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Islanding detection is essential for secure and reliable operation of microgrids. Considering the relationship between the power
generation and the load in microgrids, frequency may vary with time when islanding occurs. As a common approach, frequency
measurement is widely used to detect islanding condition. In this paper, a novel frequency calculation algorithm based on extended
Kalman filter was proposed to track dynamic frequency of themicrogrid. Taylor series expansion was introduced to solve nonlinear
state equations. In addition, a typical microgridmodel was built usingMATLAB/SIMULINK. Simulation results demonstrated that
the proposed algorithm achieved great stability and strong robustness in of tracking dynamic frequency.

1. Introduction

Distributed generation (DG) using renewable energy sources
such as solar energy, wind energy, and hydroenergy has
received considerable attention due to environmental pol-
lution and exhaustion of fossil fuel. Many utilities around
the world have a significant penetration of DGs in their
systems. As a promising developing trend, the concept and
techniques of microgrids (MGs) are proposed to improve
DG’s utilization [1].

MG is a kind of regional electric power systems which
include DGs and power loads. They have the ability to
disconnect from or parallel with large electric power systems.
MGs offer many potential benefits, such as improving the
reliability of power supply by islanding operation during large
electric power system outages, relieving overload problems
by allowing a part of the power system to intentionally island,
and so forth. However, there are alsomany issues to be solved
before MGs become integral part of the utilities, such as how
to achieve high power quality, efficiency, and safety. Espe-
cially, the most concerned problem is the islanding which
refers to a condition that MG has an independent powering
to a location even though the MG has been disconnected
from the grid [2]. This condition can be dangerous to grid
workers who may not realize that the load is still powered. It

can also cause adverse effects such as low power quality, grid
protection interference, and equipment damage. For these
reasons, islanding condition must be detected immediately.
Accordingly, islanding condition should be informed to
operators and the control strategy must be switched for
islanding operation.

The mainly used islanding detection techniques may
be broadly classified as remote and local techniques. Local
techniques can be divided into passive and active detection
methods [3]. Remote islanding detection techniques are
based on the communication between utilities and DGs.
Supervisory control and data acquisition (SCADA) has been
used to determinewhether the distribution system is islanded
or not. These methods are reliable but not economic to
implement for small systems. As for the local techniques,
the core of passive method is that some of the system
parameters (voltage, frequency, etc.) change greatly with
islanding but not much in normal running when connected
with grid [4, 5]. This character can be helpful in islanding
detection by continuously monitoring the parameters of the
system without bringing disturbance. However, this method
would cause large nondetection zones because islanding
cannot be detected under a perfect match of generations
and loads in the island system. Active techniques directly
interact with the power system operation by introducing
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Figure 1: Typical topologies of MGs.

perturbations [6]. These small perturbations will result in
a significant change in system parameters when the DG is
islanded whereas the change will be negligible when the DG
is connected to the grid. It has smaller nondetection zones
but disturbs the system. The most commonly used methods
are reactive power export error detectionmethod, impedance
measurement method, active frequency drift, and automatic
phase shift.

For the passive detection method, one of the common
passive approaches is based on the measurement of volt-
age vector and frequency of the common coupling point
in real time. Variation in voltage and frequency from its
normal value indicates the occurrence of islanding in most
conditions. A large number of methods are available for
the frequency estimation based on digitized samples of
system voltage, methods such as discrete Fourier transforms,
conventional Kalman filter, and phase lock loop [7]. For the
most commonly used algorithms, discrete Fourier transforms
may lead to inaccuracies due to leakage and picket-fence
effects. Meanwhile, it is not ideal when the system is non-
stationary since it requires large measurement windows and
it is sensitive to low signal-to-noise ratio [8]. Kalman filter,
which is well known for its small calculating amount and
robustness in estimating sinusoids signal with noise, however,
is faced with several distortions due to the system’s inherent
nonlinearity [9, 10].

In this paper, the necessity and basicmethods of islanding
detection of the MG are addressed. Considering the impor-
tance of frequency estimation, a novel algorithm based on
extended Kalman filter is presented to enhance the precision
and the speed of frequency tracking in islanding MGs.

Simulation tests demonstrate that the proposed algorithmhas
excellent superiority on islanding detection.

