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We study the minimax inequalities for set-valued mappings with hierarchical process and propose two versions of minimax
inequalities in topological vector spaces settings. As applications, we discuss the existent results of solutions for set equilibrium
problems. Some examples are given to illustrate the established results.

1. Introduction and Preliminaries

Let 𝑋 be a nonempty set in a Hausdorff topological vector
space, 𝑍 a Hausdorff topological vector space, and 𝐶 ⊂ 𝑍

a closed convex and pointed cone with apex at the origin
with int𝐶 ̸= 0; that is, 𝐶 is properly closed with int𝐶 ̸= 0 and
satisfies 𝜆𝐶 ⊆ 𝐶, for all 𝜆 > 0; 𝐶 + 𝐶 ⊆ 𝐶; and 𝐶 ∩ (−𝐶) =

{0}. The scalar hierarchical minimax inequalities are stated as
follows: for given mappings 𝐹,G : 𝑋 × 𝑋 󴁂󴀱 R, under some
suitable conditions, the following inequality holds:

min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) ≤ max ⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) .
(s-Hi)

For given mappings 𝐹, 𝐺 : 𝑋 × 𝑋 󴁂󴀱 𝑍, the first version
of hierarchical minimax theorems states that under some
suitable conditions, the following inequality holds:

Max ⋃

𝑥∈𝑋

𝐹 (𝑥, 𝑥) ⊂ Min(co(⋃

𝑥∈𝑋

Max
𝑤

⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦))) + 𝐶.

(Hi-1)

The second version of hierarchical minimax theorems
states that under some suitable conditions, the following
inequality holds:

Max ⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) ⊂ Min ⋃

𝑥∈𝑋

Max
𝑤

⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) + 𝐶.
(Hi-2)

These versions, (Hi-1) and (Hi-2), arise naturally from
someminimax theorems in the vector or real-valued settings.
We refer to [1–4] and the references therein.

The notations we use in the above relations are as follows.

Definition 1 (see [1, 3]). Let 𝐴 be a nonempty subset of 𝑍. A
point 𝑧 ∈ 𝐴 is called a

(a) minimal point of𝐴 if𝐴∩(𝑧−𝐶) = {𝑧}; Min𝐴 denotes
the set of all minimal points of 𝐴;

(b) maximal point of𝐴 if𝐴∩(𝑧+𝐶) = {𝑧}; Max𝐴 denotes
the set of all maximal points of 𝐴;

(c) weaklyminimal point of𝐴 if𝐴∩(𝑧−int𝐶) = 0;Min
𝑤
𝐴

denotes the set of all weakly minimal points of 𝐴;

(d) weakly maximal point of 𝐴 if 𝐴 ∩ (𝑧 + int𝐶) = 0;
Max
𝑤
𝐴 denotes the set of all weakly maximal points

of 𝐴.

We note that, for a nonempty compact set 𝐴, both sets
Max𝐴 and Min𝐴 are nonempty. Furthermore, Min𝐴 ⊂

Min
𝑤
𝐴, Max𝐴 ⊂ Max

𝑤
𝐴, 𝐴 ⊂ Min𝐴 + 𝐶, and 𝐴 ⊂

Max𝐴 − 𝐶. Following [3], we denote both Max and Max
𝑤

by max (both Min and Min
𝑤
by min) in R since both Max

and Max
𝑤
(both Min and Min

𝑤
) are the same in R.

We present some fundamental concepts which will be
used in the following.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 190821, 8 pages
http://dx.doi.org/10.1155/2014/190821

http://dx.doi.org/10.1155/2014/190821


2 Abstract and Applied Analysis

Definition 2 (see [5, 6]). Let 𝑈, 𝑉 be Hausdorff topological
spaces. A set-valued map 𝐹 : 𝑈 󴁂󴀱 𝑉 with nonempty values
is said to be

(a) upper semicontinuous at 𝑥
0
∈ 𝑈 if for every 𝑥

0
∈ 𝑈

and for every open set𝑁 containing𝐹(𝑥
0
) there exists

a neighborhood𝑀 of 𝑥
0
such that 𝐹(𝑀) ⊂ 𝑁;

(b) lower semicontinuous at 𝑥
0
∈ 𝑈 if for any net {𝑥]} ⊂ 𝑈,

𝑥] → 𝑥
0
, 𝑦
0
∈ 𝑇(𝑥

0
) implies that there exists net

𝑦] ∈ 𝑇(𝑥]) such that 𝑦] → 𝑦
0
;

(c) continuous at 𝑥
0
∈ 𝑈 if 𝐹 is upper semicontinuous as

well as lower semicontinuous at 𝑥
0
.

We note that if𝑇 is upper semicontinuous at 𝑥
0
and𝑇(𝑥

0
)

is compact, then for any net {𝑥]} ⊂ 𝑈, 𝑥] → 𝑥
0
, and for any

net 𝑦] ∈ 𝑇(𝑥]) for each ] there exists 𝑦0 ∈ 𝑇(𝑥
0
) and a subnet

{𝑦]
𝛼

} such that 𝑦]
𝛼

→ 𝑦
0
. We refer to [5, 6] for more details.

Definition 3 (see [3, 7]). Let 𝑘 ∈ int𝐶 and V ∈ 𝑍. The
Gerstewitz function 𝜉

𝑘V : 𝑍 → R is defined by

𝜉
𝑘V (𝑢) = min {𝑡 ∈ R : 𝑢 ∈ V + 𝑡𝑘 − 𝐶} . (1)

Some fundamental properties for the Gerstewitz function
are as follows.

Proposition 4 (see [3, 7]). Let 𝑘 ∈ int𝐶 and V ∈ 𝑍. The
Gerstewitz function 𝜉

𝑘V : 𝑍 → R has the following properties:

(a) 𝜉
𝑘V(𝑢) > 𝑟 ⇔ 𝑢 ∉ V + 𝑟𝑘 − 𝐶;

(b) 𝜉
𝑘V(𝑢) ≥ 𝑟 ⇔ 𝑢 ∉ V + 𝑟𝑘 − int𝐶;

(c) 𝜉
𝑘V(⋅) is a convex, continuous, and increasing function.

We also need the following different kinds of cone-
convexities for set-valued mappings.

