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We present a model based on dynamics of electrons in a plasma using a simplified Boltzmann equation coupled with Poisson’s
equation. The motivation arose from simulating active plasma resonance spectroscopy, which is used for plasma diagnostic
techniques; see Braithwaite and Franklin (2009), Lapke et al. (2010), and Oberrath et al. (2011). Mathematically, we are interested
in designing splitting methods for the model problem. While the full Boltzmann equation is delicate to solve, we decouple it into a
transport and collision part, which are then solved in different ways. First we reduce it to a simplified transport-collision equation
and start to analyse the abstract Cauchy problem using semigroup methods. Second, we pass to the coupled transport and collision
model and apply the splitting ideas, resecting the different discretization schemes. The results are discussed first with numerical
experiments and then we verify the underlying theoretical novelties.

1. Introduction

Our motive arose from studying the simulation of active
plasma resonance spectroscopy, a well-established plasma
diagnostic technique. To study this techniquewith simulation
models, we concentrate on an abstract kinetic model that
describes the dynamics of the electrons in plasma by using
a Boltzmann equation. The Boltzmann equation is coupled
with the electric field and we obtain coupled partial dif-
ferential equations. The full Boltzmann equation is a very
delicate equation to solve. Therefore, we decouple this into
transport and collision contributions, which are solved in
different ways. While finite difference schemes are applied to
the transport parts, the collision part is solvedwith numerical
integration schemes. The underlying splitting scheme is the-
oretically discussed as an abstract Cauchy problem. Here, we
could address the Cauchy problem with functional analytical
tools. First, we will discuss the description of a positive
semigroup, which helps carry out the numerical estimates
in the splitting schemes. Second, a numerical method is
discussed with respect to separate differential and integral
parts of the equations. The numerical approximation of the
abstract splitting scheme is made by applying an iterative
splitting method of the second order.

The paper is outlined as follows. In Section 2, we present
our mathematical model and a possible reduced model for
further approximations. The functional analytical setting
with semigroups is discussed in Section 3. The splitting
schemes are presented in Section 4. The results of some
numerical experiments are exhibited in Section 6. In the con-
clusions that are given in Section 7, we summarize our results.

2. Mathematical Model

In the following a model is presented whose physical motiva-
tion is explained in [1–3].

The kinetic model considers a fluid dynamical approach
to treat the natural ability of plasma to resonate near the
electron plasma frequency 𝜔pe.

Herewe specialise in an abstract kineticmodel to describe
the dynamics of the electrons in the plasma which allows for
this resonance.

The Boltzmann equation for the electrons is

𝜕𝑓 (𝑥, V, 𝑡)
𝜕𝑡

= A [𝑓 (𝑥, V, 𝑡)] +B [𝑓 (𝑥, V, 𝑡)] ,

(𝑥, V) ∈ Ω
𝑥
× ΩV, 𝑡 ∈ [0, 𝑇] ,
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A [𝑓] = −V ⋅ ∇
𝑥
𝑓 (𝑥, V, 𝑡) −

𝑒

𝑚
𝑒

∇
𝑥
𝜙 ⋅ ∇V𝑓 (𝑥, V, 𝑡) ,

B [𝑓] = −𝜎 (𝑥, V, 𝑡) 𝑓 (𝑥, V, 𝑡) + ∫
𝑉

𝜅 (𝑥, V, V󸀠) 𝑓 (𝑥, V󸀠, 𝑡) 𝑑V󸀠,

𝑓 (𝑥, V, 0) = 𝑓
0
(𝑥, V) , (𝑥, V) ∈ Ω

𝑃,𝑥
× Ω
𝑃,V,

𝑓 (𝑥, V, 𝑡) = 𝑓
1
(𝑥, V) , (𝑥, V) ∈ 𝜕Ω

𝑃,𝑥
× 𝜕Ω
𝑃,V,

(1)

where Ω
𝑃,𝑥
× Ω
𝑃,V ⊂ R3 × R3 is the six-dimensional phase

space. 𝑓 : Ω
𝑃,𝑥
× Ω
𝑃,V × [0, 𝑇] → X

𝑐
is the density function

and X
𝑐
is an appropriate smooth space; for example, 𝐶

2
. 𝑓
0
is

the initial function and the 𝑓
1
is the boundary condition in

the plasma phase space Ω
𝑃,𝑥
× Ω
𝑃,V.