2. Microgrids and Islanding Detection

The MG embedded in distribution systems has evolved
overwhelmingly to help meet the load growth in existing
networks. The typical topologies of MGs are suggested in
IEEE 1547.4 [11], as shown in Figure 1.

The most important feature of MGs is that they have the
ability to disconnect from or parallel with the area electric
power system. The planned MG in Figure 1 may be a local
electric power system island, circuit island, or substation
island . Generally, a transition-to-island mode can be a result
of scheduled or unscheduled events. Scheduled transitions
are intentional events for which the time and duration of
the planned island are agreed upon by all parties involved.
Unscheduled transitions are inadvertent events that are typ-
ically initiated by loss of area power system or equipment
failure, and the MG needs to be automatically sectionalized
from the area power system by islanding protective relay.

As shown in Figure 1, for a fault 𝑘 external to the
planned island MG-1, it is expected that the DG should be
disconnected from the area electric power system as soon as
possible. Thus, the fast circuit breaker CB-1 is required to be
open for the fault 𝑘. Obviously, knowledge of the operating
conditions of the system prior to islanding and control of
those operating conditions will facilitate the smooth transfer
to an intentional island, particularly in response to abnormal
events [12]. In order to achieve maximum benefit of the DG,
the islanding relay should detect islanding condition with
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Figure 2: Schematic diagram of protection and control of MGs.

high speed and sensitivity to prevent other protective relays
from tripping-off islanded DG.

In short, when islanding condition happens, not only the
area electric power system operator needs to be aware of
this operation, but also the control strategy of the MG needs
to be adjusted. Therefore, islanding detection is one of the
key issues for protection and control of MGs, as shown in
Figure 2.

There are basically two kinds of distributed generators
in MGs. The first one, such as photovoltaic, fan, and storage
battery, is based on inverter control. The other one, such as
synchronous generator and microsteam turbine, is based on
the principle of generator.

Assume that the active and reactive power outputs from
DGs are 𝑃 and 𝑄 and that the power loads in MGs are
represented as 𝑅, 𝐿, and 𝐶. In islanding operation,

𝑃 =
𝑈
2

PCC
𝑅

𝑄 = 𝑈
2

PCC (
1

𝜔𝐿 − 𝜔𝐶
) .

(1)

So

𝑈
2

PCC = 𝑃𝑅,

𝜔 = 𝜔
0
(√

1

4𝜆2
(
𝑄

𝑃
)

2

+ 1 −
1

2𝜆
⋅
𝑄

𝑃
) .

(2)

In (2),𝜔
0
= 1/√𝐿𝐶 is the syntonic angular frequency, and

𝜆 = 𝑅√𝐶/𝐿 is the quality factor of loads.
It can be known from (2) that the voltage and frequency

may deviate from the rated ones when islanding occurs since
there is generally an imbalance between the generation and
the load in the formed island. Besides, the change of voltage

is related to active power imbalance while the frequency
shift is mainly based on reactive power imbalance. Conse-
quently, over/undervoltage relay and over/underfrequency
relay are often used as the most conventional anti-islanding
protection. Furthermore, power imbalance will lead the
frequency to change dynamically. So the rate of change of
frequency (ROCOF) is also a commonly employed anti-
islanding protection [13]. Consider

𝑑𝑓

𝑑𝑡
= −(

𝑃
𝐿
− 𝑃
𝐺

2𝐻 × 𝑆GN
× 𝑓
𝑟
) . (3)

Equation (3) is used to calculate the change rate of frequency,
inwhich𝑃

𝐿
is the output of the distributed generator,𝑃

𝐺
is the

load in the island, 𝑆GN is the distributed generator rating, 𝐻
is the inertia constant of generating plant, and 𝑓

𝑟
is the rated

frequency.
The distributed generators in MGs are mainly based on

inverter control. Compared with conventional synchronous
generators, the inverter-based distributed generators have
small equivalent inertia constants and capacities. The fre-
quency varies distinctly in islanding operation. Furthermore,
inverter controlmay producemore harmonics and noises due
to dead time of the inverter itself. In sum, the voltage and
the frequency of MGs are comparatively stable in parallel
operation, while in islanding operation, the variations of
electric measurements are complex, so that the accurate
frequency trackingmust be achieved by reliable and advanced
algorithms.