Definition 5 (see [1]). Let 𝑋 be a nonempty convex subset of
a topological vector space. A set-valued mapping 𝐹 : 𝑋 󴁂󴀱 𝑍

is said to be

(a) above-𝐶-convex (resp., above-𝐶-concave) on 𝑋 if, for
all 𝑥
1
, 𝑥
2
∈ 𝑋 and all 𝜆 ∈ [0, 1],

𝐹 (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ⊂ 𝜆𝐹 (𝑥

1
) + (1 − 𝜆) 𝐹 (𝑥

2
) − 𝐶

(resp., 𝜆𝐹 (𝑥
1
) + (1 − 𝜆) 𝐹 (𝑥

2
) ⊂ 𝐹 (𝜆𝑥

1
+ (1 − 𝜆) 𝑥

2
) − 𝐶) ;

(2)

(b) above-naturally 𝐶-quasiconvex on𝑋 if, for all 𝑥
1
, 𝑥
2
∈

𝑋 and all 𝜆 ∈ [0, 1],

𝐹 (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ⊂ co {𝐹 (𝑥

1
) ∪ 𝐹 (𝑥

2
)} − 𝐶, (3)

where co𝐴 denotes the convex hull of a set 𝐴;
(c) above-𝐶-convex-like (resp., above-𝐶-concave-like) on

𝑋 (𝑋 is not necessary convex) if, for all 𝑥
1
, 𝑥
2
∈ 𝑋

and all 𝜆 ∈ [0, 1], there is an 𝑥
󸀠

∈ 𝑋 such that

𝐹 (𝑥
󸀠

) ⊂ 𝜆𝐹 (𝑥
1
) + (1 − 𝜆) 𝐹 (𝑥

2
) − 𝐶

(resp., 𝜆𝐹 (𝑥
1
) + (1 − 𝜆) 𝐹 (𝑥

2
) ⊂ 𝐹 (𝑥

󸀠

) − 𝐶) .

(4)

We note that whenever 𝐹 is a scalar function and𝐶 = R
+
,

the mappings in Definition 5 reduce to the classical ones.The
following theorem is a special case of the scalar hierarchical
minimax theorem by Lin [8].

Theorem 6. Let 𝑋 be a nonempty compact convex subset
of real Hausdorff topological vector space. Let the set-valued
mappings 𝐹, 𝐺,𝐻 : 𝑋 ×𝑋 󴁂󴀱 R such that 𝐹(𝑥, 𝑦) ⊂ 𝐺(𝑥, 𝑦) ⊂

𝐻(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋×X;⋃
𝑦∈𝑋

𝐹(𝑥, 𝑦) and⋃
𝑥∈𝑋

𝐻(𝑥, 𝑦)

are compact for each 𝑥 ∈ 𝑋 and for each 𝑦 ∈ 𝑋 and satisfy the
following conditions:

(i) 𝑥 󳨃→ 𝐹(𝑥, 𝑦) is lower semicontinuous on 𝑋 for each
𝑦 ∈ 𝑋 and 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is above-R

+
-concave on𝑋 for

each 𝑥 ∈ 𝑋;
(ii) 𝑥 󳨃→ 𝐺(𝑥, 𝑦) is above-naturally R

+
-quasiconvex for

each 𝑦 ∈ 𝑋, and 𝑦 󳨃→ 𝐺(𝑥, 𝑦) is lower semicontinuous
on 𝑋 for each 𝑥 ∈ 𝑋;

(iii) 𝑥 󳨃→ 𝐻(𝑥, 𝑦) is lower semicontinuous on 𝑋 for each
𝑦 ∈ 𝑋, 𝑦 󳨃→ 𝐻(𝑥, 𝑦) is above-R

+
-concave on 𝑋 for

each 𝑥 ∈ 𝑋, and 𝑦 󳨃→ 𝐻(𝑥, 𝑦) is lower semicontinuous
for each 𝑥 ∈ 𝑋.

Then one has

min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) ≤ max ⋃

𝑦∈𝑋

min ⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦) . (5)

Lemma 7. Let 𝐹 : 𝑋 󴁂󴀱 R be such that max⋃
𝑥∈𝑋

𝐹(𝑥),
max⋃

𝑥∈𝑋
max𝐹(𝑥), andmax𝐹(𝑥) exist for all 𝑥 ∈ 𝑋. Then

max ⋃

𝑥∈𝑋

𝐹 (𝑥) = max ⋃

𝑥∈𝑋

max𝐹 (𝑥) . (6)

Proof. By using the similar technique of Lemma 3.3 [9], we
can show that the conclusion is valid.

2. Scalar Hierarchical Minimax Inequalities

We first state the following scalar hierarchical minimax
inequalities.

Theorem 8. Let 𝑋 be a nonempty compact (not necessarily
convex) subset of a real Hausdorff topological space. Let the
set-valued mappings 𝐹, 𝑆, 𝑇, 𝐺 : 𝑋 × 𝑋 󴁂󴀱 R with nonempty
compact values such that

(i) (𝑥, 𝑦) 󳨃→ 𝐹(𝑥, 𝑦) and (𝑥, 𝑦) 󳨃→ 𝐺(𝑥, 𝑦) are upper
semicontinuous on𝑋 × 𝑋;

(ii) 𝑥 󳨃→ max 𝑆(𝑥, 𝑦) is convex-like for each 𝑦 ∈ 𝑋, and
𝑦 󳨃→ max𝑇(𝑥, 𝑦) is concave-like on 𝑌 for each 𝑥 ∈ 𝑋;

(iii) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋, max𝐹(𝑥, 𝑦) ≤ max 𝑆(𝑥, 𝑦) ≤
max𝑇(𝑥, 𝑦) ≤ max𝐺(𝑥, 𝑦).

Then the relation (s-Hi) holds.

