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Previously, for predicting coding regions in nucleotide sequences, a self-adaptive spectral rotation (SASR) method has been
developed, based on a universal statistical feature of the coding regions, named triplet periodicity (TP). It outputs a random walk,
that is, TP walk, in the complex plane for the query sequence. Each step in the walk is corresponding to a position in the sequence
and generated from a long-term statistic of the TP in the sequence.The coding regions (TP intensive) are then visually discriminated
from the noncoding ones (without TP), in the TP walk. In this paper, the behaviors of the walks for random nucleotide sequences
are further investigated qualitatively. A slightly leftward trend (a negative noise) in such walks is observed, which is not reported
in the previous SASR literatures. An improved SASR, named the mature SASR, is proposed, in order to eliminate the noise and
correct the TP walks. Furthermore, a potential sequence pattern opposite to the TP persistent pattern, that is, the TP antipersistent
pattern, is explored. The applications of the algorithms on simulated datasets show their capabilities in detecting such a potential
sequence pattern.

1. Introduction

Coding region prediction for nucleotide sequences is an
active issue in the field of computational biology [1–10].
Techniques, including the dynamic programming (DP) and
the Hidden Markov Model (HMM), have been adopted to
process information collected from ab initio experiments and
predict potential coding regions. Besides, researchers suggest
that the usages of codons are highly nonrandom in coding
regions [11], and the biased appearance of codons raises
a universal property in coding regions, called the “triplet
periodicity (TP).” Investigating the TP property can be a
subject of interest for developing the coding regions detection
algorithm [12, 13], as well as some other significant gene
related issues.

The TP property was first presented by Fickett [14]. It
is said to be a simple and universal difference between
coding and noncoding regions. After Fickett’s work, the

TP property was analyzed with various theoretical tools,
such as the hidden Markov chains [15, 16], the time series
[17, 18], the information theory [11, 12], and the Fourier
transform [19–25]. Studies on the TP property are with
the aim of predicting coding regions [26] and, especially,
detecting frame shift points in nucleotide sequences [27, 28].
Among such methods, the self-adaptive spectral rotation
(SASR) provides a visualization of the TP property hidden
in nucleotide sequences and can be employed for training-
free coding region prediction [24, 25].Thismethod takes only
the query sequence as its input and outputs a random walk
in the complex plane, called the TP walk, which conveniently
presents the locations of coding (TP intensive) regions as well
as frame shifts. Here, a “frame shift” Δ is related to the length
of the interregion gap 𝑔 (the non-TP region between two TP
intensive regions), and it is defined as Δ = 𝑔mod 3.

In Chen and Ji’s work [24], they claimed that, for
simple random sequences, the TP walks should be random
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Figure 1: An example of generating the TP sequence for a nucleotide sequence.

around zero point, and for simple TP intensive sequences,
the walks should obviously move rightward. A measure,
named rightward rate (RR), was used to verify such a point
and qualitatively discriminate TP intensive sequences from
random ones. However, the RR measure is defined in the
positive domain and cannot indicate the potential walk
trend that moves leftward. In this work, we proposed a new
measure, that is, the symmetrical rightward rate (SRR), to
qualitatively investigate the behavior of the TP walks for
sequences considering both the leftward trend and rightward
trend. After that, a slightly leftward trend (a negative noise)
in TP walks is observed, which is not reported in the
previous SASR literatures. The cause of such an abnormity is
discussed with the probability theory, and a modification of
the original method, named mature SASR, is given to correct
it. Furthermore, a potential sequence pattern opposite to the
TP persistent pattern, that is, the TP anti-persistent pattern,
is explored. The applications of the algorithms on simulated
datasets show their capabilities in detecting such a potential
sequence pattern.

All the involved methods in this work are introduced
in Section 2, as well as the preparation of the experimental
data. Section 3 demonstrates our experiments, findings, and
discussions. A conclusion is reached at the end of the paper.

2. Methods and Materials

2.1. Previous Work: The Original SASR. For a certain base
sequence 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}, there is a TP profile,

describing the preferred usages of the codons. And the TP
profile was presented, in Frenkel and Korotkov’s work [11, 12],
using a triplet periodicity matrix (TPM). The TPM is a 4 ×
3 matrix, each row 𝑖 (𝑖 = 1, 2, 3, 4) stands for a nucleotide
base Λ (Λ = 𝐴, 𝑇, 𝐶, or 𝐺), each column stands for a “period
position” 𝑗 (𝑗 = 1, 2, 3), and the entry 𝑚

