\varepsilon=-1$, then β is hyperbolic.

Definition 2. Let $\alpha=\alpha(s)$ be a unit speed regular timelike curve lying fully on S_{1}^{2}. The curve $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}(\beta: I \subset$ $\mathbb{R} \rightarrow H_{0}^{2}$) of α defined by

$$
\begin{equation*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} \alpha(s)+c_{2} \eta(s)\right) \tag{6}
\end{equation*}
$$

is called the $\alpha \eta$-Smarandache curve of α and fully lies on S_{1}^{2}, where $c_{1}, c_{2} \in \mathbb{R} \backslash\{0\}$ and $\varepsilon\left(c_{1}^{2}+c_{2}^{2}\right)=2$. If $\varepsilon=-1$; then the hyperbolic $\alpha \eta$-Smarandache curve is undefined since the equation $\left(c_{1}^{2}+c_{2}^{2}\right)=-2$ has no solution in \mathbb{R}.

Theorem 3. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ is the $\alpha \eta$-timelike Smarandache curve of α, then the relationships
between the Sabban frames of α and its $\alpha \eta$-Smarandache curve are given by

$$
\left[\begin{array}{c}
\beta \tag{7}\\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{c_{1}}{\sqrt{2}} & 0 & \frac{c_{2}}{\sqrt{2}} \\
0 & \varepsilon & 0 \\
\frac{c_{2} \varepsilon}{\sqrt{2}} & 0 & \frac{c_{1} \varepsilon}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
t \\
\eta
\end{array}\right]
$$

where $\varepsilon= \pm 1$ and its geodesic curvature κ_{g}^{β} is given by

$$
\begin{equation*}
\kappa_{g}^{\beta}=\frac{c_{1} \kappa_{g}-c_{2}}{\left|c_{1}+c_{2} \kappa_{g}\right|} . \tag{8}
\end{equation*}
$$

Proof. By taking the derivative of (6) with respect to s and by using (4), we get

$$
\begin{equation*}
\beta^{\prime}(\bar{s}(s))=\frac{d \beta}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{2}}\left(c_{1}+c_{2} \kappa_{g}\right) t \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
t_{\beta} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{2}}\left(c_{1}+c_{2} \kappa_{g}\right) t \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d \bar{s}}{d s}=\frac{\left|c_{1}+c_{2} \kappa_{g}\right|}{\sqrt{2}} . \tag{11}
\end{equation*}
$$

Hence, the unit timelike tangent vector of the curve β is given by

$$
\begin{equation*}
t_{\beta}=\varepsilon t, \tag{12}
\end{equation*}
$$

where $\varepsilon=1$ if $c_{1}+c_{2} \kappa_{g}>0$ for all s and $\varepsilon=-1$ if $c_{1}+c_{2} \kappa_{g}<0$ for all s. From (6) and (12) we get

$$
\begin{equation*}
\eta_{\beta}=\beta \wedge t_{\beta}=\frac{\varepsilon}{\sqrt{2}}\left(c_{2} \alpha+c_{1} \eta\right) \tag{13}
\end{equation*}
$$

It is easily seen that η_{β} is a unit spacelike vector. On the other hand, differentiating (12) with respect to s, we find

$$
\begin{equation*}
\frac{d t_{\beta}}{d \bar{s}} \frac{d \bar{s}}{d s}=\varepsilon\left(\alpha+\kappa_{g} \eta\right) \tag{14}
\end{equation*}
$$

and by combining (11) and (14) we have

$$
\begin{equation*}
t_{\beta}^{\prime}=\frac{\sqrt{2} \varepsilon}{\left|c_{1}+c_{2} \kappa_{g}\right|}\left(\alpha+\kappa_{g} \eta\right) \tag{15}
\end{equation*}
$$

Consequently, the geodesic curvature κ_{g}^{β} of the curve $\beta=\beta(\bar{s})$ is given by

$$
\begin{equation*}
\kappa_{g}^{\beta}=\operatorname{det}\left(\beta, t_{\beta}, t_{\beta}^{\prime}\right)=\frac{c_{1} \kappa_{g}-c_{2}}{\left|c_{1}+c_{2} \kappa_{g}\right|} . \tag{16}
\end{equation*}
$$

Corollary 4. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2}. Then the $\alpha \eta$-spacelike Smarandache curve $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ of α does not exist.

Definition 5. Let $\alpha=\alpha(s)$ be a regular unit speed timelike curve lying fully on S_{1}^{2}. Then the αt-Smarandache curve β : $I \subset \mathbb{R} \rightarrow S_{1}^{2}\left(\beta: I \subset \mathbb{R} \rightarrow H_{0}^{2}\right)$ of α is defined by

$$
\begin{equation*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} \alpha(s)+c_{2} t(s)\right), \tag{17}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R} \backslash\{0\}$ and $\varepsilon\left(c_{1}^{2}-c_{2}^{2}\right)=2$.
Theorem 6. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}(\beta: I \subset \mathbb{R} \rightarrow$ H_{0}^{2}) is the α t-timelike (hyperbolic) Smarandache curve of α, then its frame $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ is given by

$$
\left[\begin{array}{c}
\beta \tag{18}\\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{c_{1}}{\sqrt{2}} & \frac{c_{2}}{\sqrt{2}} & 0 \\
\frac{c_{2}}{\sqrt{2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)}} & \frac{c_{1}}{\sqrt{2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)}} & \frac{c_{2} \kappa_{g}}{\sqrt{2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)}} \\
\frac{-c_{2}^{2} \kappa_{g}}{\sqrt{2\left(2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)\right)}} & \frac{-c_{1} c_{2} \kappa_{g}}{\sqrt{2\left(2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)\right)}} & \frac{2}{\sqrt{2\left(2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)\right)}}
\end{array}\right]\left[\begin{array}{c}
\alpha \\
t \\
\eta
\end{array}\right] .
$$