Proof. From (i), we know that both sides of (s-Hi) exist. For
any 𝑟 ∈ R,

𝑟 > max ⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) . (7)
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Define𝑀 : 𝑋 󴁂󴀱 𝑋 by

𝑀(𝑥) = {𝑦 ∈ 𝑋 : max𝐹 (𝑥, 𝑦) ≥ 𝑟} (8)

for all 𝑥 ∈ 𝑋. By (i), the set𝑀(𝑥) is closed for all 𝑥 ∈ 𝑋. We
claim that the whole intersection

⋂

𝑥∈𝑋

𝑀(𝑥) (9)

is empty. Indeed, if not, there exists 𝑦
0
∈ ⋂
𝑥∈𝑋

𝑀(𝑥) such
that, for all 𝑥 ∈ 𝑋, max𝐹(𝑥, 𝑦

0
) ≥ 𝑟. In particular, we

choose 𝑥 = 𝑦
0
; then max𝐹(𝑦

0
, 𝑦
0
) ≥ 𝑟 which, with the aid

of condition (iii), contradicts the choice of 𝑟. Hence, by the
compactness of𝑋, there exist 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ 𝑋 such that

𝑋 ⊂

𝑚

⋃

𝑖=1

(𝑋 \ 𝑀(𝑥
𝑖
)) . (10)

Let

𝑁(𝑥) = {𝑦 ∈ 𝑋 : max𝑇 (𝑥, 𝑦) ≥ 𝑟} (11)

for all 𝑥 ∈ 𝑋. Then, by (iii), we have

𝑋 ⊂

𝑚

⋃

𝑖=1

(𝑋 \ 𝑁 (𝑥
𝑖
)) . (12)

This implies that, for each𝑦 ∈ 𝑋, there is𝑥
𝑖
0

∈ {𝑥
1
,𝑥
2
, . . . , 𝑥

𝑚
}

such that

max𝑇 (𝑥
𝑖
0

, 𝑦) < 𝑟. (13)

Define two sets as follows:

𝐿
1
: = co {(max𝑇 (𝑥

1
, 𝑦) ,max𝑇 (𝑥

2
, 𝑦) ,

. . . ,max𝑇 (𝑥
𝑚
, 𝑦)) ∈ R

𝑚

: 𝑦 ∈ 𝑋} ,

𝐿
2
:= {(𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑚
) ∈ R
𝑚

: 𝑧
𝑖
≥ 𝑟

∀𝑖 = 1, 2, . . . , 𝑚} .

(14)

By the concave-like property of 𝑇, we can see that these two
sets are disjoint. For each 𝑦 ∈ 𝑋, by the separation theorem,
there exists nonzero vector (𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑚
) ∈ R𝑚 such that

𝑚

∑

𝑖=1

𝜏
𝑖
max𝑇 (𝑥

𝑖
, 𝑦) ≤

𝑚

∑

𝑖=1

𝜏
𝑖
𝑧
𝑖
, (15)

for all (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
) ∈ 𝐿
2
. Then, ∑𝑚

𝑖=1
𝜏
𝑖
> 0 and 𝜏

𝑖
> 0 for

all 𝑖 = 1, 2, . . . , 𝑚. Let 𝛿
𝑖
= 𝜏
𝑖
/∑
𝑚

𝑖=1
𝜏
𝑖
for all 𝑖 = 1, 2, . . . , 𝑚.

Then we have
𝑚

∑

𝑖=1

𝛿
𝑖
max𝑇 (𝑥

𝑖
, 𝑦) ≤

𝑚

∑

𝑖=1

𝛿
𝑖
𝑧
𝑖
. (16)

For each 𝑖 = 1, 2, . . . , 𝑚, by taking 𝑧
𝑖

= 𝑟 and noting
max 𝑆(𝑥

𝑖
, 𝑦) ≤ max𝑇(𝑥

𝑖
, 𝑦), we have

𝑚

∑

𝑖=1

𝛿
𝑖
max 𝑆 (𝑥

𝑖
, 𝑦) ≤ 𝑟, (17)

for all 𝑦 ∈ 𝑋. Since the mapping 𝑥 󳨃→ max 𝑆(𝑥, 𝑦) is convex-
like for each 𝑦 ∈ 𝑌, there is 𝑥

0
∈ 𝑋 such that

max 𝑆 (𝑥
0
, 𝑦) ≤ 𝑟. (18)

Since max𝐹(𝑥, 𝑦) ≤ max 𝑆(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋, we
have

max𝐹 (𝑥
0
, 𝑦) ≤ 𝑟, (19)

for all 𝑦 ∈ 𝑋. By Lemma 7, we know that

min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑌

𝐹 (𝑥, 𝑦) ≤ max ⋃

𝑦∈𝑋

𝐹 (𝑥
0
, 𝑦)

= max ⋃

𝑦∈𝑋

max𝐹 (𝑥
0
, 𝑦) ≤ 𝑟.

(20)

Therefore, the relation (s-Hi) holds.

Theorem 9. Let 𝑋 be a nonempty compact convex subset of
a real Hausdorff topological vector space. Let the set-valued
mappings 𝐹, 𝐺 : 𝑋 × 𝑋 󴁂󴀱 R with nonempty compact values
such that

(i) (𝑥, 𝑦) 󳨃→ 𝐹(𝑥, 𝑦) and (𝑥, 𝑦) 󳨃→ 𝐺(𝑥, 𝑦) are upper
semicontinuous on𝑋 × 𝑋;

(ii) 𝑦 󳨃→ max𝐹(𝑥, 𝑦) is quasiconcave for each 𝑥 ∈ 𝑋; that
is, for each 𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑋 : max𝐹(𝑥, 𝑦) ≥ 𝑟} is
convex in𝑋;

(iii) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋,max𝐹(𝑥, 𝑦) ≤ max𝐺(𝑥, 𝑦).

Then the relation (s-Hi) holds.

Proof. By (i), we know that both sides of (s-Hi) exist. Choose
any 𝑟 ∈ R satisfies

𝑟 > max ⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) . (21)

Define𝑊: 𝑋 󴁂󴀱 𝑋 by

𝑊(𝑥) = {𝑦 ∈ 𝑋 : max𝐹 (𝑥, 𝑦) ≥ 𝑟} , (22)

for all 𝑥 ∈ 𝑋. By (ii), the set𝑊(𝑥) is convex for all 𝑥 ∈ 𝑋. By
(iii), we have

max𝐹 (𝑥, 𝑥) ≤ max𝐺 (𝑥, 𝑥) ≤ max ⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) < 𝑟. (23)