3. Frequency Tracking Using Extended
Kalman Filter

Frequency tracking could not be limited in islanding detec-
tion. It is needed inmany other areas of power system, such as
power quality monitoring, automation under frequency load



4 Journal of Applied Mathematics

−1.5

−1

−0.5

0

0.5

1

1.5
The observed signal u(t): time-varying frequency, no noise

Vo
lta

ge
u
(t
)

(p
.u

.)

Time (s)
0.1 0.2 0.3 0.4 0.5 0.6

Figure 3: Voltage of observed signal with varying frequency.

shedding devices, and automatic accurate synchronizers. In
theory, the frequency tracking methods can be investigated
in all the situations that need frequency measurement.

A number of methods are available on the frequency
estimation based on digitized samples of the system voltage.
Discrete Fourier transform is one of the most commonly
used algorithms due to its good filtering characteristics
and strong resistance to disturbance. The main principle of
discrete Fourier transforms is to calculate the phase angle
difference between two adjacent data windows. Then the
frequency can be estimated accordingly. However, discrete
Fourier transforms may lead to inaccuracies due to leakage
and picket-fence effects. Meanwhile, it is not ideal when the
frequency is changing during a complete data window of
Fourier transforms. For this reason, adaptive discrete Fourier
transforms for frequency tracking are proposed to lock the
fundamental frequency of incoming signal [14]. Adaptive
discrete Fourier transforms can be described as a feedback
model: when the signal frequency is changed, it can be used
to redirect the sampling time of next sampling point. Thus, it
enhances the accuracy of frequency measurements when the
real frequency is not the rated value.

Kalman filter algorithm does well in addressing the
general problem of trying to estimate the state 𝑋 ∈ 𝑅

𝑛 of a
discrete-time controlled process. The superiority of Kalman
filter in frequency tracking lies in many aspects.

(1) It is quite easy to make the Kalman filter self-tuned
to the fundamental frequency without any hardware
modification.

(2) Harmonics are eliminated more effectively when the
Kalman filter is adaptive with respect to the funda-
mental frequency.

(3) TheKalman filter allows filtering preselected resonant
nonharmonic frequencies, which is not possible with
the adaptive discrete Fourier transforms.

(4) Kalman filter is often adopted due to its low com-
putation cost and robustness in estimating sinusoids
signal embedded in an unknown measurement noise
[15].

However, the calculation of conventional Kalman filter is
based on the assumption that themeasured system is linear in

itsmathematicalmodel.Thus, it has to face several distortions
for coping with the nonlinear signals. As for the frequency
tracking of power system, the input signal is sampling voltage
values generally. If the input signal is assumed to be an ideal
sinusoid with constant amplitude, the mathematical model
can be represented as

𝑧 (𝑡) = 𝐴 cos (𝜔
0
𝑡 + 𝜃) = [cos (𝜔0𝑡) − sin (𝜔

0
𝑡)] ⌈

𝑋
1
(𝑡)

𝑋
2
(𝑡)

⌉ ,

(4)

where 𝑧(𝑡) is the measured signal and 𝑋
1
(𝑡) and 𝑋

2
(𝑡) are

the two state variables of Kalman filter, [𝑋
1
(𝑡), 𝑋
2
(𝑡)]
𝑇

=

[𝐴 cos 𝜃, 𝐴 sin 𝜃]
𝑇.

Conventional Kalmanfilter supposes that𝑋
1
(𝑡) and𝑋

2
(𝑡)

vary with time in linear way. However, as the mathematical
model shows, the input signal and output signal are changed
nonlinearly. It is hard for the conventional Kalman filter to
achieve excellent calculation accuracy.With the interconnec-
tion of MGs, the system frequency is not as stable as the large
power grid. When islanding occurs, the frequency of the MG
might be irregular.Therefore, extendedKalman filter which is
established in nonlinear way is recommended to be applied in
order to achieve better accuracy and faster speed in frequency
tracking of MGs.