The geodesic curvature κ_{g}^{β} of curve β is given by

$$
\begin{equation*}
\kappa_{g}^{\beta}=\frac{1}{\left(2-\varepsilon\left(c_{2}^{2} \kappa_{g}^{2}\right)\right)^{5 / 2}}\left(c_{2}^{2} \kappa_{g} \lambda_{1}-c_{1} c_{2} \kappa_{g} \lambda_{2}+2 \lambda_{3}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}=\varepsilon c_{2}^{3} \kappa_{g} \kappa_{g}^{\prime}+c_{1}\left(2-\varepsilon c_{2}^{2} \kappa_{g}^{2}\right) \\
& \lambda_{2}=\varepsilon c_{1} c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}+\left(c_{2}+c_{2} \kappa_{g}^{2}\right)\left(2-\varepsilon c_{2}^{2} \kappa_{g}^{2}\right) \tag{20}\\
& \lambda_{3}=\varepsilon c_{2}^{3} \kappa_{g}^{2} \kappa_{g}^{\prime}+\left(c_{1} \kappa_{g}+c_{2} \kappa_{g}^{\prime}\right)\left(2-\varepsilon c_{2}^{2} \kappa_{g}^{2}\right)
\end{align*}
$$

Proof. We take $\varepsilon=1$. By taking the derivative of (17) with respect to s and by using (4), we get

$$
\begin{equation*}
\beta^{\prime}(\bar{s}(s))=\frac{d \beta}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{2}}\left(c_{2} \alpha+c_{1} t+c_{2} \kappa_{g} \eta\right) \tag{21}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
t_{\beta} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{2}}\left(c_{2} \alpha+c_{1} t+c_{2} \kappa_{g} \eta\right) . \tag{22}
\end{equation*}
$$

Taking the Lorentzian inner product in (22) we have

$$
\begin{equation*}
\left\langle t_{\beta}, t_{\beta}\right\rangle_{L}\left(\frac{d \bar{s}}{d s}\right)^{2}=\frac{1}{2}\left(c_{2}^{2} \kappa_{g}^{2}-2\right) \tag{23}
\end{equation*}
$$

If $c_{2}^{2} \kappa_{g}^{2}<2$, then t_{β} is a timelike vector. So

$$
\begin{equation*}
\frac{d \bar{s}}{d s}=\sqrt{\frac{2-c_{2}^{2} \kappa_{g}^{2}}{2}} . \tag{24}
\end{equation*}
$$

Therefore, the unit timelike tangent vector of the curve β is given by

$$
\begin{equation*}
t_{\beta}=\frac{1}{\sqrt{2-c_{2}^{2} \kappa_{g}^{2}}}\left(c_{2} \alpha+c_{1} t+c_{2} \kappa_{g} \eta\right) \tag{25}
\end{equation*}
$$

On the other hand, from (17) and (25) it can be easily seen that

$$
\begin{equation*}
\eta_{\beta}=\beta \wedge t_{\beta}=\frac{1}{\sqrt{4-2 c_{2}^{2} \kappa_{g}^{2}}}\left(-c_{2}^{2} \kappa_{g} \alpha-c_{1} c_{2} \kappa_{g} t+2 \eta\right) \tag{26}
\end{equation*}
$$

is a unit spacelike vector. Differentiating (25) with respect to s, we obtain

$$
\begin{equation*}
\frac{d t_{\beta}}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\left(2-c_{2}^{2} \kappa_{g}^{2}\right)^{3 / 2}}\left(\lambda_{1} \alpha+\lambda_{2} t+\lambda_{3} \eta\right) \tag{27}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}=c_{2}^{3} \kappa_{g} \kappa_{g}^{\prime}+c_{1}\left(2-c_{2}^{2} \kappa_{g}^{2}\right) \\
& \lambda_{2}=c_{1} c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}+\left(c_{2}+c_{2} \kappa_{g}^{2}\right)\left(2-c_{2}^{2} \kappa_{g}^{2}\right) \tag{28}\\
& \lambda_{3}=c_{2}^{3} \kappa_{g}^{2} \kappa_{g}^{\prime}+\left(c_{1} \kappa_{g}+c_{2} \kappa_{g}^{\prime}\right)\left(2-c_{2}^{2} \kappa_{g}^{2}\right)
\end{align*}
$$

and by combining (24) and (26) we get

$$
\begin{equation*}
t_{\beta}^{\prime}=\frac{\sqrt{2}}{\left(2-c_{2}^{2} \kappa_{g}^{2}\right)^{2}}\left(\lambda_{1} \alpha+\lambda_{2} t+\lambda_{3} \eta\right) . \tag{29}
\end{equation*}
$$

Consequently, we have

$$
\begin{align*}
\kappa_{g}^{\beta} & =\operatorname{det}\left(\beta, t_{\beta}, t_{\beta}^{\prime}\right) \\
& =\frac{1}{\left(2-c_{2}^{2} \kappa_{g}^{2}\right)^{5 / 2}}\left(c_{2}^{2} \kappa_{g} \lambda_{1}-c_{1} c_{2} \kappa_{g} \lambda_{2}+2 \lambda_{3}\right) . \tag{30}
\end{align*}
$$

The proof of $\varepsilon=-1$ case is similar.

The following corollary is proved by the same methods as the above theorem.