Hence,

𝑥 ∉ 𝑊 (𝑥) , (24)

for all 𝑥 ∈ 𝑋. By the upper semicontinuity of 𝐹, we know
that the mapping 𝑥 󳨃→ max𝐹(𝑥, 𝑦) is upper semicontinuous
for each 𝑥 ∈ 𝑋. Thus, for each 𝑥 ∈ 𝑋, 𝑊(𝑥) is closed;
hence it is compact. In order to claim that the mapping
𝑥 󳨃→ 𝑊(𝑥) is upper semicontinuous on 𝑋, we only need
to show that the mapping 𝑥 󳨃→ 𝑊(𝑥) has a closed graph.
Since, for any net {(𝑥

𝛼
, 𝑦
𝛼
)} ⊂ Graph(𝑊) we have the net

{(𝑥
𝛼
, 𝑦
𝛼
)}. converges to some point (𝑥

0
, 𝑦
0
). Then, for each 𝛼,
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max𝐹(𝑥
𝛼
, 𝑦
𝛼
) ≥ 𝑟. Since the mapping (𝑥, 𝑦) 󳨃→ max𝐹(𝑥, 𝑦)

is upper semicontinuous, we have

max𝐹 (𝑥
0
, 𝑦
0
) ≥ lim sup

𝛼

max𝐹 (𝑥
𝛼
, 𝑦
𝛼
) ≥ 𝑟. (25)

Thus, (𝑥
0
, 𝑦
0
) ∈ Graph(𝑊). Suppose that𝑊(𝑥) ̸= 0 for all 𝑥 ∈

𝑋. Then, by Kakutani fixed point theorem, the mapping 𝑊

has a fixed point which is a contradiction to (24). Hence, there
is an 𝑥

0
∈ 𝑋 such that𝑊(𝑥

0
) = 0. From this, we know that

𝑟 > min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑌

𝐹 (𝑥, 𝑦) . (26)

This implies that the relation (s-Hi) holds.

The following examples illustrate Theorems 8 and 9.

Example 10. Let 𝑋 = {0} ∪ {1/𝑛 : 𝑛 ∈ N} and 𝑓(𝑥) =

𝑥
2

, 𝑔(𝑦) = 1 − 𝑦
2 for all 𝑥, 𝑦 ∈ 𝑋. Define 𝐹, 𝑆, 𝑇, 𝐺 : 𝑋 ×𝑋 󴁂󴀱

R by 𝐹(𝑥, 𝑦) = [0, 𝑓(𝑥)𝑔(𝑦)], 𝑆(𝑥, 𝑦) = [−1, 𝑓(𝑥)𝑔(𝑦) + 1],
𝑇(𝑥, 𝑦) = [2, 𝑓(𝑥)𝑔(𝑦) + 2], and 𝐺(𝑥, 𝑦) = [3, 𝑓(𝑥)𝑔(𝑦) +

3]. Obviously, all conditions of Theorem 8 hold. Hence the
relation (s-Hi) holds. Indeed, by simple calculation, we can
see that

min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) = 0,

max ⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) =
13

4
.

(27)

Example 11. Let 𝑋 = [0, 1]. The mappings 𝑓, 𝑔, 𝐹,
and 𝐺 are the same as in Example 10. Then, all condi-
tions of Theorem 9 hold. We can see that both values of
min⋃

𝑥∈𝑋
max⋃

𝑦∈𝑋
𝐹(𝑥, 𝑦) and max⋃

𝑥∈𝑋
𝐺(𝑥, 𝑥) are the

same as those in Example 10. Hence the relation (s-Hi) holds.

3. Hierarchical Minimax Inequalities

In this section, we will present two versions of hierarchical
minimax inequalities.The following theorem is the first result
satisfies the relation (Hi-1).

Theorem 12. Let 𝑋 be a nonempty compact convex subset of
a real Hausdorff topological vector space. Let the set-valued
mappings𝐹, 𝐺,𝐻 : 𝑋×𝑋 󴁂󴀱 𝑍with nonempty compact values
such that 𝐹(𝑥, 𝑦) ⊂ 𝐺(𝑥, 𝑦) ⊂ 𝐻(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌

satisfy the following conditions:

(i) (𝑥, 𝑦) 󳨃→ 𝐹(𝑥, 𝑦) is upper semicontinuous, 𝑦 󳨃→

𝐹(𝑥, 𝑦) is above-𝐶-concave on 𝑌 for each 𝑥 ∈ 𝑋, and
𝑥 󳨃→ 𝐹(𝑥, 𝑦) is lower semicontinuous on 𝑋 for each
𝑦 ∈ 𝑌;

(ii) 𝑥 󳨃→ 𝐺(𝑥, 𝑦) is above-naturally𝐶-quasiconvex for each
𝑦 ∈ 𝑌, and 𝑦 󳨃→ 𝐺(𝑥, 𝑦) is lower semicontinuous on 𝑌

for each 𝑥 ∈ 𝑋;
(iii) 𝑦 󳨃→ 𝐻(𝑥, 𝑦) is lower semicontinuous and above-𝐶-

concave on 𝑌 for each 𝑥 ∈ 𝑋, and 𝑥 󳨃→ 𝐻(𝑥, 𝑦) is
lower semicontinuous on𝑋 for each 𝑦 ∈ 𝑌;

(iv) for each 𝑦 ∈ 𝑌,

Max
𝑤

⋃

𝑥∈𝑋

𝐹 (𝑥, 𝑥) ⊂ Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦) + 𝐶. (28)

Then the relation (Hi-1) is valid.

Proof. Let Γ(𝑥) := Max
𝑤
⋃
𝑦∈𝑌

𝐹(𝑥, 𝑦) for all 𝑥 ∈ 𝑋. From
Lemma 2.4 and Proposition 3.5 in [1], themapping 𝑥 󳨃→ Γ(𝑥)

is upper semicontinuous with nonempty compact values on
𝑋. Hence⋃

𝑥∈𝑋
Γ(𝑥) is compact and so is co(⋃

𝑥∈𝑋
Γ(𝑥)).Then

co(⋃
𝑥∈𝑋

Γ(𝑥)) + 𝐶 is a closed convex set with nonempty
interior. Suppose that V ∉ co(⋃

𝑥∈𝑋
Γ(𝑥)) + 𝐶. By separation

theorem, there is a 𝑘 ∈ R, 𝜖 > 0, and a nonzero continuous
linear functional 𝜉 : 𝑍 󳨃→ R such that