We assume based on the differentmaterials (a plasma and
a dielectricum) a complete reflection of the electrons due to
the sheath 𝑓(V

||
+ V
⊥
) with V

||
, which is the parallel, and V

⊥

which is perpendicular to the surface normal vector. Further
the electric force field is given as 𝐹 = 𝑒∇

𝑥
𝜙, where 𝜙 : Ω

𝑃,𝑥
→

X
𝑐
is the potential andX

𝑐
is an appropriate smooth space, for

example, 𝐶
2
.

Boltzmann’s equation is coupledwith the electric field∇𝜙,
while the potential is approximated via Poisson’s equation.
The electrostatic approximation of the field is represented
by a potential that is valid on the complete velocity volume
𝑆 ⊂ Ω

𝑃,V, and apply Poisson’s equation:

−∇
𝑥
⋅ (𝜖∇𝜙) =

{

{

{

𝑒(𝑛
𝑖
(𝑥) − ∫𝑓𝑑𝑆) in 𝑥 ∈ Ω

𝑃,𝑥

0 in 𝑥 ∈ Ω
𝐷,𝑥
,

(2)

where the full space domain isΩ
𝑥
= Ω
𝑃,𝑥
∪Ω
𝐷,𝑥
⊂ R3 and the

full velocity domain is ΩV = Ω𝑃,V ∪ Ω𝐷,V. The permittivity is
equal to 𝜖

0
in the plasmaΩ

𝑃,𝑥
and 𝜖
0
𝜖
𝐷
in the dielectricΩ

𝐷,𝑥
.

𝜙 fulfills the boundary conditions 𝑈
𝑛
at any electrode 𝐸

𝑛
and

−n ⋅∇𝜙 = 0 at isolator 𝐼, whereas n is the normal vector of the
isolator surface.

On the surface of the dielectric, a surface charge 𝜎 may
accumulate, which leads to a transition condition

Δ (𝜖∇𝜙) = −𝜎. (3)

We will make the following assumption to modify the model
into a simpler and more tractable system of equations, which
allows linearizing and simplifying the Boltzmann equations;
see [4].

First we assume that we have an analytical solution of the
potential 𝜙, such that we could replace the convective term of
the velocity-variable to a diffusive term of the space-variable
as

𝐹

𝑚
𝑒

⋅ ∇V ≈ ∇𝑥𝐷∇𝑥, (4)

where 𝐷 is the diffusion tensor and 𝐹 = 𝑒∇𝜙 is the external
force. This modified model allows employing the following
semigroup theory and deriving splitting schemes for the
model.

The modified and splittable model equation is

𝜕𝑓 (𝑥, V, 𝑡)
𝜕𝑡

= A [𝑓 (𝑥, V, 𝑡)] +B [𝑓 (𝑥, V, 𝑡)] ,

(𝑥, V) ∈ Ω
𝑥
× ΩV, 𝑡 ∈ [0, 𝑇] ,

A [𝑓] = −V ⋅ ∇
𝑥
𝑓 (𝑥, V, 𝑡) − ∇

𝑥
𝐷∇
𝑥
𝑓 (𝑥, V, 𝑡) ,

B [𝑓] = −𝜎 (𝑥, V, 𝑡) 𝑓 (𝑥, V, 𝑡) + ∫
𝑉

𝜅 (𝑥, V, V󸀠) 𝑓 (𝑥, V󸀠, 𝑡) 𝑑V󸀠,

𝑓 (𝑥, V, 0) = 𝑓
0
(𝑥, V) , (𝑥, V) ∈ Ω

𝑃,𝑥
× Ω
𝑃,V,

𝑓 (𝑥, V, 𝑡) = 𝑓
1
(𝑥, V) , (𝑥, V) ∈ 𝜕Ω

𝑃,𝑥
× 𝜕Ω
𝑃,V.

(5)

Next, we will discuss the relevant semigroup theory.