The nonlinear stochastic difference equation can be writ-
ten as

𝑋
𝑘
= 𝑓 (𝑋

𝑘−1
, 𝑈
𝑘−1

, 𝑤
𝑘−1

) , (5)

𝑧
𝑘
= ℎ (𝑋

𝑘
, V
𝑘
) , (6)

where 𝑋 is state variables, 𝑧 is the observed signal, 𝑈 is
the controlled variable, and subscript 𝑘 is the sampling time
stamp. The nonlinear function 𝑓 in (5) describes nonlinear
recursion relationship among state variables. The nonlinear
function ℎ in (6) relates the state 𝑋 to the observed signal.
𝑤 and V represent the process and measurement noise,
respectively. It is assumed that 𝑤(𝑡) and V(𝑡) are both zero-
mean uncorrected white noises, with respect to variances 𝑞

and 𝑟. Consider 𝑤(𝑡) = 𝑊𝑁(0, 𝑞), V(𝑡) = 𝑉𝑁(0, 𝑟).
To calculate state variables𝑋

𝑘
in nonlinear system, Taylor

series is used to expand (5) and (6) and transform them into
approximate linear equations [16, 17]. For an input signal
𝑓(𝑥), it can be represented by

𝑓 (𝑥) = 𝑓 (𝑎) +
𝑓

(𝑎)

1!
(𝑥 − 𝑎)

+
𝑓

(𝑎)

2!
(𝑥 − 𝑎)

2
+ ⋅ ⋅ ⋅ +

𝑓
(𝑛)

(𝑎)

𝑛!
(𝑥 − 𝑎)

𝑛
+ 𝑅𝑛 (𝑥) .

(7)

Generally, two-order Taylor series is adopted as an
approximation solution in field calculation. This approxima-
tion is established based on three considerations: (1) higher-
order components are so marginal that they can be omitted;
(2) calculation of higher orders of Taylor series will result in
heavy computing burden which influence the tracking speed;
(3) the bigger Jacobian matrix is, the more memory is used,
and it would be unsuitable in field application.
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By using two-order Taylor series (7), (5), and (6) can be
rewritten as

𝑋
𝑘
= 𝑋
𝑘
+ 𝐹 (𝑋

𝑘−1
− 𝑋
𝑘−1

) + 𝑊 ⋅ 𝑤
𝑘−1

,

𝑧
𝑘
= �̃�
𝑘
+ 𝐻(𝑋

𝑘
− 𝑋
𝑘
) + 𝑉 ⋅ V

𝑘
,

(8)

where 𝑋
𝑘
and 𝑧

𝑘
represent the values of 𝑋 and 𝑧 in step 𝑘,

respectively, and𝑋
𝑘
and �̃�
𝑘
represent the approximate values

of 𝑋 and 𝑧 in Taylor series expansion. 𝑋
𝑘−1

represents the

posterior estimation value of the state variable in step 𝑘−1.𝐻
is calledmeasurementmatrix.𝑊 and𝑉 are Jacobianmatrixes
of 𝑤 and V, respectively. 𝐹 is the Jacobian matrix of 𝑓 and
represents the partial derivatives on 𝑋. Consider

𝑊
𝑘
=

𝜕𝑓 (𝑥)

𝜕𝑤
(𝑋
𝑘−1

, 𝑢
𝑘−1

, 𝑤
𝑘−1

) ,

𝑉
𝑘
=

𝜕ℎ (𝑥)

𝜕V
(𝑋
𝑘
, V
𝑘
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𝐹 (𝑘) =
𝜕𝑓 (𝑥)

𝜕𝑥

𝑥=�̂�(𝑘−1)
.

(9)

For the extended Kalman filter, 𝐹 is not a constant matrix
during iteration calculation since𝑓 is a nonlinear function. It
is one of the main differences between conventional Kalman
filter and extended Kalman filter.

The initial stage of extended Kalman filter design is to
model the signal and derivation of state variables of it. This
is because the signal model dynamics describe a mechanism
for how the process may evolve. Considering the electric
measurements (voltages, currents, and frequencies) in MGs
may change irregularly, or nonlinearly in most cases, Taylor
series is used to nonlinear calculation.The voltage at the point
of common coupling inMGs can be described approximately
as follows:

𝑧 (𝑡) = 𝐴 (𝑡) cos (𝜔 (𝑡) ⋅ 𝑡 + 𝜑) , (10)

where 𝐴(𝑡) and 𝜑 represent the amplitudes and initial phase.