𝜉 (V) ≤ 𝑘 − 𝜖 < 𝑘 ≤ 𝜉 (𝑢 + 𝑐) , (29)

for all 𝑢 ∈ 𝑐𝑜(⋃
𝑥∈𝑋

Γ(𝑥)) and 𝑐 ∈ 𝐶. From this we can see that
𝜉 ∈ 𝐶

⋆, where 𝐶⋆ = {𝑔 : 𝑍 󳨃→ R : 𝑔(𝑐) ≥ 0 ∀𝑐 ∈ 𝐶}, and
𝜉(V) < 𝜉(𝑢) for all 𝑢 ∈ co(⋃

𝑥∈𝑋
Γ(𝑥)). By Proposition 3.14 of

[1], for any 𝑥 ∈ 𝑋, there is a 𝑦⋆
𝑥
∈ 𝑌 and 𝑓(𝑥, 𝑦

⋆

𝑥
) ∈ 𝐹(𝑥, 𝑦

⋆

𝑥
)

with 𝑓(𝑥, 𝑦
⋆

𝑥
) ∈ Γ(𝑥) such that

𝜉𝑓 (𝑥, 𝑦
⋆

𝑥
) = max ⋃

𝑦∈𝑌

𝜉𝐹 (𝑥, 𝑦) . (30)

Let us choose 𝑐 = 0 and 𝑢 = 𝑓(𝑥, 𝑦
⋆

𝑥
) in (29); we have

𝜉 (V) < 𝜉 (𝑓 (𝑥, 𝑦
⋆

𝑥
)) = max ⋃

𝑦∈𝑌

𝜉𝐹 (𝑥, 𝑦) (31)

for all 𝑥 ∈ 𝑋. Therefore,

𝜉 (V) < min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑌

𝜉𝐹 (𝑥, 𝑦) . (32)

From conditions (i)–(iii), by applying Proposition 3.9 and
Proposition 3.13 in [1], all conditions of Theorem 6 hold.
Hence, we have

𝜉 (V) < max ⋃

𝑦∈𝑌

min ⋃

𝑥∈𝑋

𝜉𝐻 (𝑥, 𝑦) . (33)

Since 𝑌 is compact, there is 𝑦󸀠 ∈ 𝑌 such that

𝜉 (V) < min ⋃

𝑥∈𝑋

𝜉𝐻 (𝑥, 𝑦
󸀠

) . (34)

Thus,

V ∉ ⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶, (35)

and, hence,

V ∉ Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶. (36)

Therefore,

Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶 ⊂ co(⋃

𝑥∈𝑋

Γ (𝑥)) + 𝐶. (37)
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By taking into account condition (iv), we know that

Max
𝑤

⋃

𝑥∈𝑋

𝐹 (𝑥, 𝑥) ⊂ Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶. (38)

Hence, the relation (Hi-1) is valid.

The following example illustrates thatTheorem 12 is valid.

Example 13. Let𝑋 = [0, 1], 𝐶 = R2
+
, and 𝑓 : 𝑋 󴁂󴀱 R define

𝑓 (𝑦) = {
[−1, 0] , 𝑦 = 0,

{0} , 𝑦 ̸= 0,
(39)

and 𝐹, 𝐺,𝐻 : 𝑋 × 𝑋 󴁂󴀱 R2define

𝐹 (𝑥, 𝑦) = {sin(𝑥𝜋
2
)} × 𝑓 (𝑦) ,

𝐺 (𝑥, 𝑦) = [0, sin(𝑥𝜋
2
)] × [𝑦 − 1, 0] ,

𝐻 (𝑥, 𝑦) = [0, sin(𝑥𝜋
2
)] × [𝑦

2

− 1, 0] ,

(40)

for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋.

We can easily see that 𝐹(𝑥, 𝑦) ⊂ 𝐺(𝑥, 𝑦) ⊂ 𝐻(𝑥, 𝑦) for
all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 and conditions (i)–(iii) of Theorem 12 are
valid. Now we claim that condition (iv) holds. Indeed,

⋃

𝑥∈𝑋

𝐹 (𝑥, 𝑥) = ( ⋃

𝑥∈(0,1]

{sin(𝑥𝜋
2
)} × {0})⋃({0} × [−1, 0])

= (([0, 1] × {0})⋃ ({0} × [−1, 0])) .

(41)

Hence, Max
𝑤
⋃
𝑥∈𝑋

𝐹(𝑥, 𝑥) = {0} × [0, 1].
On the other hand, ⋃

𝑥∈𝑋
𝐻(𝑥, 𝑦) = [0, 1] × [𝑦

2

− 1, 0].
Hence,

Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦) = ({0} × [0, 1])⋃({1} × [𝑦
2

− 1, 0]) .

(42)

Thus, condition (iv) ofTheorem 12 holds. ByTheorem 12, the
relation (Hi-1) is valid. Indeed,

Max ⋃

𝑥∈𝑋

𝐹 (𝑥, 𝑥) = {(1, 0)} ,

Max
𝑤

⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) = ⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) = {sin(𝑥𝜋
2
)} × [−1, 0] .

(43)

Hence,

co ⋃

𝑥∈𝑋

Max
𝑤

⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦) = ⋃

𝑥∈𝑋

Max
𝑤

⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦)

= [0, 1] × [−1, 0] .

(44)

Thus,

Min(co ⋃

𝑥∈𝑋

Max
𝑤

⋃

𝑦∈𝑋

𝐹 (𝑥, 𝑦)) = {(0, −1)} , (45)

and hence the conclusion of Theorem 12 is valid.