3. Semigroups for Transport Equations

In the following, we derive the exponential growth of the
transport semigroups that are used in the section on the
numerical methods.

We discuss two aspects:
(i) neutron transport,
(ii) electron transport.
The differences of the two transport schemes are as

follows.
(i) Neutron transport is not influenced by an electric

field.
(ii) Electron transport is influenced by an electric field.

3.1. Transport Model for the Neutrons. For this model we can
assume that𝑓(𝑥, V, 𝑡) describes the density distribution of the
particles at position 𝑥 ∈ 𝑆 with speed V ∈ 𝑉 at time 𝑡 ∈ [0, 𝑇];
see also [5, 6].

The space 𝑆 is assumed to be a compact and convex subset
of R3 with nonempty interior, and the velocity space 𝑉 is

𝑉 := {V ∈ R3 : Vmin ≤ || ||2 ≤ Vmax} , (6)

for Vmin > 0 and Vmax < ∞.

Assumption 1. Wemake the following assumptions.
(i) Particles move according to their speed V.
(ii) Particles are absorbed according to the probability

given by the function 𝜎 which depends on 𝑥 and V.
(iii) Particles are scattered according to a scattering kernel

𝜅 depending on 𝑥, the incoming speed V󸀠, and the
outgoing speed V.

Then the neutron transport is

𝜕𝑓 (𝑥, V, 𝑡)
𝜕𝑡

= −V ⋅ ∇𝑓 (𝑥, V, 𝑡) − 𝜎 (𝑥, V, 𝑡) 𝑓 (𝑥, V, 𝑡)

+ ∫

𝑉

𝜅 (𝑥, V, V󸀠) 𝑓 (𝑥, V󸀠, 𝑡) 𝑑V󸀠,

𝑓 (𝑥, V, 0) = 𝑓
0
(𝑥, V) ,

(7)
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and boundary conditions are included in the transport oper-
ator 𝐴

0
; see, in the following, the abstract Cauchy problem.

We next treat the abstract Cauchy problem for this
simplified model.

Abstract Cauchy Problem: Transport Model for the Neutrons.
We have a Banach space X := 𝐿

1

(𝑆 × 𝑉) with Lebesgue
measure on 𝑆 × 𝑉 ⊂ R6 and define the abstract Cauchy
problem as

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝐵𝑢 (𝑡) ,

𝑑𝑢 (𝑡)

𝑑𝑡

= (𝐴
0
−𝑀
𝜎
+ 𝐾
𝜅
) 𝑢 (𝑡) ,

𝑢 (0) = 𝑢
0
,

(8)

where 𝑢 ∈ X.
We have the following operators:

(1) collisionless transport operator,
(2) absorption operator,
(3) scattering Operator.

Important results for the further numerical analysis is
the fact that the transport semigroup can be estimated by an
exponential growth; see [5].

Corollary 2. One assumes that 𝑠(𝐵) > −∞ is a dominant
eigenvalue and (𝑆(𝑡))

𝑡≥0
is irreducible. Then the transport

semigroup (𝑆(𝑡))
𝑡≥0

has balanced exponential growth. There
exists a one-dimensional projection 𝑃 satisfying 0 < 𝑃𝑓

whenever 0 < 𝑓 such that
󵄩
󵄩
󵄩
󵄩
exp (−𝑠 (𝐵) 𝑡) 𝑆 (𝑡) − 𝑃󵄩󵄩󵄩

󵄩
≤ 𝑀 exp (−𝜖𝑡) , (9)

for all 𝑡 ≥ 0 and appropriate𝑀 ≥ 1 and 𝜖 > 0.

3.2. Transport Model for the Electrons or Ions. For this
model we can assume that 𝑓(𝑥, V, 𝑡) describes the density
distribution of particles at position 𝑥 ∈ 𝑆 with speed V ∈ 𝑉 at
time 𝑡 ∈ [0, 𝑇]; see also [5, 6].

The space 𝑆 is assumed to be a compact and convex subset
of R3 with nonempty interior, and the velocity space 𝑉 is

𝑉 := {V ∈ R3 : Vmin ≤ || ||2 ≤ Vmax} , (10)

for Vmin > 0 and Vmax < ∞.

Assumption 3. Wemake the following assumptions.