Using the cosine expansion, we can obtain the discrete
expression of the following:

𝑧 (𝑘𝑇
𝑠
) =𝐴 (𝑘𝑇

𝑠
) cos [𝜔 (𝑘𝑇

𝑠
) ⋅ (𝑘 − 1 + 1) 𝑇

𝑠
+ 𝜑]

=𝐴 (𝑘𝑇
𝑠
) {cos [𝜔 (𝑘𝑇

𝑠
)⋅(𝑘 − 1) 𝑇

𝑠
+ 𝜑]⋅cos𝜔 (𝑘𝑇

𝑠
)

− sin [𝜔 (𝑘𝑇
𝑠
) ⋅ (𝑘 − 1) 𝑇

𝑠
+ 𝜑]

⋅ sin𝜔 (𝑘𝑇
𝑠
)} .

(11)

The amplitude and frequency of voltage at the point
of common coupling are changing when islanding occurs.
Therefore,

𝜔 (𝑘𝑇
𝑠
) = (1 − 𝜀) ⋅ 𝜔 [(𝑘 − 1) 𝑇

𝑠
] , (12)

𝐴 (𝑘𝑇
𝑠
) = 𝛼
𝑘−1

⋅ 𝐴 [(𝑘 − 1) 𝑇
𝑠
] . (13)

In (12), 𝜀 represents the rate of frequency variation. Since
the frequency variation between two sampling steps is very
small, 0 < 𝜀 ≪ 1. 𝛼

𝑘−1
is the coefficient of amplitude

variation and it can be considered as a new state variable in
mathematical modeling. Accordingly, (11) can be rewritten as

𝑧 (𝑘𝑇
𝑠
) = 𝛼
𝑘−1

× 𝐴 [(𝑘 − 1) 𝑇
𝑠
]

× {cos {𝜔 [(𝑘 − 1) 𝑇
𝑠
] ⋅ (1 − 𝜀) ⋅ (𝑘 − 1) 𝑇

𝑠
+ 𝜑}

⋅ cos {𝜔 [(𝑘 − 1) 𝑇
𝑠
] ⋅ (1 − 𝜀)}

− sin {𝜔 [(𝑘 − 1) 𝑇
𝑠
] ⋅ (1 − 𝜀) ⋅ (𝑘 − 1) 𝑇

𝑠
+ 𝜑}

⋅ sin {𝜔 [(𝑘 − 1) 𝑇
𝑠
] ⋅ (1 − 𝜀)}} .

(14)

In this paper, four state variables are defined as in-phase
signal, quadrature signal, time-varying frequency, and time-
varying amplitude, which are all changing in nonlinear way
as proceeded.

Consider

𝑋 (𝑘) =
[
[
[

[

𝑋
1
(𝑘)

𝑋
2
(𝑘)

𝑋
3
(𝑘)

𝑋
4
(𝑘)

]
]
]

]

=
[
[
[

[

𝐴 (𝑘𝑇
𝑠
) cos {𝜔 (𝑘𝑇

𝑠
) ⋅ 𝑘𝑇
𝑠
+ 𝜑}

𝐴 (𝑘𝑇
𝑠
) sin {𝜔 (𝑘𝑇

𝑠
) ⋅ 𝑘𝑇
𝑠
+ 𝜑}

𝜔 (𝑘𝑇
𝑠
)

𝛼
𝑘
⋅ 𝐴 (𝑘𝑇

𝑠
)

]
]
]

]

=
[
[
[

[

𝑋
4
(𝑘 − 1) ⋅ [cos (𝑋

3
(𝑘 − 1)) ⋅ 𝑋

1
(𝑘 − 1) − sin (𝑋

3
(𝑘 − 1)) ⋅ 𝑋

2
(𝑘 − 1)]

𝑋
4
(𝑘 − 1) ⋅ [sin (𝑋

3
(𝑘 − 1)) ⋅ 𝑋

1
(𝑘 − 1) + cos (𝑋

3
(𝑘 − 1)) ⋅ 𝑋

2
(𝑘 − 1)]

(1 − 𝜀) ⋅ 𝑋
3
(𝑘 − 1) + 𝑤 (𝑘𝑇

𝑠
)

𝑋
4
(𝑘 − 1)

]
]
]

]

.