Theorem 14. Let 𝑋 be a nonempty compact convex subset
of real Hausdorff topological vector space. Let the set-valued
mappings 𝐹, 𝐺,𝐻 : 𝑋 × 𝑋 󴁂󴀱 𝑍 such that 𝐹(𝑥, 𝑦) ⊂ 𝐺(𝑥, 𝑦) ⊂

𝐻(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋 and satisfy the following
conditions:

(i) (𝑥, 𝑦) 󳨃→ 𝐹(𝑥, 𝑦) is continuous with nonempty
compact values, and 𝑦 󳨃→ 𝜉

𝑘V𝐹(𝑥, 𝑦) is above-R+-
concave on 𝑋 for each 𝑥 ∈ 𝑋 and any Gerstewitz
function 𝜉

𝑘V;
(ii) 𝑥 󳨃→ 𝐺(𝑥, 𝑦) is above-naturally𝐶-quasiconvex for each

𝑦 ∈ 𝑋, and 𝑦 󳨃→ 𝐺(𝑥, 𝑦) is lower semicontinuous on
𝑋 for each 𝑥 ∈ 𝑋;

(iii) (𝑥, 𝑦) 󳨃→ 𝐻(𝑥, 𝑦) is upper semicontinuous with
nonempty compact values, 𝑦 󳨃→ 𝜉

𝑘V𝐻(𝑥, 𝑦) is above-
R
+
-concave on 𝑋 for each 𝑥 ∈ 𝑋, and 𝑥 󳨃→ 𝐻(𝑥, 𝑦)

is lower semicontinuous on 𝑋 for each 𝑦 ∈ 𝑋 and any
Gerstewitz function 𝜉

𝑘V;
(iv) for each 𝑦 ∈ 𝑌,

Max
𝑤

⋃

𝑥∈𝑋

𝐺 (𝑥, 𝑥) ⊂ Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦) + 𝐶. (46)

Then the relation (Hi-2) is valid.

Proof. Let Γ(𝑥) be defined the same as that inTheorem 12 for
all 𝑥 ∈ 𝑋. From the process in the proof of Theorem 12, we
know that the set ⋃

𝑥∈𝑋
Γ(𝑥) is nonempty compact. Suppose

that V ∉ ⋃
𝑥∈𝑋

Γ(𝑥)+𝐶. For any 𝑘 ∈ int𝐶, there is a Gerstewitz
function 𝜉

𝑘V : 𝑍 󳨃→ R such that

𝜉
𝑘V (𝑢) > 0, (47)

for all 𝑢 ∈ ⋃
𝑥∈𝑋

Γ(𝑥). Then, for each 𝑥 ∈ 𝑋, there is 𝑦⋆
𝑥
∈ 𝑋

and 𝑓(𝑥, 𝑦
⋆

𝑥
) ∈ 𝐹(𝑥, 𝑦

⋆

𝑥
) with 𝑓(𝑥, 𝑦

⋆

𝑥
) ∈ Max

𝑤
⋃
𝑦∈𝑋

𝐹(𝑥, 𝑦)

such that

𝜉
𝑘V (𝑓 (𝑥, 𝑦

⋆

𝑥
)) = max ⋃

𝑦∈𝑋

𝜉
𝑘V𝐹 (𝑥, 𝑦) . (48)

Choosing 𝑢 = 𝑓(𝑥, 𝑦
⋆

𝑥
) in (47), we have

max ⋃

𝑦∈𝑋

𝜉
𝑘V𝐹 (𝑥, 𝑦) > 0, (49)

for all 𝑥 ∈ 𝑋. Therefore,

min ⋃

𝑥∈𝑋

max ⋃

𝑦∈𝑋

𝜉
𝑘V𝐹 (𝑥, 𝑦) > 0. (50)

By conditions (i)–(iii), we know that all conditions of
Theorem 6 hold for the mappings 𝜉

𝑘V𝐹(𝑥, 𝑦), 𝜉𝑘V𝐺(𝑥, 𝑦), and
𝜉
𝑘V𝐻(𝑥, 𝑦), and, hence, we have

max ⋃

𝑦∈𝑋

min ⋃

𝑥∈𝑋

𝜉
𝑘V𝐻(𝑥, 𝑦) > 0. (51)
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Since𝑋 is compact, there is a 𝑦󸀠 ∈ 𝑋 such that

min ⋃

𝑥∈𝑋

𝜉
𝑘V𝐻(𝑥, 𝑦

󸀠

) > 0. (52)

Thus,

V ∉ ⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶, (53)

and, hence,

V ∉ Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶. (54)

If V ∈ Max⋃
𝑦∈𝑋

Min
𝑤
⋃
𝑥∈𝑋

𝐹(𝑥, 𝑦), then, by (iv), we have

V ∈ Min
𝑤

⋃

𝑥∈𝑋

𝐻(𝑥, 𝑦
󸀠

) + 𝐶, (55)

which contradicts (54). From this, we can deduce that the
relation (Hi-2) is valid.

4. Strong and Weak Solutions for SEP

In our previous work [10], we establish existence of solutions
for set equilibrium problems (SEP, for short). Let 𝑌 be a
Hausdorff topological vector space, and let𝐾 be a nonempty
compact convex subset of a Hausdorff topological vector
space. For a given mapping 𝑇 : 𝐾 󴁂󴀱 𝑌 and a trimapping
𝐹 : 𝑇𝐾 × 𝐾 × 𝐾 󴁂󴀱 𝑍, a weak solution for (SEP)

𝐹
is a point

𝑥 ∈ 𝐾 such that

𝐹 (𝑠, 𝑥, 𝑦) ̸⊂ − int𝐶, (56)

for all 𝑦 ∈ 𝐾 and for some 𝑠 ∈ 𝑇(𝑥). A strong solution for
(SEP)

𝐹
is a point 𝑥 ∈ 𝐾 with some 𝑠 ∈ 𝑇(𝑥) such that

𝐹 (𝑠, 𝑥, 𝑦) ̸⊂ − int𝐶, (57)

for all 𝑦 ∈ 𝐾. A strong solution is obviously a weak solution
for (SEP) for the same mapping.

We recall that a set-valued mapping Ω : 𝑋 󳨃→ 𝑍 is called
a KKMmapping if co{𝑥

1
, . . . , 𝑥

𝑛
} ⊂ ⋃

𝑛

𝑖=1
Ω(𝑥𝑖) for each finite

subset {𝑥
1
, . . . , 𝑥

𝑛
} ⊂ 𝑋.

Fan Lemma (see [11]). Let Ω : 𝑋 󴁂󴀱 𝑍 be a KKM mapping
with nonempty closed values. If there exists an 𝑥

0
∈ 𝑋 such that

Ω(𝑥
0
) is a compact set of 𝑍, then⋂

𝑥∈𝑋
Ω(𝑥) ̸= 0.

We first state that the existent result of weak solution for
(SEP) is as follows.