Corollary 7. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ is the αt spacelike Smarandache curve of α, then its frame $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ is given by

$$
\begin{align*}
& {\left[\begin{array}{c}
\beta \\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]} \\
& \quad=\left[\begin{array}{ccc}
\frac{c_{1}}{\sqrt{2}} & \frac{c_{2}}{\sqrt{2}} & 0 \\
\frac{c_{2}}{\sqrt{c_{2}^{2} \kappa_{g}^{2}-2}} & \frac{c_{1}}{\sqrt{c_{2}^{2} \kappa_{g}^{2}-2}} & \frac{c_{2} \kappa_{g}}{\sqrt{c_{2}^{2} \kappa_{g}^{2}-2}} \\
\frac{-c_{2}^{2} \kappa_{g}}{\sqrt{2\left(c_{2}^{2} \kappa_{g}^{2}-2\right)}} & \frac{-c_{1} c_{2} \kappa_{g}}{\sqrt{2\left(c_{2}^{2} \kappa_{g}^{2}-2\right)}} & \frac{2}{\sqrt{2\left(c_{2}^{2} \kappa_{g}^{2}-2\right)}}
\end{array}\right] \\
& \tag{31}\\
& \quad \times\left[\begin{array}{c}
\alpha \\
t \\
\eta
\end{array}\right] .
\end{align*}
$$

The geodesic curvature κ_{g}^{β} of curve β is given by

$$
\begin{equation*}
\kappa_{g}^{\beta}=\frac{1}{\left(c_{2}^{2} \kappa_{g}^{2}-2\right)^{5 / 2}}\left(c_{2}^{2} \kappa_{g} \lambda_{1}-c_{1} c_{2} \kappa_{g} \lambda_{2}+2 \lambda_{3}\right), \tag{32}
\end{equation*}
$$

where λ_{1}, λ_{2}, and λ_{3} can be calculated as in Theorem 6.
Definition 8. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2}. Then the $t \eta$-Smarandache curve $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}\left(\beta: I \subset \mathbb{R} \rightarrow H_{0}^{2}\right)$ of α is defined by

$$
\begin{equation*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} t(s)+c_{2} \eta(s)\right), \tag{33}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R} \backslash\{0\}$ and $\varepsilon\left(-c_{1}^{2}+c_{2}^{2}\right)=2$.
Theorem 9. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}$
$\left(\beta: I \subset \mathbb{R} \rightarrow H_{0}^{2}\right.$) is the t η-timelike (hyperbolic) Smarandache curve of α, then its frame $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ is given by

$$
\begin{align*}
& {\left[\begin{array}{c}
\beta \\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]} \\
& \quad=\left[\begin{array}{ccc}
0 & \frac{c_{1}}{\sqrt{2}} & \frac{c_{2}}{\sqrt{2}} \\
\frac{c_{1}}{\sqrt{2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}}} & \frac{c_{2} \kappa_{g}}{\sqrt{2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}}} & \frac{c_{1} \kappa_{g}}{\sqrt{2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}}} \\
\frac{\varepsilon 2 \kappa_{g}}{\sqrt{2\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right)}} & \frac{c_{1} c_{2}}{\sqrt{2\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right)}} & \frac{-c_{1}^{2}}{\sqrt{2\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right)}}
\end{array}\right] \\
& \tag{34}\\
&
\end{align*}
$$

The geodesic curvature κ_{g}^{β} of curve β is given by

$$
\begin{equation*}
\kappa_{g}^{\beta}=\frac{1}{\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right)^{5 / 2}}\left(-\varepsilon 2 \kappa_{g} \lambda_{1}+c_{1} c_{2} \lambda_{2}-c_{1}^{2} \lambda_{3}\right), \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}=-2 c_{1} \kappa_{g} \kappa_{g}^{\prime}+c_{2} \kappa_{g}\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right), \\
& \lambda_{2}=-2 c_{2} \kappa_{g}^{2} \kappa_{g}^{\prime}+\left(c_{1}+c_{2} \kappa_{g}^{\prime}+c_{1} \kappa_{g}^{2}\right)\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right), \tag{36}\\
& \lambda_{3}=-2 c_{1} \kappa_{g}^{2} \kappa_{g}^{\prime}+\left(c_{2} \kappa_{g}^{2}+c_{1} \kappa_{g}^{\prime}\right)\left(2 \kappa_{g}^{2}-\varepsilon c_{1}^{2}\right) .
\end{align*}
$$

Proof. Let $\varepsilon=1$. By taking the derivative of (33) with respect to s and by using (4), we get

$$
\begin{equation*}
\beta^{\prime}(\bar{s}(s))=\frac{d \beta}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{2}}\left(c_{1} \alpha+c_{2} \kappa_{g} t+c_{1} \kappa_{g} \eta\right) \tag{37}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
t_{\beta} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{2}}\left(c_{1} \alpha+c_{2} \kappa_{g} t+c_{1} \kappa_{g} \eta\right) . \tag{38}
\end{equation*}
$$

Taking the Lorentzian inner product in (38) we have

$$
\begin{equation*}
\left\langle t_{\beta}, t_{\beta}\right\rangle_{L}\left(\frac{d \bar{s}}{d s}\right)^{2}=\frac{1}{2}\left(c_{1}^{2}-2 \kappa_{g}^{2}\right) \tag{39}
\end{equation*}
$$

and t_{β} is a unit timelike vector for $2 \kappa_{g}^{2}>c_{1}^{2}$. It follows that

$$
\begin{equation*}
\frac{d \bar{s}}{d s}=\sqrt{\frac{2 \kappa_{g}^{2}-c_{1}^{2}}{2}} . \tag{40}
\end{equation*}
$$

Therefore, the unit timelike tangent vector of the curve β is given by

$$
\begin{equation*}
t_{\beta}=\frac{1}{\sqrt{2 \kappa_{g}^{2}-c_{1}^{2}}}\left(c_{1} \alpha+c_{2} \kappa_{g} t+c_{1} \kappa_{g} \eta\right) \tag{41}
\end{equation*}
$$