(i) Particles move according to their speed V.
(ii) Particles are absorbed according to the probability

given by the function 𝜎 which depends on 𝑥 and V.
(iii) Particles are scattered according to a scattering kernel

𝜅 depending on 𝑥, the incoming speed V󸀠, and the
outgoing speed V.

(iv) Particles are influenced by the static electric field 𝜙,
which can be derived by the kinetic theory.

The electron transport is

𝜕𝑓 (𝑥, V, 𝑡)
𝜕𝑡

= −V ⋅ ∇
𝑥
𝑓 (𝑥, V, 𝑡) −

𝑒

𝑚
𝑒

∇
𝑥
𝜙 ⋅ ∇V𝑓 (𝑥, V, 𝑡)

− 𝜎 (𝑥, V, 𝑡) 𝑓 (𝑥, V, 𝑡) + ∫
𝑉

𝜅 (𝑥, V, V󸀠) 𝑓 (𝑥, V󸀠, 𝑡) 𝑑V󸀠,

𝑓 (𝑥, V, 0) = 𝑓
0
(𝑥, V) ,

(11)

and boundary conditions are included in the transport
operators. 𝜙 is the electric field.

Furthermore, we have Poisson’s equation,

−∇
𝑥
⋅ (𝜖∇𝜙) =

{
{

{
{

{

𝑒(𝑛
𝑖
− ∫𝑓𝑑𝑆) in 𝑃

0 in 𝐷,
(12)

and the permittivity is equal to 𝜖
0
in the plasma 𝑃 and 𝜖

0
𝜖
𝐷
in

the dielectric𝐷.
For the simplification, we assume to solve Poisson’s

equation analytically with

𝜙 = ∫

Ω

D (𝑓) 𝑑𝑥

=

{
{

{
{

{

∫

Ω𝑃

𝜖
−1

∫

Ω𝑃

𝑒 (𝑛
𝑖
− ∫𝑓𝑑𝑆) 𝑑𝑥 𝑑𝑥 in 𝑃

0 in 𝐷,

(13)

whereD is the analytical function of the electric field ∇
𝑥
𝜙.

We embed the electric field analytically into the transport
equation

𝜕𝑓 (𝑥, V, 𝑡)
𝜕𝑡

= −V ⋅ ∇
𝑥
𝑓 (𝑥, V, 𝑡) − ∇

𝑥
D (𝑓) ⋅ ∇

𝑥
𝑓 (𝑥, V, 𝑡)

− 𝜎 (𝑥, V, 𝑡) 𝑓 (𝑥, V, 𝑡) + ∫
𝑉

𝜅 (𝑥, V, V󸀠) 𝑓 (𝑥, V󸀠, 𝑡) 𝑑V󸀠,

𝑓 (𝑥, V, 0) = 𝑓
0
(𝑥, V) ,

(14)

and boundary conditions are included in the transport
operators 𝐴

0
and 𝐴

1
; see, in the following, the treatment of

the abstract Cauchy problem.D(𝑓) is the diffusion parameter
that includes the electric field and we assume to approximate
it via a constant operatorD ≈ D(𝑓).

Next we treat the abstract Cauchy problem for a transport
model for the electrons or ions.

Abstract Cauchy Problem: TransportModel for the Electrons or
Ions.We have a Banach space X := 𝐿1(𝑆 × 𝑉) with Lebesgue
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measure on 𝑆 × 𝑉 ⊂ R6 and define the abstract Cauchy
problem as

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝐵𝑢 (𝑡) ,

𝑑𝑢 (𝑡)

𝑑𝑡

= (𝐴
0
+ 𝐴
1
−𝑀
𝜎
+ 𝐾
𝜅
) 𝑢 (𝑡) ,

𝑢 (0) = 𝑢
0
,

(15)

where 𝑢 ∈ X.
We have the following operators:

(1) collisionless transport operator,
(2) diffusion operator,
(3) absorption operator,
(4) scattering Operator.

An important result for the further numerical analysis is
the fact that the transport semigroup can be estimated by an
exponential growth. Due to the analytical embedding of the
electric field, we could also estimate such operator.