(15)

Based on the relationship of 𝑋
𝑘
and 𝑋

𝑘−1
, we can get

the expression of nonlinear function 𝑓(𝑋
𝑘
) and the Jacobian

matrix 𝐹(𝑋
𝑘
). Consequently, the detailed calculation steps

are as follows.

(1) Predict the state with initials:

𝑋
−

𝑘
= 𝑓 (𝑋

−

𝑘−1
, 𝑤
𝑘−1

) . (16)
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Figure 7: Simulation model of distribution network with MGs.
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(2) Compute the error covariance:

𝑃
−

𝑘
= 𝐹
𝑘
𝑃
𝑘−1

𝐹
𝑇

𝑘
+ 𝑊
𝑘
𝑄
𝑘−1

𝑊
𝑇

𝑘
. (17)

(3) Compute the Kalman gain:

𝐾
𝑘
= 𝑃
𝑘
𝐻
𝑇

𝑘
⋅ (𝐻
𝑘
𝑃
−

𝑘
𝐻
𝑇

𝑘
+ 𝑉
𝑘
𝑅
𝑘
𝑉
𝑇

𝑘
) . (18)

(4) Update the state estimate:

𝑋
𝑘
= 𝑋
−

𝑘
+ 𝐾
𝑘
⋅ (𝑧
𝑘
− ℎ (𝑋

−

𝑘
, 0)) . (19)

(5) Update the error covariance:

𝑃 = (𝐼 − 𝐾
𝑘
𝐻
𝑘
) ⋅ 𝑃
𝑘

−
. (20)
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4. Case Studies

Compared with the other two common frequency tracking
methods, adaptive discrete Fourier transforms (i.e., adaptive
Fourier filter) and conventional Kalman filter, the perfor-
mance of extendedKalman filter-based frequency calculation
algorithm is experimentally evaluated. For the following
simulation tests, the fundamental frequency and amplitude
are assumed to be 50Hz and 1 p.u., respectively.The sampling
frequency is set to be 1200Hz, which is the conventional
choice for protective relays.

Firstly, the observed signal is a voltage waveform with
time-varying frequency; that is, 𝑢(𝑡) = sin(𝜔(𝑡) ∗ 𝑡 + 𝜑). The
angular frequency 𝜔(𝑡) changes from 50Hz down to 48Hz
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with balanced power.

and then climbs to 51Hz linearly. The actual voltage is shown
in Figure 3.

Accordingly, frequency tracking performance of different
algorithms is shown in Figure 4.

To explain clearly, the test can be divided into three stages.
(1) Stage 1 (2Hz step-down change in frequency). The fre-
quency of the signal is suddenly decreased from 50Hz to
48Hz. The results reveal that the tracking time of extended
Kalman filter is about 10ms, while the other two algorithms
use almost 50ms. Extended Kalman filter is 4 times faster
than the others in frequency tracking.
(2) Stage 2 (tracking the ramp). The proposed extended
Kalman filter-based algorithmhas the less responding time in
tracking frequency variation. As shown in Figure 4, extended
Kalman filter and conventional Kalman filter both have good
performance in tracking ramping frequency. Their tracking
times in this case are 20ms shorter than adaptive Fourier
filter’s.
(3) Stage 3 (back to 51Hz). Extended Kalman filter-based
algorithm provides frequency estimation result with high
accuracy and velocity. Still, extended Kalman filter and
conventional Kalman filter are better than adaptive Fourier
filter and extended Kalman algorithm has the best stability
compared with these three methods.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t (s)

Conventional Kalman filter
Adaptive Fourier series

Extended Kalman filter

Es
tim

at
ed

 fr
eq

ue
nc

y 
(H

z)

49

49.2

49.4

49.6

49.8

50

50.2
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For the tracking time of ramp-changed frequency,
extended Kalman filter and conventional Kalman filter are
almost the same. However, extended Kalman filter is more
stable and has less fluctuation than the conventional one.
Besides, as the frequency changes sharply, the proposed
method has clear superiority in tracking speed. In sum, it is
confirmed that the proposed extended Kalman filter-based
algorithm has excellent responding performance for signals
with time-varying frequencies.