On the other hand, from (33) and (41) it can be easily seen that

$$
\begin{equation*}
\eta_{\beta}=\beta \wedge t_{\beta}=\frac{1}{\sqrt{4 \kappa_{g}^{2}-2 c_{1}^{2}}}\left(2 \kappa_{g} \alpha+c_{1} c_{2} t-c_{1}^{2} \eta\right) \tag{42}
\end{equation*}
$$

is a unit spacelike vector. Differentiating (41) with respect to s, we find

$$
\begin{equation*}
\frac{d t_{\beta}}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\left(2 \kappa_{g}^{2}-c_{1}^{2}\right)^{3 / 2}}\left(\lambda_{1} \alpha+\lambda_{2} t+\lambda_{3} \eta\right) \tag{43}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}=-2 c_{1} \kappa_{g} \kappa_{g}^{\prime}+c_{2} \kappa_{g}\left(2 \kappa_{g}^{2}-c_{1}^{2}\right) \\
& \lambda_{2}=-2 c_{2} \kappa_{g}^{2} \kappa_{g}^{\prime}+\left(c_{1}+c_{2} \kappa_{g}^{\prime}+c_{1} \kappa_{g}^{2}\right)\left(2 \kappa_{g}^{2}-c_{1}^{2}\right) \tag{44}\\
& \lambda_{3}=-2 c_{1} \kappa_{g}^{2} \kappa_{g}^{\prime}+\left(c_{2} \kappa_{g}^{2}+c_{1} \kappa_{g}^{\prime}\right)\left(2 \kappa_{g}^{2}-c_{1}^{2}\right)
\end{align*}
$$

and by combining (40) and (43) we get

$$
\begin{equation*}
t_{\beta}^{\prime}=\frac{\sqrt{2}}{\left(2 \kappa_{g}^{2}-c_{1}^{2}\right)^{2}}\left(\lambda_{1} \alpha+\lambda_{2} t+\lambda_{3} \eta\right) \tag{45}
\end{equation*}
$$

As a result, we have

$$
\begin{align*}
\kappa_{g}^{\beta} & =\operatorname{det}\left(\beta, t_{\beta}, t_{\beta}^{\prime}\right) \\
& =\frac{1}{\left(2 \kappa_{g}^{2}-c_{1}^{2}\right)^{5 / 2}}\left(-2 \kappa_{g} \lambda_{1}+c_{1} c_{2} \lambda_{2}-c_{1}^{2} \lambda_{3}\right) . \tag{46}
\end{align*}
$$

The proof of $\varepsilon=-1$ case is similar.
Corollary 10. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ is the $t \eta$ spacelike Smarandache curve of α, then its frame $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ is given by

$$
\begin{align*}
& {\left[\begin{array}{c}
\beta \\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]} \\
& \quad=\left[\begin{array}{ccc}
0 & \frac{c_{1}}{\sqrt{2}} & \frac{c_{2}}{\sqrt{2}} \\
\frac{c_{1}}{\sqrt{c_{1}^{2}-2 \kappa_{g}^{2}}} & \frac{c_{2} \kappa_{g}}{\sqrt{c_{1}^{2}-2 \kappa_{g}^{2}}} & \frac{c_{1} \kappa_{g}}{\sqrt{c_{1}^{2}-2 \kappa_{g}^{2}}} \\
\frac{\varepsilon 2 \kappa_{g}}{\sqrt{2\left(c_{1}^{2}-2 \kappa_{g}^{2}\right)}} & \frac{c_{1} c_{2}}{\sqrt{2\left(c_{1}^{2}-2 \kappa_{g}^{2}\right)}} & \frac{-c_{1}^{2}}{\sqrt{2\left(c_{1}^{2}-2 \kappa_{g}^{2}\right)}}
\end{array}\right] \\
& \tag{47}\\
& \quad \times\left[\begin{array}{c}
\alpha \\
t \\
\eta
\end{array}\right] .
\end{align*}
$$

The geodesic curvature κ_{g}^{β} of curve β is given by

$$
\begin{equation*}
\kappa_{g}^{\beta}=\frac{1}{\left(c_{1}^{2}-2 \kappa_{g}^{2}\right)^{5 / 2}}\left(-2 \kappa_{g} \lambda_{1}+c_{1} c_{2} \lambda_{2}-c_{1}^{2} \lambda_{3}\right) \tag{48}
\end{equation*}
$$

where λ_{1}, λ_{2}, and λ_{3} can be calculated as in Theorem 9 .
Definition 11. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2}. Then the $\alpha t \eta$-Smarandache
curve $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}\left(\beta: I \subset \mathbb{R} \rightarrow H_{0}^{2}\right)$ of α is defined by

$$
\begin{equation*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{3}}\left(c_{1} \alpha(s)+c_{2} t(s)+c_{3} \eta(s)\right), \tag{49}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3} \in \mathbb{R} \backslash\{0\}$ and $\varepsilon\left(c_{1}^{2}-c_{2}^{2}+c_{3}^{2}\right)=3$.
Theorem 12. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}(\beta: I \subset \mathbb{R} \rightarrow$ H_{0}^{2}) is the α t η-timelike (hyperbolic) Smarandache curve of α, then its frame $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ is given by