𝑖𝑗
(or 𝑚

Λ𝑗
) is the

count bywhich the baseΛ appears at the period position 𝑗. As
a previous work [24], in the SASR, the TPM of the posterior
subsequence at each position 𝑡 is calculated recursively from
𝑡 = 𝑁 to 1, with the recurrence formula and initial value

𝑀
Λ
(𝑃
𝑋
(𝑡)) = {

𝑀
Λ
(𝑃
𝑋
(𝑡 + 1)) ≫ 1 𝑥

𝑡+1
̸= Λ,

𝑀
Λ
(𝑃
𝑋
(𝑡 + 1)) ≫ 1 + {1, 0, 0} 𝑥

𝑡+1
= Λ,

𝑀
Λ
(𝑃
𝑋
(𝑁)) = {0, 0, 0} .

(1)

Here, 𝑃
𝑋
(𝑡) stands for the posterior subsequence of the

complete sequence 𝑋 at position 𝑡 (excluding position 𝑡).
𝑀
Λ
(𝑃
𝑋
(𝑡)) is the row vector in the TPM of this posterior

subsequence for each base Λ (Λ = 𝐴, 𝑇, 𝐶, or 𝐺). The
operation “𝑉 ≫ 𝑛” means 𝑛 times right cyclic shift (RCS)
on the triplet row vector 𝑉:

{𝑚
1
, 𝑚
2
, 𝑚
3
}

RCS
→ {𝑚

3
, 𝑚
1
, 𝑚
2
} . (2)

Then, for each position 𝑡, a triplet vector 𝑠
𝑡
, called TP vec-

tor, is selected from the TPM of the posterior subsequence,
according to the base at the position, that is, 𝑥

𝑡
. It follows

that 𝑠
𝑡
= 𝑀
𝑥
𝑡

(𝑃
𝑋
(𝑡)). A sequence of TP vectors is generated

as 𝑆(𝑋) = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
}, called the TP sequence. Figure 1

gives an example of generating the TP sequence for a given
nucleotide sequence.

The TP walk is then defined as a random walk in the
complex plane, generating amoving trace according to the TP
sequence. The trace is a sequence𝑊 = {𝑤

0
, 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
}

with the initial value 𝑤
0
= 0, and for each step 𝑡 > 0,

𝑤
𝑡
=

{{

{{

{

𝑤
𝑡−1
+
𝑢 (𝑠
𝑡
)

𝑢 (𝑠𝑡)


𝑢 (𝑠𝑡)
 ̸= 0,

𝑤
𝑡−1

𝑢 (𝑠𝑡)
 = 0.

(3)

Here, the function 𝑢(𝑠
𝑡
) maps the triplet vector 𝑠

𝑡
=

{𝑚
1
, 𝑚
2
, 𝑚
3
} into a complex number by

𝑢 (𝑠
𝑡
) = 𝑚

1
𝑒
−𝑖2𝜋/3

+ 𝑚
2
𝑒
−𝑖4𝜋/3

+ 𝑚
3
. (4)

The above process, that generates a TP walk from the
query sequence, is called a SASR process. The TP walk
generated from (3) can provide a good visualization of the
TP property: for TP intensive regions, the TP walk shows
obvious moving trends, while the walk in non-TP regions
moves much slower or randomly around stable points. These
walk patterns are clues to the discrimination between TP
intensive and non-TP regions [24]. Moreover, the walk shifts
in direction from a TP intensive region to a neighboring
one and the angle of the “corner” indicate the frame shift Δ
between the two regions, following a “corner rule” [24].

2.2. The Symmetrical Rightward Rate. According to Chen
and Ji [24], the TP walks for simple TP intensive sequences
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have an obvious trend to move rightward and those for
random sequences move randomly around the zero point.
To quantitatively verify this principle in practice, a rightward
rate (RR) measure has been presented in Chen and Ji’s work.
For a given nucleotide sequence, an RRmeasure is calculated
from its TP walk𝑊 = {𝑤

0
, 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
}:

RR = 1

𝑁
max {Re (𝑤

𝑡
) | 𝑡 = 0, 1, 2, . . . , 𝑁} . (5)

Here, Re(𝑤) stands for the real part of the complex
number 𝑤. This measure is used to reveal the average speed
at which the walk moves rightward in the complex plane.

According to the above definition, an RRmeasure should
not be less than 0 and does not allow revealing the walk trend
that moves leftward. However, in some cases, a leftward trend
should also be considered. So a symmetrical rightward rate
(SRR) is further presented here:

SRR = 1

𝑁
[max {Re (𝑤

𝑡
) | 𝑡 = 0, 1, 2, . . . , 𝑁}

+min {Re (𝑤
𝑡
) | 𝑡 = 0, 1, 2, . . . , 𝑁}] .