In addition, it is necessary to study the response of the
extended Kalman filter and the other two algorithms in the
presence of noise. Random noise is injected to the observed
signal to test the stability of the algorithms. Generally, the
signal-to-noise ratio, often written as SNR, is the measure of
signal strength relative to background noise:

SNR = 20 lg(
𝑉
𝑆

𝑉
𝑁

) . (21)
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In (21), 𝑉
𝑆
is the observed signal strength in volts and 𝑉

𝑁

is the noise level also in volts.The ratio ismeasured in decibels
(dB).

Obviously, the observed signal is more unreadable with
the larger noise. Even a little noise can cause a big error
in frequency tracking. This is because such comprehensive
signal is no longer ideal sine or cosine wave for noise added
to pure wave. Based on the observed signal 𝑢(𝑡) shown in
Figure 3, random noise V(𝑡) was added in 𝑢(𝑡) to form signal
𝑧(𝑡), in which SNR is set to be 40 dB, as shown in Figures 5(a)
and 5(b).

For the signal 𝑧(𝑡)with time-varying frequency andnoise,
it is hard to estimate frequency correctly. Figure 6 shows the
estimated frequencies byKalman filter, adaptive Fourier filter,
and extended Kalman filter-based algorithms.

Since the linear characteristics of local signal were dete-
riorated by adding noise, conventional Kalman filter was
influenced significantly. Apparently, the proposed algorithm
based on extended Kalman filter and the algorithm based
on adaptive Fourier filter achieved better performance in
antinoise ability. For comparison, the measured frequency
variances are 0.187 for adaptive Fourier filter-based algorithm

and 0.151 for extended Kalman filter-based algorithm, respec-
tively. Therefore, the proposed algorithm is more effective
for frequency tracking under the conditions of islanding
operation with time-varying frequency, noise, and so forth.

As shown in Figure 4, the proposed algorithm achieves
best tracking performance for the input signal without noise.
Adaptive Fourier algorithm has the worst frequency tracking
character in this case. Figure 6 demonstrates that when there
exists noise, adaptive Fourier filter obtains better antinoise
ability than conventional Kalman filter. The proposed algo-
rithm still achieves the best antinoise ability. These results
show that (1) adaptive Fourier filter has a better antinoise
performance but has the poorest frequency tracking ability,
(2) conventional Kalman filter has a better frequency tracking
performance but has the poorest antinoise ability, and (3) the
proposed algorithm based on extended Kalman filter has the
best performance in both frequency tracking and antinoise.

Generally speaking, the most commonly used method in
islanding detection of MGs is both over/undervoltage
relay and over/underfrequency relay (or ROCOF).
Over/undervoltage relay mainly works when there is an
active power imbalance, while over/underfrequency is more
effective when there is a reactive power imbalance. Thus,
frequency tracking ability of the proposed algorithm can be
tested in a designed islanding simulation model.

By using MATLAB/SIMULINK, the model of distribu-
tion network with MGs is built to simulate various parallel
and islanding operation conditions. As shown in Figure 7,
the distribution network contains several DGs and energy
storage components, transmission line, and load.The param-
eters of distribution network are listed in Figure 7. To verify
the good performance of extended Kalman filter, different
topologies of MGs have been formed to build a variety of
operation conditions. In this paper, three typical islanding
conditions are discussed as follows.

Case 1 (islanding operation with imbalanced power (both
active and reactive)). The circuit breaker CB opens and the
MG is in islanding operation. According to the output of DGs
and amounts of power loads, there is an obvious imbalance
between the generations and loads in the islanding MG.
Based on (1) and (2), the frequency of MG-1 should have a
sudden change consequently when the island happens. By
applying these three algorithms in frequency tracking, results
are shown in Figure 8.

As shown in Figure 8, when there are obvious imbalance
between powers and loads in the MG, the frequency raised
from fundamental frequency to 60HZ gradually. Obviously,
in the process of the frequency growth, the stability of
extended Kalman Filter-based algorithm is much better than
the other two algorithms. In such cases, islanding with imbal-
anced power can be easily detected by over/underfrequency
relay. The proposed frequency estimation algorithm can be
embedded to improve calculation accuracy and stability with
less fluctuation.