$$
\left[\begin{array}{c}
\beta \tag{50}\\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{c_{1}}{\sqrt{3}} & \frac{c_{2}}{\sqrt{3}} & \frac{c_{3}}{\sqrt{3}} \\
\frac{c_{2}}{\sqrt{\varepsilon A}} & \frac{c_{1}+c_{3} \kappa_{g}}{\sqrt{\varepsilon A}} & \frac{c_{2} \kappa_{g}}{\sqrt{\varepsilon A}} \\
\frac{-c_{2}^{2} \kappa_{g}+c_{3}\left(c_{1}+c_{3} \kappa_{g}\right)}{\sqrt{3 \varepsilon A}} & \frac{-c_{1} c_{2} \kappa_{g}+c_{2} c_{3}}{\sqrt{3 \varepsilon A}} & \frac{c_{1}\left(c_{1}+c_{3} \kappa_{g}\right)-c_{2}^{2}}{\sqrt{3 \varepsilon A}}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
t \\
\eta
\end{array}\right]
$$

where $A=\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}$. If we take $\varepsilon=1$ or -1 , then the Smarandache curve β is timelike or hyperbolic, respectively. Furthermore, the geodesic curvature κ_{g}^{β} of curve β is given by

$$
\begin{align*}
\kappa_{g}^{\beta}= & \left(\left(c_{2}^{2} \kappa_{g}-c_{3}^{2} \kappa_{g}-c_{1} c_{3}\right) \lambda_{1}+\left(-c_{1} c_{2} \kappa_{g}+c_{2} c_{3}\right) \lambda_{2}\right. \\
& \left.+\left(c_{1}^{2}+c_{1} c_{3} \kappa_{g}-c_{2}^{2}\right) \lambda_{3}\right) \\
\times & \left(\left(\varepsilon\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)\right)^{5 / 2}\right)^{-1}, \tag{51}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda_{1}=\varepsilon(c_{2}\left(-c_{3} \kappa_{g}^{\prime}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}\right) \\
&\left.+\left(c_{1}+c_{3} \kappa_{g}\right)\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)\right) \\
& \lambda_{2}=\varepsilon(\left(c_{1}+c_{3} \kappa_{g}\right)\left(-c_{3} \kappa_{g}^{\prime}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}\right) \\
&\left.+\left(c_{2}+c_{3} \kappa_{g}^{\prime}+c_{2} \kappa_{g}^{2}\right)\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)\right), \\
& \lambda_{3}=\varepsilon\left(c_{2} \kappa_{g}\left(-c_{3} \kappa_{g}^{\prime}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}\right)\right. \\
&+\left(\kappa_{g}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2} \kappa_{g}^{\prime}\right) \\
&\left.\quad \times\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)\right) . \tag{52}
\end{align*}
$$

Proof. We take $\varepsilon=1$. By taking the derivative of (49) with respect to s and using (4), we get

$$
\begin{equation*}
\beta^{\prime}(\bar{s}(s))=\frac{d \beta}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{3}}\left(c_{2} \alpha+\left(c_{1}+c_{3} \kappa_{g}\right) t+c_{2} \kappa_{g} \eta\right) \tag{53}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
t_{\beta} \frac{d \bar{s}}{d s}=\frac{1}{\sqrt{3}}\left(c_{2} \alpha+\left(c_{1}+c_{3} \kappa_{g}\right) t+c_{2} \kappa_{g} \eta\right) \tag{54}
\end{equation*}
$$

Taking the Lorentzian inner product in (54) we have

$$
\begin{equation*}
\left\langle t_{\beta}, t_{\beta}\right\rangle_{L}\left(\frac{d \bar{s}}{d s}\right)^{2}=\frac{1}{3}\left(c_{2}^{2}+c_{2}^{2} \kappa_{g}^{2}-\left(c_{1}+c_{3} \kappa_{g}\right)^{2}\right) \tag{55}
\end{equation*}
$$

For $\left(c_{1}+c_{3} \kappa_{g}\right)^{2}>c_{2}^{2}+c_{2}^{2} \kappa_{g}^{2}, t_{\beta}$ is a unit timelike vector. It follows that

$$
\begin{equation*}
\frac{d \bar{s}}{d s}=\sqrt{\frac{\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}}{3}} \tag{56}
\end{equation*}
$$

Therefore, the unit timelike tangent vector of the curve β is given by

$$
\begin{equation*}
t_{\beta}=\frac{1}{\sqrt{\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}}}\left(c_{2} \alpha+\left(c_{1}+c_{3} \kappa_{g}\right) t+c_{2} \kappa_{g} \eta\right) . \tag{57}
\end{equation*}
$$

On the other hand, taking the cross-product of (49) with (57) it can be easily seen that

$$
\begin{align*}
\eta_{\beta}= & \beta \wedge t_{\beta} \\
= & \left(\left(-c_{2}^{2} \kappa_{g}+c_{3}\left(c_{1}+c_{3} \kappa_{g}\right)\right) \alpha+\left(c_{2} c_{3}-c_{1} c_{2} \kappa_{g}\right) t\right. \tag{60}\\
& \left.+\left(c_{1}\left(c_{1}+c_{3} \kappa_{g}\right)-c_{2}^{2}\right) \eta\right) \tag{58}\\
& \times\left(\sqrt{3\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-3 c_{2}^{2}-3 c_{2}^{2} \kappa_{g}^{2}}\right)^{-1} \tag{61}
\end{align*}
$$