Corollary 4. One assumes that 𝑠(𝐵) > −∞ is a dominant
eigenvalue and (𝑆(𝑡))

𝑡≥0
is irreducible. Then the transport

semigroup (𝑆(𝑡))
𝑡≥0

has balanced exponential growth. There
exists a one-dimensional projection 𝑃̃ satisfying 0 < 𝑃̃𝑓

whenever 0 < 𝑓 such that
󵄩
󵄩
󵄩
󵄩
󵄩
exp (−𝑠 (𝐵) 𝑡) 𝑆 (𝑡) − 𝑃̃󵄩󵄩󵄩󵄩

󵄩
≤ 𝑀̃ exp (−𝜖𝑡) , (16)

for all 𝑡 ≥ 0 and appropriate 𝑀̃ ≥ 1 and 𝜖 > 0.

In the next section we discuss the splitting schemes.

4. Splitting Schemes

In general, operator splitting methods are used to solve
complex models in geophysical and environmental physics.
They have been developed and applied in [7–9].

4.1. Sequential Splitting Method for Nonlinear Problems. For
our problems, nonlinear splitting schemes are necessary; see
[10]. We could use the result for the general formulation of
nonlinear ordinary differential equations, which are given by

𝑐
󸀠

(𝑡) = 𝐹
1
(𝑡, 𝑐 (𝑡)) + 𝐹

2
(𝑡, 𝑐 (𝑡)) , (17)

where the initial conditions are 𝑐𝑛 = 𝑐(𝑡𝑛).
As before, we can decouple the above problem into two

(usually simpler) subproblems, namely,

𝜕𝑐
∗

(𝑡)

𝜕𝑡

= 𝐹
1
(𝑡, 𝑐
∗

(𝑡))

with 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1, 𝑐
∗

(𝑡
𝑛

) = 𝑐
𝑛

,

𝜕𝑐
∗∗

(𝑡)

𝜕𝑡

= 𝐹
2
(𝑡, 𝑐
∗∗

(𝑡))

with 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1, 𝑐
∗∗

(𝑡
𝑛

) = 𝑐
∗

(𝑡
𝑛+1

) ,

(18)

where the initial values are given by 𝑐𝑛 = 𝑐(𝑡𝑛) and the split
approximation on the next time level is defined as 𝑐𝑛+1 =
𝑐
∗∗

(𝑡
𝑛+1

).
For this case, the splitting error can be determined by

using the Jacobians of the nonlinear mappings 𝐹
1
and 𝐹

2
:

𝜌
𝑛
=

1

2

𝜏 [

𝜕𝐹
1

𝜕𝑐

𝐹
2
,

𝜕𝐹
2

𝜕𝑐

𝐹
1
] (𝑡
𝑛

, 𝑐 (𝑡
𝑛

)) + O (𝜏
2

𝑛
) . (19)

Hence, for the general case, the splitting error is of first order,
that is, 𝑂(𝜏

𝑛
).

Remark 5. Higher order splitting methods are given in [11].
Based on the Strang splitting, higher order nonlinear splitting
methods are also possible; see [12].

In the next subsection we present the iterative splitting
method.

4.2. Iterative Splitting Method. Alternatives are iterative
approaches to nonlinear splitting schemes.

We concentrate again on nonlinear differential equations
of the form

𝑑𝑢

𝑑𝑡

= 𝐴 (𝑢 (𝑡)) 𝑢 (𝑡) + 𝐵 (𝑢 (𝑡)) 𝑢 (𝑡) ,

with 𝑢 (𝑡𝑛) = 𝑢𝑛,
(20)

where 𝐴(𝑢), 𝐵(𝑢) are matrices with nonlinear entries and
densely defined, where we assume that the entries involve the
spatial derivatives of 𝑐; see [13]. In the followingwe discuss the
standard iterative operator splitting method as a fixed-point
iteration method to linearize the operators.