The measurements of frequency changing rate (𝑑𝑓/𝑑𝑡)

and frequency variance are shown in Figures 9 and 10.
As shown in Figure 9, there is a sudden change for all

the three algorithms at about 0.3 s (exact islanding time)
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in the simulation. This sudden change can also be used to
exam whether there is an islanding or not. After 0.3 s, 𝑑𝑓/𝑑𝑡

is supposed to gradually change to zero and then stabilize.
This is because there is no more power imbalance except for
some small disturbance to cause frequency change. As for
adaptive Fourier filter, 𝑑𝑓/𝑑𝑡 remains obviously to fluctuate
after 0.05 s of islanding process. 𝑑𝑓/𝑑𝑡 fluctuates cyclically in
conventional Kalman filter. Extended Kalman filter is found
to be stable after islanding process, unlike earlier approaches.

Figure 10 shows the change tendency of frequency covari-
ance when islanding occurs with imbalanced power. Fre-
quency covariance reflects the difference between average
value and sample value. In theory, frequency covariance
should increase when there is an island and then decrease
to zero gradually as the frequency stabilizes. It is obvious in
Figure 10 that extended Kalman filter is the most stable one
with the least fluctuation.

Simulation results show that extended Kalman filter not
only can detect frequency changes effectively but also has less
fluctuation after islanding process.

Case 2 (islanding operationwith balanced power). In islanding
detection, protection relay should act quickly when an island

happens, regardless of whether the powers of DGs and local
loads are matched or not.

In case 2, switch S-1 is disconnected; network load 1 is
out of power consequently. The total numbers of generations
are equal to the sum of loads for both active and reactive
powers. The circuit breaker CB opens to form anMG at 0.3 s.
In theory, the voltage and frequency of the MG will change
a little. The measured voltage and frequency are shown in
Figures 11 and 12.

As shown in Figures 11 and 12, the measured voltage
changes a little right after 0.3 s; the frequency also changes to
approximately 49.5HZ in the islanding process. It is also seen
from the simulations that extended Kalman filter changes the
fastestwith the least fluctuations comparedwith the other two
algorithms.

Figure 13 shows the performance of the three algorithms
for detecting 𝑑𝑓/𝑑𝑡 in the MG and it is observed from the
figure that 𝑑𝑓/𝑑𝑡 detected by conventional Kalman filter
becomes divergent after islanding, while the other two algo-
rithms can detect the small changes when islanding happens
with balanced power. For extendedKalman filter, the tracking
time is 0.01 s (approximately) less than adaptive Fourier filter.
The variance of the three algorithms is shown in Figure 14.

Case 3 (islanding operation with only imbalanced active
power). In case 3, DG-1 is changed to 3 kW and the switch
S-1 is kept disconnected. Consequently, there is only a 3 kW
shortage of active power in the MG when islanding happens.
In theory, voltage of PCC should change a lot but frequency
would change a little because frequency shift inMG is mainly
influenced by reactive power shortage. Figures 15, 16, and 17
show estimation values of frequency, 𝑑𝑓/𝑑𝑡, and variance of
frequency, respectively. Obviously, simulation results verify
that the estimated frequency by using the proposed algorithm
is more stable than those of the other two algorithms when
islanding occurs.

5. Conclusion

This paper presents an extended Kalman filter for the fre-
quency estimation to detect islanding in MGs. The math-
ematical model of nonlinear system is developed using
analytical equations. In order to solve the nonlinear problem,
Taylor series are used to linearize state equations, which is
the main point of solving the nonlinear problem compared
with other algorithms. To show the performance of extended
Kalman filter, several tests have been applied. The simulation
results show that extended Kalman filter not only has the
fastest tracking speed compared with conventional Kalman
filter and adaptive Fourier filter in test 1 but also has the
best interference immunity in the presence of random noise
in test 2. It can stand 40 dB or more noise without much
distortion. By using extended Kalman filter, the islanding
detection based on frequency is improved significantly in
reliability and stability.
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