This means that the η_{β} is a unit spacelike vector. In order to obtain the tangent vector of β let us differentiate (57) with respect to s. We find

$$
\begin{equation*}
\frac{d t_{\beta}}{d \bar{s}} \frac{d \bar{s}}{d s}=\frac{1}{\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)^{3 / 2}}\left(\lambda_{1} \alpha+\lambda_{2} t+\lambda_{3} \eta\right) \tag{62}
\end{equation*}
$$

where

$$
\begin{aligned}
\lambda_{1}= & c_{2}\left(-c_{3} \kappa_{g}^{\prime}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}\right) \\
& +\left(c_{1}+c_{3} \kappa_{g}\right)\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right) \\
\lambda_{2}= & \left(c_{1}+c_{3} \kappa_{g}\right)\left(-c_{3} \kappa_{g}^{\prime}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}\right) \\
& +\left(c_{2}+c_{3} \kappa_{g}^{\prime}+c_{2} \kappa_{g}^{2}\right)\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{3}= & c_{2} \kappa_{g}\left(-c_{3} \kappa_{g}^{\prime}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2}^{2} \kappa_{g} \kappa_{g}^{\prime}\right) \\
& +\left(\kappa_{g}\left(c_{1}+c_{3} \kappa_{g}\right)+c_{2} \kappa_{g}^{\prime}\right) \\
& \times\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right),
\end{aligned}
$$

and by combining (56) and (59) we get

$$
t_{\beta}^{\prime}=\frac{\sqrt{3}}{\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)^{2}}\left(\lambda_{1} \alpha+\lambda_{2} t+\lambda_{3} \eta\right)
$$

Finally, the geodesic curvature κ_{g}^{β} of the curve $\beta=\beta(\bar{s}(s))$ is given by

$$
\begin{align*}
\kappa_{g}^{\beta}= & \operatorname{det}\left(\beta, t_{\beta}, t_{\beta}^{\prime}\right) \\
= & \left(\left(c_{2}^{2} \kappa_{g}-c_{3}^{2} \kappa_{g}-c_{1} c_{3}\right) \lambda_{1}+\left(-c_{1} c_{2} \kappa_{g}+c_{2} c_{3}\right) \lambda_{2}\right. \\
& \left.+\left(c_{1}^{2}+c_{1} c_{3} \kappa_{g}-c_{2}^{2}\right) \lambda_{3}\right) \tag{59}\\
& \times\left(\left(\left(c_{1}+c_{3} \kappa_{g}\right)^{2}-c_{2}^{2}-c_{2}^{2} \kappa_{g}^{2}\right)^{5 / 2}\right)^{-1}
\end{align*}
$$

The proof of $\varepsilon=-1$ case is similar.
Corollary 13. Let $\alpha: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ be a regular unit speed timelike curve lying fully on S_{1}^{2} with the Sabban frame $\{\alpha, t, \eta\}$ and geodesic curvature κ_{g}. If $\beta: I \subset \mathbb{R} \rightarrow S_{1}^{2}$ is the α t η spacelike Smarandache curve of α, then, for $A=c_{2}^{2}+c_{2}^{2} \kappa_{g}^{2}-$ $\left(c_{1}+c_{3} \kappa_{g}\right)^{2}$, its frame $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ is given by

$$
\left[\begin{array}{c}
\beta \tag{63}\\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{c_{1}}{\sqrt{3}} & \frac{c_{2}}{\sqrt{3}} & \frac{c_{3}}{\sqrt{3}} \\
\frac{c_{2}}{\sqrt{A}} & \frac{c_{1}+c_{3} \kappa_{g}}{\sqrt{A}} & \frac{c_{2} \kappa_{g}}{\sqrt{A}} \\
\frac{-c_{2}^{2} \kappa_{g}+c_{3}\left(c_{1}+c_{3} \kappa_{g}\right)}{\sqrt{3 A}} & \frac{-c_{1} c_{2} \kappa_{g}+c_{2} c_{3}}{\sqrt{3 A}} & \frac{c_{1}\left(c_{1}+c_{3} \kappa_{g}\right)-c_{2}^{2}}{\sqrt{3 A}}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
t \\
\eta
\end{array}\right]
$$

Furthermore, the geodesic curvature κ_{g}^{β} of curve β is given by

$$
\begin{align*}
\kappa_{g}^{\beta}= & \left(\left(c_{2}^{2} \kappa_{g}-c_{3}^{2} \kappa_{g}-c_{1} c_{3}\right) \lambda_{1}+\left(-c_{1} c_{2} \kappa_{g}+c_{2} c_{3}\right) \lambda_{2}\right. \\
& \left.+\left(c_{1}^{2}+c_{1} c_{3} \kappa_{g}-c_{2}^{2}\right) \lambda_{3}\right) \tag{64}\\
& \times\left(\left(c_{2}^{2}+c_{2}^{2} \kappa_{g}^{2}-\left(c_{1}+c_{3} \kappa_{g}\right)^{2}\right)^{5 / 2}\right)^{-1}
\end{align*}
$$

where λ_{1}, λ_{2}, and λ_{3} can be calculated as in Theorem 12.

Example 14. Let us consider a unit speed timelike curve α on S_{1}^{2} defined by

$$
\begin{equation*}
\alpha(s)=(\sqrt{2} \sinh s, \cosh s, \sinh s) \tag{65}
\end{equation*}
$$

Then the orthonormal Sabban frame $\{\alpha(s), t(s), \eta(s)\}$ of α can be calculated as follows:

$$
\begin{align*}
& \alpha(s)=(\sqrt{2} \sinh s, \cosh s, \sinh s) \\
& t(s)=(\sqrt{2} \cosh s, \sinh s, \cosh s) \tag{66}\\
& \eta(s)=(-1,0,-\sqrt{2})
\end{align*}
$$

The geodesic curvature of α is 0 . In terms of the definitions, we obtain Smarandache curves according to Sabban frame on S_{1}^{2}.