Theorem 15. Let 𝑍 be a finite dimensional space and the
set-valued mappings 𝐹 and 𝑇 are two upper semicontinuous
mappings with nonempty compact values such that,

(i) for each 𝑥 ∈ 𝐾, there is 𝑠 ∈ 𝑇(𝑥) such that 𝐹(𝑠, 𝑥, 𝑥) ̸⊂

− int 𝐶;
(ii) for each 𝑥 ∈ 𝐾, the sets {(𝑠, 𝑦) ∈ 𝑇𝐾 × 𝐾 : 𝐹(𝑠, 𝑥, 𝑦) ⊂

− int 𝐶} and 𝑇(𝑥) are convex.

Then (SEP)
𝐹
has a weak solution.

Proof. DefineΩ : 𝐾 󴁂󴀱 𝐾 by

Ω(𝑦) := {𝑥 ∈ 𝐾 : 𝐹 (𝑠, 𝑥, 𝑦) ̸⊂ − int𝐶 for some 𝑠 ∈ 𝑇 (𝑥)} ,

(58)

for all 𝑦 ∈ 𝐾. By (i), 𝑦 ∈ Ω(𝑦) for all 𝑦 ∈ 𝐾. Hence the set
Ω(𝑦) is nonempty for all 𝑦 ∈ 𝐾. Next, we claim that the set
Ω(𝑦) is closed for all 𝑦 ∈ 𝐾. Let a net {𝑥

𝛼
} ⊂ Ω converge to

some point 𝑥
0
. Then there are 𝑠

𝛼
∈ 𝑇𝑥
𝛼
and 𝑧
𝛼
∈ 𝐹(𝑥

𝛼
, 𝑥
𝛼
, 𝑦)

such that 𝑧
𝛼
∈ 𝑍 \ (− int𝐶). By the upper semicontinuities of

𝐹 and 𝑇, the sets 𝑇𝐾 and 𝐹(𝑇𝐾×𝐾×𝐾) are compact. Hence,
there is a convergent subnet {𝑧

𝛼
𝛽

} of {𝑧
𝛼
} that converges to

some point 𝑧
0
. Furthermore, the net {𝑠

𝛼
𝛽

} has a convergent
subnet {𝑠

𝛼
𝛽𝛾

}which converges to some point 𝑠
0
. Again, by the

upper semicontinuities of 𝐹 and 𝑇, we have 𝑧
0
∈ 𝑇(𝑥

0
) and

𝑧
0
∈ 𝐹(𝑠

0
, 𝑧
0
, 𝑦). Since the set 𝑍 \ (− int𝐶) is closed, 𝑧

0
∈

𝑍 \ (− int𝐶). Hence, 𝑥
0
∈ Ω(𝑦), and, thus, Ω(𝑦) is closed for

all 𝑦 ∈ 𝐾. We next claim that the mapping Ω : 𝐾 󴁂󴀱 𝐾 is a
KKM mapping. Indeed, if not, there exist 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝐾

and 𝑥
0
such that

𝑥
0
∈ co {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} ̸⊂

𝑛

⋃

𝑖=1

Ω(𝑥
𝑖
) . (59)

Then there is 𝑥
0
= ∑
𝑛

𝑖=1
𝜆
𝑖
𝑥
𝑖
where∑𝑛

𝑖=1
𝜆
𝑖
= 1 and 𝜆

𝑖
≥ 0 for

all 𝑖 = 1, 2, . . . , 𝑛.
Since 𝑥

0
∉ ⋃
𝑛

𝑖=1
Ω(𝑥
𝑖
), for all 𝑖 ∈ {1, 2, . . . , 𝑛}, choose any

𝑠
𝑖
∈ 𝑇(𝑥

0
); we have

𝐹 (𝑠
𝑖
, 𝑥
0
, 𝑥
𝑖
) ⊂ − int𝐶. (60)

By (ii),

𝑠
0
∈ 𝑇 (𝑥

0
) ,

(𝑠
0
, 𝑥
0
) ∈ {(𝑠, 𝑥) ∈ 𝑇𝐾 × 𝐾 : 𝐹 (𝑠, 𝑥

0
, 𝑥) ⊂ − int𝐶} .

(61)

This implies that

𝐹 (𝑠
0
, 𝑥
0
, 𝑥
0
) ⊂ − int𝐶, (62)

which contradicts (i). Thus, the mapping Ω : 𝐾 󴁂󴀱 𝐾 is a
KKMmapping. By the Fan lemma, the whole intersection

⋂

𝑦∈𝑌

Ω(𝑦) (63)

is nonempty. Any point in the whole intersection is a weak
solution for (SEP)

𝐹
.

For the existence of strong solution for (SEP), we propose
the following results.

Theorem16. Under the framework ofTheorem 15, in addition,
the mappings 𝐴, 𝐵, 𝐺 : 𝑇𝐾 × 𝐾 × 𝐾 󴁂󴀱 𝑍 with nonempty
compact values such that

(i) the mapping 𝑠 󳨃→ 𝐺(𝑠, 𝑥, 𝑦) is upper semicontinuous
mappings for each 𝑥, 𝑦 ∈ 𝐾;
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(ii) both sets ⋃
𝑠∈𝑇(𝑥)

𝐹(𝑠, 𝑥, 𝑦) and ⋃
𝑦∈𝐾

𝐺(𝑠, 𝑥, 𝑦) are
compact for 𝑥, 𝑦 ∈ 𝐾, 𝑠 ∈ 𝑇(𝑥);

(iii) the mapping 𝑠 󳨃→ max𝐵(𝑠, 𝑥, 𝑦) is concave-like for
each 𝑥, 𝑦 ∈ 𝐾, and the mapping 𝑦 󳨃→ max𝐴(𝑠, 𝑥, 𝑦) is
convex-like for each 𝑥, 𝑦 ∈ 𝐾, 𝑠 ∈ 𝑇(𝑥);

(iv) for each 𝑥, 𝑦 ∈ 𝐾, 𝑠 ∈ 𝑇(𝑥), max𝐹(𝑠, 𝑥, 𝑦) ≤

max𝐴(𝑠, 𝑥, 𝑦) ≤ max𝐵(𝑠, 𝑥, 𝑦) ≤ max𝐺(𝑠, 𝑥, 𝑦);
(v) for each 𝑦 ∈ 𝐾, there is an 𝑥 ∈ 𝐾 with 𝑠

𝑦
∈ 𝑇(𝑥) such

that

max𝐺(𝑠
𝑦
, 𝑥, 𝑦) < max ⋃

𝑠∈𝑇(𝑥)

min ⋃

𝑦∈𝐾

𝐺 (𝑠, 𝑥, 𝑦) . (64)

Then (SEP)
𝐺
has a strong solution.