We split our nonlinear differential equation (20) by
applying

𝑑𝑢
𝑖
(𝑡)

𝑑𝑡

= 𝐴 (𝑢
𝑖−1
(𝑡)) 𝑢
𝑖
(𝑡) + 𝐵 (𝑢

𝑖−1
(𝑡)) 𝑢
𝑖−1
(𝑡) ,

with 𝑢
𝑖
(𝑡
𝑛

) = 𝑐
𝑛

,

𝑑𝑢
𝑖+1
(𝑡)

𝑑𝑡

= 𝐴 (𝑢
𝑖−1
(𝑡)) 𝑢
𝑖
(𝑡) + 𝐵 (𝑢

𝑖−1
(𝑡)) 𝑢
𝑖+1
(𝑡) ,

with 𝑢
𝑖+1
(𝑡
𝑛

) = 𝑐
𝑛

,

(21)

where the time step is 𝜏 = 𝑡𝑛+1 − 𝑡𝑛. The iterations are 𝑖 =
1, 3, . . . , 2𝑚 + 1. 𝑢

0
(𝑡) = 𝑐

𝑛
is the starting solution, where we

assume that the solution 𝑐𝑛+1 is near 𝑐𝑛 or 𝑢
0
(𝑡) = 0. Thus we

have to solve the local fixed-point problem. 𝑐𝑛 is the known
split approximation at time level 𝑡 = 𝑡𝑛.

The split approximation at time level 𝑡 = 𝑡
𝑛+1 is

defined as 𝑐𝑛+1 = 𝑢
2𝑚+2

(𝑡
𝑛+1

). We assume that the operators
𝐴(𝑢
𝑖−1
(𝑡
𝑛+1

)), 𝐵(𝑢
𝑖−1
(𝑡
𝑛+1

)) are constant for 𝑖 = 1, 3, . . . , 2𝑚 +
1. Here the linearization is done with respect to the iterations,
such that𝐴(𝑢

𝑖−1
),𝐵(𝑢
𝑖−1
) are at least nondependent operators

in the iterative equations, and we can apply the linear theory.
For the linearization we assume that at least in the first
equation 𝐴(𝑢

𝑖−1
(𝑡)) ≈ 𝐴(𝑢

𝑖
(𝑡)) and in the second equation

𝐵(𝑢
𝑖−1
(𝑡)) ≈ 𝐵(𝑢

𝑖+1
(𝑡)), for small 𝑡.
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We have

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴 (𝑢
𝑖−1
(𝑡
𝑛+1

)) 𝑢
𝑖
(𝑡
𝑛+1

) − 𝐴 (𝑢
𝑛+1

) 𝑢 (𝑡
𝑛+1

)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜖, (22)

for sufficient iterations 𝑖 ∈ {1, 3, . . . , 2𝑚 + 1}.

Remark 6. The linearization with the fixed-point scheme
can be used for smooth or weakly nonlinear operators, but
otherwise we lose the convergence behavior, not converging
to a local fixed point; see [14].

5. Numerical Integration of the
Integrodifferential Part

We treat the following integrodifferential equation:

𝜕𝑢

𝜕𝑡

= ∫

𝑡

0

𝑢 (𝑠) 𝑑𝑠,

𝑢 (0) = 𝑢
0
.

(23)

The integration part is done numerically with trapezoidal
rule:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

≈

𝑏 − 𝑎

𝑛

(

𝑓 (𝑎) + 𝑓 (𝑏)

2

+

𝑛−1

∑

𝑘=1

𝑓(𝑎 + 𝑘

𝑏 − 𝑎

𝑛

)) ,

(24)

where the subintervals have the form [𝑘ℎ, (𝑘 + 1)ℎ], with ℎ =
(𝑏𝑎)/𝑛 and 𝑘 = 0, 1, 2, . . . , 𝑛1.

The higher order formulas are given as closed Newton-
Cotes formulas, where 𝑓

𝑖
is a shorthand for 𝑓(𝑥

𝑖
), with 𝑥

𝑖
=

𝑎 + 𝑖(𝑏 − 𝑎)/𝑛, and 𝑛 is the degree. We obtain the following
formula for the trapezoid rule:

𝜕𝑢

𝜕𝑡

=

𝑡

2 (𝑢 (0) + 𝑢 (𝑡))

𝑑𝑠,

𝑢 (0) = 𝑢
0
,

(25)

and obtain the analytical result

𝑢 (𝑡) =

2

2

exp(𝑡
2

4

) 𝑢 (0) −

1

2

𝑢 (0) . (26)

For a higher order formula like Simpson’s rule, we have

𝜕𝑢

𝜕𝑡

=

𝑡

6 (𝑢 (0) + 4𝑢 (𝑡/2) + 𝑢 (𝑡))

𝑑𝑠,

𝑢 (0) = 𝑢
0
.