Firstly, when we take $c_{1}=1$ and $c_{2}=1$, then the timelike $\alpha \eta$-Smarandache curve is given by

$$
\begin{equation*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}(\sqrt{2} \sinh s-1, \cosh s, \sinh s-\sqrt{2}) \tag{67}
\end{equation*}
$$

and the Sabban frame of the $\alpha \eta$-Smarandache curve is given by

$$
\left[\begin{array}{c}
\beta \tag{68}\\
t_{\beta} \\
\eta_{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
t \\
\eta
\end{array}\right]
$$

and its geodesic curvature κ_{g}^{β} is -1 . Here the hyperbolic $\alpha \eta$ Smarandache curve is undefined.

Secondly, when we take $c_{1}=3$ and $c_{2}=\sqrt{7}$, then the timelike αt-Smarandache curve is given by

$$
\begin{aligned}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}(& 3 \sqrt{2} \sinh s+\sqrt{14} \cosh s \\
& 3 \cosh s+\sqrt{7} \sinh s, 3 \sinh s+\sqrt{7} \cosh s)
\end{aligned}
$$

and if we take $c_{1}=\sqrt{7}$ and $c_{2}=3$, then the hyperbolic αt Smarandache curve is given by

$$
\begin{align*}
& \beta(\bar{s}(s))=\frac{1}{\sqrt{2}}(\sqrt{14} \sinh s+3 \sqrt{2} \cosh s \\
&\sqrt{7} \cosh s+3 \sinh s, \sqrt{7} \sinh s+3 \cosh s) \tag{70}
\end{align*}
$$

Thirdly, when we take $c_{1}=\sqrt{2}$ and $c_{2}=2$, then the spacelike $t \eta$-Smarandache curve is given by

$$
\begin{equation*}
\beta(\bar{s}(s))=(\sqrt{2}(\cosh s-1), \sinh s, \cosh s-2) \tag{71}
\end{equation*}
$$

and if we take $c_{1}=2$ and $c_{2}=\sqrt{2}$, then the hyperbolic $t \eta$ Smarandache curve is given by

$$
\begin{equation*}
\beta(\bar{s}(s))=(2 \cosh s-1, \sqrt{2} \sinh s, \sqrt{2}(\cosh s-1)) . \tag{72}
\end{equation*}
$$

Finally, when we take $c_{1}=2, c_{2}=\sqrt{2}$, and $c_{3}=1$, then the $\alpha t \eta$-Smarandache curve is a timelike curve and given by

$$
\begin{align*}
& \beta(\bar{s}(s))=\frac{1}{\sqrt{3}}(2 \sqrt{2} \sinh s+2 \cosh s-1 \\
& 2 \cosh s+\sqrt{2} \sinh s \tag{73}\\
&2 \sinh s+\sqrt{2} \cosh s-\sqrt{2})
\end{align*}
$$

$$
\begin{equation*}
\alpha(s)=\left(\frac{(s-1)^{2}}{2}, \frac{(s-1)^{2}}{2}-1, s-1\right) \tag{A.2}
\end{equation*}
$$

Figure 1: Smarandache curves of a timelike curve α.

Table 1: Classification of the Smarandache curves for spacelike curve α.
α is a spacelike curve on S_{1}^{2}
β is a spacelike or timelike curve $\quad \beta$ is a hyperbolic curve
$\alpha \eta$
$\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} \alpha+c_{2} \eta\right)$,

	$c_{1}^{2}-c_{2}^{2}=2$
$\alpha t \quad$	$\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} \alpha+c_{2} t\right)$,

	$c_{1}^{2}-c_{2}^{2}=2$
$\alpha t \quad$	$\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} \alpha+c_{2} t\right)$,

$c_{1}^{2}+c_{2}^{2}=2$
$\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} t+c_{2} \eta\right)$,
undefined

	$c_{1}^{2}+c_{2}^{2}=2$	
$t \eta$	$\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} t+c_{2} \eta\right)$,	$\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(c_{1} t+c_{2} \eta\right)$,
	$c_{1}^{2}-c_{2}^{2}=2$	$c_{1}^{2}-c_{2}^{2}=-2$
$\alpha t \eta$	$\beta(\bar{s}(s))=\frac{1}{\sqrt{3}}\left(c_{1} \alpha+c_{2} t+c_{3} \eta\right)$,	$\beta(\bar{s}(s))=\frac{1}{\sqrt{3}}\left(c_{1} \alpha+c_{2} t+c_{3} \eta\right)$,
	$c_{1}^{2}+c_{2}^{2}-c_{3}^{2}=3$	$c_{1}^{2}+c_{2}^{2}-c_{3}^{2}=-3$

Then the orthonormal Sabban frame $\{\alpha(s), t(s), \eta(s)\}$ of α can be calculated as follows:

$$
\begin{align*}
& \alpha(s)=\left(\frac{(s-1)^{2}}{2}, \frac{(s-1)^{2}}{2}-1, s-1\right) \\
& t(s)=(s-1, s-1,1) \tag{A.3}\\
& \eta(s)=\left(\frac{(s-1)^{2}}{2}+1, \frac{(s-1)^{2}}{2}, s-1\right) .
\end{align*}
$$

The geodesic curvature of α is expressed as

$$
\begin{equation*}
\kappa_{g}(s)=-1 \tag{A.4}
\end{equation*}
$$

In terms of the definitions, we obtain Smarandache curves according to Sabban frame on S_{1}^{2}. Firstly, we take $c_{1}=2$ and $c_{2}=\sqrt{2}$; then the spacelike $\alpha \eta$-Smarandache curve is given by

$$
\begin{align*}
\beta(\bar{s}(s))= & \left(\frac{\sqrt{2}+1}{2}\right)(s-1)^{2}+1 \\
& \left.\left(\frac{\sqrt{2}+1}{2}\right)(s-1)^{2}-\sqrt{2},(s-1)(\sqrt{2}+1)\right) \tag{A.5}
\end{align*}
$$

and also when we take $c_{1}=\sqrt{2}$ and $c_{2}=2$, then the hyperbolic $\alpha \eta$-Smarandache curve is given by

$$
\begin{align*}
\beta(\bar{s}(s))= & \left(\left(\frac{\sqrt{2}+1}{2}\right)(s-1)^{2}+\sqrt{2}\right. \\
& \left.\left(\frac{\sqrt{2}+1}{2}\right)(s-1)^{2}-1,(s-1)(\sqrt{2}+1)\right) . \tag{A.6}
\end{align*}
$$