(6)

If a walk has an obvious trend to move rightward, its
SRR measure tends to be positive, while a walk to move
leftward provides a negative SRR measure. And a walk to
move randomly around the zero point has an SRR measure
close to 0.The SRR considers both the leftward and rightward
trends and is employed to reveal the true behavior of the TP
walks in this work.

2.3. Improvement: The Mature SASR. A modification of the
original SASR is proposed here, called the mature SASR. In
the original SASR, at each position 𝑡, the TPMof the posterior
subsequence is calculated and the TP vector 𝑠

𝑡
is selected

directly from this TPM, as mentioned previously. In this
modification, 𝑠

𝑡
is selected from a “mature” TPM, instead of

from the original matrix. Here, “mature”means that the TPM
satisfies

∑

Λ

𝑚
Λ1
= ∑

Λ

𝑚
Λ2
= ∑

Λ

𝑚
Λ3
. (7)

A mature TPM 𝑚𝑎𝑡𝑀 is maintained with a simple
recurrence formula only involving a RCS: 𝑚𝑎𝑡𝑀

Λ
(𝑃
𝑋
(𝑡)) =

𝑚𝑎𝑡𝑀
Λ
(𝑃
𝑋
(𝑡 + 1)) ≫ 1. Besides, the original TPM is

still maintained as mentioned before, so that the mature
TPM can be updated by copying it, when the original TPM
becomes “mature,” in every three steps. Figure 2 shows a
simple example of generating a TP sequence with this new
algorithm.

With this improvedmethod obtaining a TP sequence, the
complete algorithm in generating a TP walk is described as
shown in Pseudocode 1. And its usage and advantages are
shown in Section 3.

2.4. Simulating Random Sequences. In this work, a random
sequence dataset is generated, containing 2,000 nucleotide
sequences with lengths of 300 bp∼ 5,000 bp.These sequences

are unbiasedly random without any periodicity, which are
obtained by simply assigning each site in the sequences as
nucleotide base Λ (Λ = 𝐴, 𝑇, 𝐶, or 𝐺) with the probability
𝑝
Λ
= 1/4.

2.5. Simulating TP Antipersistent Sequences. Besides the ran-
dom sequence dataset, another sequence dataset is generated,
containing 2,000 simulated TP antipersistent sequences with
lengths of 300 bp∼5,000 bp (see the elaboration about TP
antipersistent in Section 3). To generate a simulated TP
antipersistent DNA sequence with a length of 𝑁, the flow
chart in Figure 3 is followed. Firstly, a short subsequence
at the end (the “seed”), that is, {𝑥

𝑁−𝐿+1
, 𝑥
𝑁−𝐿+2

, . . . , 𝑥
𝑁
}, is

randomly generated. Here, we use the seed length 𝐿 = 9. The
TPM of the complete sequence is calculated as follows:

𝑚
Λ𝑗
= count {𝑡 | 1 ≤ 𝑡 ≤ 𝑁, 𝑡 =

3
𝑗,

𝑥
𝑡
has been assigned as Λ} .

(8)

Here, “count” means get the number of the elements in
the following set, and “𝑡 =

3
𝑗” denotes “𝑡 mod 3 = 𝑗 mod 3.”

Then, the bases in the anterior part are assigned recur-
sively from position 𝑁 − 𝐿 to 1. For each given position 𝑡,
1 ≤ 𝑡 ≤ 𝑁 − 𝐿, 𝑥

𝑡
is assigned to be base Λ with a probability:

Pr {𝑥
𝑡
= Λ} =

∑
𝑗 ̸=
3
𝑡
𝑚
Λ𝑗

∑
𝑗 ̸=
3
𝑡
𝑚
𝐴𝑗
+ 𝑚
𝑇𝑗
+ 𝑚
𝐶𝑗
+ 𝑚
𝐺𝑗

. (9)

Here, “𝑗 ̸=
3
𝑡” denotes “𝑗 mod 3 ̸= 𝑡 mod 3.”

After assigning the base at each position, the TPM of
the complete sequence is immediately updated following
equation (8), with the newly assigned 𝑥

𝑡
.

3. Results and Discussions

3.1. Application of the Original SASR to Random Sequences.
The original SASR is applied to the simulated random
sequences.The distribution of the SRR values of the TP walks
is plotted in Figure 4 in the form of its probability density
function (PDF). It shows that the distribution is close to the
normal distribution with a slight shift to the negative.