(27)

We apply the idea of a polynomial solution:

𝑢 (𝑡) = 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑡
2

+ 𝑎
3
𝑡
3

+ ⋅ ⋅ ⋅ , (28)

and we obtain, after differentiating the coefficients,

𝑎
1
+ 2𝑎
2
𝑡 + 3𝑎

3
𝑡
2

+ ⋅ ⋅ ⋅

= 𝑡 (6(𝑎
0
+ 4(𝑎

0
+

𝑎
1
𝑡

2

+

𝑎
2
𝑡
2

4

+

𝑎
3
𝑡
3

8

+ ⋅ ⋅ ⋅ )

+𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑡
2

+ 𝑎
3
𝑡
3

+ ⋅ ⋅ ⋅ ))

−1

𝑎
0
= 𝑢
0
.

(29)

Now, comparing coefficients yields

𝑎
0
= 𝑢
0
,

𝑎
1
= 𝑎
3
= 𝑎
5
= ⋅ ⋅ ⋅ = 0,

𝑎
2
= 3𝑎
0
,

𝑎
4
=

1

12

𝑎
2
, . . . .

(30)

6. Numerical Experiments

Wepresent the results of our numerical experiments based on
the neutron transport. A simplified one-dimensionalmodel is
given by

𝜕
𝑡
𝑐 + V𝜕

𝑥
𝑐 − 𝐷𝜕

𝑥𝑥
𝑐 + 𝜎𝑐 = ∫

Ω

𝜅 (𝑥, V, V󸀠) 𝑐 (𝑥, V󸀠, 𝑡) 𝑑V󸀠.

(31)

The velocity V and the diffusion 𝐷 are given by the plasma
model. The initial conditions are given by 𝑐(𝑥, 0) = 𝑐

0
(𝑥) and

the boundary conditions are trivial; 𝜕
𝑛
𝑐(𝑥, 𝑡) = 0.

A first integral operator is

∫

Ω

𝜅 (𝑥, V, V󸀠) 𝑐 (𝑥, V󸀠, 𝑡) 𝑑V󸀠 = ∫
𝑇

0

𝑐 (𝑥, 𝑡) 𝑑𝑡. (32)

A second integral operator is as follows.
We assume a simple collision operator 𝜅(𝑥, V, V󸀠) =

𝑞(V󸀠)(1 + V󸀠2), where 𝑞(V󸀠) is the potential, for example, V󸀠2.
We deal with the first integral operator and define the

following operators:

𝐴 = V
1

Δ𝑥

[−1 1 0] 𝐼 − 𝐷

1

Δ𝑥
2
[1 −2 1] 𝐼,

𝐵 = (−𝜎 + 𝑡) 𝐼,

(33)

while

exp (𝐵𝑡) = exp((−𝜎𝑡 + 𝑡
2

2

) 𝐼) , (34)

where 𝐼 is the identity matrix.
In the following, the simplified real-life problem for a

neutron transport equation, which includes the gain and loss
of a neutron, will be presented.
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We concentrate on the computational benefits of a fast
computation of the iterative scheme, given with matrix
exponentials.

The equation is

𝜕
𝑡
𝑐 + ∇ ⋅ F𝑐 = −𝜆

1
𝑐 + ∫

𝑡

0

𝜆
2
𝑐 (𝑥, 𝑡) 𝑑𝑡, in Ω × [0, 𝑡] ,

F = k − 𝐷∇,

𝑐 (x, 𝑡) = 𝑐
0
(x) , on Ω,

𝑐 (x, 𝑡) = 𝑐
1
(x, 𝑡) , on 𝜕Ω × [0, 𝑡] .