Proof. According to Theorem 15, we know that (SEP)
𝐹
has a

weak solution. That is, there is an 𝑥 ∈ 𝐾 such that

𝐹 (𝑠
𝑥
, 𝑥, 𝑥) ̸⊂ − int𝐶, (65)

for all 𝑥 ∈ 𝐾 and for some 𝑠
𝑥
∈ 𝑇(𝑥). For any 𝑘 ∈ int𝐶, from

Proposition 4, the Gerstewitz function 𝜉
𝑘0
satisfies

𝜉
𝑘0
𝐹 (𝑠
𝑥
, 𝑥, 𝑥) ≥ 0. (66)

Hence, there is 𝑥 ∈ 𝐾 such that, for each 𝑥 ∈ 𝐾,

max ⋃

𝑠∈𝑇(𝑥)

𝜉
𝑘0
𝐹 (𝑠, 𝑥, 𝑥) ≥ 0. (67)

Thus, we have

min ⋃

𝑥∈𝐾

max ⋃

𝑠∈𝑇(𝑥)

𝜉
𝑘0
𝐹 (𝑠, 𝑥, 𝑥) ≥ 0. (68)

By conditions (i)–(v), all conditions ofTheorem 6hold; hence
we have

max ⋃

𝑠∈𝑇(𝑥)

min ⋃

𝑥∈𝐾

𝜉
𝑘0
𝐺 (𝑠, 𝑥, 𝑥) ≥ 0. (69)

Since 𝑇(𝑥) is compact, there is 𝑠 ∈ 𝑇(𝑥) such that

min ⋃

𝑥∈𝐾

𝜉
𝑘0
𝐺 (𝑠, 𝑥, 𝑥) ≥ 0. (70)

This implies that

𝜉
𝑘0
𝐺 (𝑠, 𝑥, 𝑥) ≥ 0 (71)

or

𝐺 (𝑠, 𝑥, 𝑥) ̸⊂ − int𝐶, (72)

for all 𝑥 ∈ 𝐾. Therefore, (SEP)
𝐺
has a strong solution.

Finally, we give the following example to illustrate that
Theorems 15 and 16 are valid.

Example 17. Let 𝐾 = [1, 2], 𝐶 = R
+
, 𝑍 = R, and 𝑇 : 𝐾 󴁂󴀱 R

be defined by 𝑇(𝑥) = [0, 2𝑥] for all 𝑥 ∈ 𝐾. Then we define
𝐹,𝐴, 𝐵, 𝐺 : 𝑇𝐾 × 𝐾 × 𝐾 󴁂󴀱 R which are defined by

𝐹 (𝑠, 𝑥, 𝑦) = {𝑥 (𝑦 − 𝜉𝑠𝑥) : 𝜉 ∈ [
1

2
, 1]} ,

𝐴 (𝑠, 𝑥, 𝑦) = {𝑥 (𝑦 − 𝜉𝑠𝑥) + 1 : 𝜉 ∈ [
1

2
, 1]} ,

𝐵 (𝑠, 𝑥, 𝑦) = {𝑥 (𝑦 − 𝜉𝑠𝑥) + 2 : 𝜉 ∈ [
1

2
, 1]} ,

𝐺 (𝑠, 𝑥, 𝑦) = {𝑥 (𝑦 − 𝜉𝑠𝑥) + 3 : 𝜉 ∈ [
1

2
, 1]} ,

(73)

for all (𝑥, 𝑦) ∈ 𝐾 × 𝐾.

Then, the set-valued mappings 𝐹 and 𝑇 are two upper
semicontinuous mappings with nonempty compact. We can
easily see that 𝐹(𝑠, 𝑥, 𝑥) ̸⊂ − int𝐶 for all 𝑥 ∈ 𝐾 and if we
choose any 𝑠 ∈ 𝑇(𝑥) ∩ [0, 1]. So, condition (i) of Theorem 15
holds. It is obvious that condition (ii) of Theorem 15 holds
since the mapping

(𝑠, 𝑦) 󳨃󳨀→ 𝐹 (𝑠, 𝑥, 𝑦) (74)

is linear. Hence (SEP)
𝐹
has a weak solution by Theorem 15.

Indeed, 𝑥 = 2 is a weak solution for (SEP)
𝐹
where we can

choose 𝑠 = 1/2.
Next, we claim that (SEP)

𝐺
has a strong solution. We

can easily deduce that conditions (i), (iii), and (iv) hold. The
condition (ii) is valid since

⋃

𝑠∈𝑇(𝑥)

𝐹 (𝑠, 𝑥, 𝑦) = ⋃

𝑠∈[0,2𝑥]

{𝑥 (𝑦 − 𝜉𝑠𝑥) : 𝜉 ∈ [
1

2
, 1]}

= [𝑥𝑦 − 2𝑥
3

, 𝑥𝑦]

(75)

is compact for 𝑥, 𝑦 ∈ 𝐾 and so is

⋃

𝑦∈𝐾

𝐺 (𝑠, 𝑥, 𝑦) = ⋃

𝑦∈[1,2]

{𝑥 (𝑦 − 𝜉𝑠𝑥) + 3 : 𝜉 ∈ [
1

2
, 1]}

= [𝑥 − 𝑠𝑥
2

+ 3, 2𝑥 −
𝑠𝑥
2

2
+ 3] ,

(76)

for 𝑥 ∈ 𝐾, 𝑠 ∈ 𝑇(𝑥). Finally, condition (v) of Theorem 16 is
valid, since, for each 𝑦 ∈ 𝐾, we can choose an 𝑥 ∈ 𝐾 with
𝑥 > √𝑦 − 1 and 𝑠

𝑦
= 2𝑥 such that

max𝐺(𝑠
𝑦
, 𝑥, 𝑦) = 𝑥(𝑦 −

𝑠
𝑦
𝑥

2
) + 3

< 𝑥 + 3

= max ⋃

𝑠∈𝑇(𝑥)

min ⋃

𝑦∈𝐾

𝐺 (𝑠, 𝑥, 𝑦) .

(77)

Indeed, 𝑥 = 3/2 with 𝑠 = 2 is a strong solution for (SEP)
𝐺
.
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