The $\left\{\beta, t_{\beta}, \eta_{\beta}\right\}$ Sabban frames and geodesic curvatures κ_{g}^{β} are similar to the above section. Secondly, we take $c_{1}=1$ and $c_{2}=1$; then the spacelike Smarandache- αt curve is given by

$$
\begin{equation*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}\left(\frac{(s-1)^{2}}{2}+s-1, \frac{(s-1)^{2}}{2}+s-2, s\right) . \tag{A.7}
\end{equation*}
$$

Here the hyperbolic αt-Smarandache curve is undefined.
Thirdly, we take $c_{1}=2$ and $c_{2}=\sqrt{2}$; then the spacelike $t \eta$-Smarandache curve is given by

$$
\begin{align*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}(& \frac{\sqrt{2}}{2}(s-1)^{2}+2 s-2+\sqrt{2} \\
& \left.\frac{\sqrt{2}}{2}(s-1)^{2}+2 s-2, \sqrt{2}(s-1)+2\right) \tag{A.8}
\end{align*}
$$

and also when we take $c_{1}=\sqrt{2}$ and $c_{2}=2$, then the hyperbolic $t \eta$-Smarandache curve is given by

$$
\begin{align*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{2}}(& (s-1)^{2}+\sqrt{2}(s-1)+2 \\
& \left.(s-1)^{2}+\sqrt{2}(s-1), 2(s-1)+\sqrt{2}\right) \tag{A.9}
\end{align*}
$$

Finally, when $c_{1}=2, c_{2}=\sqrt{2}$, and $c_{3}=\sqrt{3}$, then the $\alpha t \eta$ Smarandache curve is a spacelike curve and is given by

$$
\begin{gather*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{3}}\left((s-1)^{2}\left(\frac{\sqrt{3}}{2}+1\right)+\sqrt{2}(s-1)+\sqrt{3}\right. \\
(s-1)^{2}\left(\frac{\sqrt{3}}{2}+1\right)+\sqrt{2}(s-1)-2 \\
(s-1)(\sqrt{3}+2)+\sqrt{2}) \tag{A.10}
\end{gather*}
$$

Figure 2: Smarandache curves of a spacelike curve α.
and also when we take $c_{1}=2, c_{2}=\sqrt{2}$, and $c_{3}=3$, then the hyperbolic $\alpha t \eta$-Smarandache curve is given by

$$
\begin{align*}
\beta(\bar{s}(s))=\frac{1}{\sqrt{3}} & \left(\frac{5}{2}(s-1)^{2}+\sqrt{2}(s-1)+3,\right. \\
& \frac{5}{2}(s-1)^{2}+\sqrt{2}(s-1)-3, \tag{A.11}\\
& 5(s-1)+\sqrt{2}) .
\end{align*}
$$

The Sabban frames and geodesic curvatures of the $\alpha \eta, \alpha t$, $t \eta$ and $\alpha t \eta$-Smarandache curves can be easily obtained by using methods similar to those in the previous section. Furthermore, we give curve the α and its Smarandache partners in Figure 2.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] M. Turgut and S. Yilmaz, "Smarandache curves in Minkowski space-time," International Journal of Mathematical Combinatorics, vol. 3, pp. 51-55, 2008.
[2] A. T. Ali, "Special smarandache curves in the euclidean space," International Journal of Mathematical Combina Torics, vol. 2, pp. 30-36, 2010.
[3] K. Taşköprü and M. Tosun, "Smarandache curves on S^{2}," Boletim da Sociedade Paranaense de Matemática, vol. 32, no. 1, pp. 51-59, 2014.
[4] E. B. Koc Ozturk, U. Ozturk, K. Ilarslan, and E. Nesovic, "On pseudohyperbolical Smarandache curves in Minkowski 3space," International Journal of Mathematics and Mathematical Sciences, vol. 2013, Article ID 658670, 7 pages, 2013.
[5] O. Bektas and S. Yuce, "Special smarandache curves according to darboux frame in Euclidean 3-space," Romanian Journal of Mathematics and Computer Science, vol. 3, no. 1, pp. 48-59, 2013.
[6] M. Cetin, Y. Tuncer, and M. K. Karacan, "Smarandache curves according to bishop frame in euclidean 3-space," General Mathematics Notes, vol. 20, no. 2, pp. 50-66, 2014.
[7] T. Kahraman, M. Onder, and H. H. Ugurlu, "Dual smarandache curves and smarandache ruled surfaces," Mathematical Sciences and Applications E, vol. 2, no. 1, pp. 83-98, 2014.
[8] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, San Diego, Calif, USA, 1983.
[9] T. Sato, "Pseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz-Minkowski space," Journal of Geometry, vol. 103, no. 2, pp. 319-331, 2012.
[10] S. Izumiya, D. H. Pei, T. Sano, and E. Torii, "Evolutes of hyperbolic plane curves," Acta Mathematica Sinic, vol. 20, no. 3, pp. 543-550, 2004.
[11] V. Asil, T. Korpinar, and S. Bas, "Inextensible ows of timelike curves with Sabban frame in S21," Siauliai Mathematical Seminar, vol. 7, no. 15, pp. 5-12, 2012.