(35)

In the following, we deal with the semidiscretized equa-
tion given by the matrices

𝜕
𝑡
C = (𝐴 − Λ

1
+ Λ
2
)C, (36)

where C = (𝑐
1
, . . . , 𝑐

𝐼
)
𝑇 is the solution of the species in

the mobile phase in each spatial discretization point (𝑖 =
1, . . . , 𝐼).

We have the following two operators for the splitting
method:

𝐴 =

𝐷

Δ𝑥
2
⋅(

−2 1

1 −2 1

d d d
1 −2 1

1 −2

)

+

V
Δ𝑥

⋅(

1

−1 1

d d
−1 1

−1 1

) ∈ R
𝐼×𝐼

,

(37)

where 𝐼 is the number of spatial points. Consider the
following:

Λ
1
=(

𝜆
1
0

0 𝜆
1
0

d d d
0 𝜆
1
0

0 𝜆
1

) ∈ R
𝐼×𝐼

. (38)

For the integral term we have the following ideas.

Case 1. Consider the following:

∫

𝑡

0

𝜆
2
𝑐 (𝑥, 𝑡) 𝑑𝑡 ≈ 𝜆

2
𝑡𝑐 (𝑥, 𝑡) , (39)

and we obtain the matrix

Λ
2
=

(
(
(
(
(
(
(
(

(

𝜆
2
𝑡
2

2

0

0

𝜆
2
𝑡
2

2

0

d d d

0

𝜆
2
𝑡
2

2

0

0

𝜆
2
𝑡
2

2

)
)
)
)
)
)
)
)

)

∈ R
𝐼×𝐼

. (40)

For the operator splitting scheme, we apply 𝐴 and 𝐵 =
−Λ
1
+ Λ
2
and we apply the iterative splitting method, given

in (21).

Case 2. We integrate the operator 𝐵 with respect to the
previous solutions C

𝑖−1
, Λ
2
(C
𝑖−1
) and we obtain the matrix

Λ
2
(C
𝑖−1
) =

(
(
(
(
(

(

∫

𝑡

0

𝜆
2
𝑐
1,𝑖−1

(𝑥, 𝑠) 𝑑𝑠 0 ⋅ ⋅ ⋅ 0

0 ∫

𝑡

0

𝜆
2
𝑐
2,𝑖−1

(𝑥, 𝑠) 𝑑𝑠 0

... d d
...

0 ⋅ ⋅ ⋅ 0 ∫

𝑡

0

𝜆
2
𝑐
𝐼,𝑖−1

(𝑥, 𝑠) 𝑑𝑠

)
)
)
)
)

)

∈ R
𝐼×𝐼

. (41)

We obtain 𝐵(C) = Λ
2
(C
𝑖−1
) + Λ
1
C.

The iterative scheme is given by the following.
For 𝑖 = 1, 2, . . .

C
𝑖
(𝑡) = exp (𝐴 (𝑡 − 𝑡𝑛))C (𝑡𝑛)

+ ∫

𝑡

𝑡
𝑛

exp ((𝑡 − 𝑠) 𝐴) 𝐵 (C
𝑖−1
(𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑛

, 𝑡
𝑛+1

] .

(42)

For the reference solution, we apply a fine time and spatial
scale without decoupling the equations. Figure 1 presents
the numerical errors between the exact and the numerical
solution. Here we obtain the optimal results for one-sided
iterative schemes on the operator 𝐵, meaning that we iterate
with respect to 𝐵 and use 𝐴 as the right-hand side.

Remark 7. For all iterative schemes, we can reach results
faster than with the standard schemes, due to the fact that
the iterative schemes benefit from their fast computations
of the exponential matrices. With from four to five iterative
steps, we obtain more accurate results than we did with
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Figure 1: Numerical errors of the one-sided splitting scheme with 𝐴 (a), the one-sided splitting scheme with 𝐵 (b), and the iterative schemes
with 1, . . . , 6 iterative steps (c).

the expensive standard schemes. With one-sided iterative
schemes, we obtain the best convergence results.

7. Conclusions and Discussion

We presented the coupled model for the transport of deposi-
tion species in a plasma environment. We assumed that the
flow field could be computed by the plasma model and the
transport of the deposition species by a transport reaction
model.

Such a first model can help understand the important
modeling of the plasma environment in a CVD reactor.
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