The sample mean𝑋 of the SRR values is −7.95× 10−3 and
the sample standard deviation 𝑆 is 2.06 × 10−2. A one-sample
𝑡-test with the hypothetical mean 𝜇

0
= 0 obtains a 𝑃 value

of 0. Here, the 𝑃 value in a one-sample 𝑡-test is a statistical
term indicating the likelihood to get the observed sample if
the population is with the hypothetical mean 𝜇

0
. In practice,

a 𝑡 statistic is first calculated:

𝑡 =
𝑋 − 𝜇

0

𝑆/√𝑛
. (10)

The sample size 𝑛 = 2,000 as mentioned before. Once
the 𝑡 statistic is determined, a 𝑃 value can be found using a
table of values from “Student’s 𝑡-distribution”. A 𝑃 value of 0
indicates that the distribution is significantly different from
the unbiased (with the expectation of 0) normal distribution.
So the TP walks for the random sequences slightly move
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Figure 2: A simple example of generating a TP sequence with the new algorithm.

Input: nucleotide sequence 𝑥[1,. . .,𝑁]
Output: TP walk as a complex sequence 𝑤[0,. . .,𝑁]
(1) for each Λ do𝑚𝑎𝑡𝑀[Λ] = 𝑀[Λ] = {0, 0, 0};
(2) for 𝑡 from𝑁 to 1 do {
(3) if ((𝑁 − 𝑡)mod 3 == 0)𝑚𝑎𝑡𝑀[Λ] = 𝑀[Λ];
(4) 𝑠[𝑡] = 𝑚𝑎𝑡𝑀[𝑥[𝑡]];
(5) for each Λ do {
(6) 𝑀[Λ] = 𝑀[Λ] ≫ 1;
(7) if (𝑥[𝑡] == Λ)𝑀[Λ] += {1, 0, 0};
(8) }

(9) }
(10) 𝑤[0].re = 0; 𝑤[0].im = 0;
(11) for 𝑡 from 1 to𝑁 do {
(12) 𝑢.re = −0.5 ∗ 𝑠[𝑡][0] − 0.5 ∗ 𝑠[𝑡][1] + 𝑠[𝑡][2];
(13) 𝑢.im = sqrt(3)/2 ∗ 𝑠[𝑡][0] − sqrt(3)/2 ∗ 𝑠[𝑡][1];
(14) 𝑟 = sqrt(𝑢.re ∗ 𝑢.re + 𝑢.im ∗ 𝑢.im);
(15) 𝑤[𝑡] = 𝑤[𝑡 − 1];
(16) if (𝑟! = 0) {
(17) 𝑤[𝑡].re += 𝑢.re/𝑟;
(18) 𝑤[𝑡].im += 𝑢.im/𝑟;
(19) }

(20) }

Pseudocode 1

leftward, rather than unbiased random as expected in Chen
and Ji’s work [24].

The reason for the slightly leftward trend is discussed
below. Consider a random sequence 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}.

At any position, a certain base Λ (Λ = 𝐴, 𝑇, 𝐶, or 𝐺) appears
with a fixed probability𝑝

Λ
and𝑝

𝐴
+𝑝
𝑇
+𝑝
𝐶
+𝑝
𝐺
= 1. Suppose

a base Λ appears at position 𝑡
0
; according to Chen and Ji [24]

(also find the original SASR in Section 2), we have the step 𝑡
0
:

𝑠
𝑡
0

= 𝑀
Λ
(𝑃
𝑋
(𝑡
0
)) = {𝑚

Λ1
, 𝑚
Λ2
, 𝑚
Λ3
}

where 𝑚
Λ𝑗
= count {𝑡 | 𝑥

𝑡
= Λ, (𝑡 − 𝑡

0
) =
3
𝑗, 𝑡 > 𝑡

0
} .

(11)

It is easy to find that the random variable𝑚
Λ𝑗

follows the
Binomial distribution:

𝑚
Λ𝑗
∼ 𝐵 (𝑛

𝑗
, 𝑝
Λ
) . (12)

Here, 𝑛
𝑗
is the count of the positions 𝑡 that satisfy 𝑡 > 𝑡

0

and (𝑡 − 𝑡
0
)=
3
𝑗. And the expected value 𝐸(𝑚

Λ𝑗
) = 𝑛
𝑗
𝑝
Λ
. So

the expected value of the step is

𝐸 (𝑠
𝑡
0

) = 𝑝
Λ
⋅ {𝑛
1
, 𝑛
2
, 𝑛
3
} . (13)

According to the definition of 𝑛
𝑗
, although the differences

among 𝑛
1
, 𝑛
2
, and 𝑛

3
are no more than 1, 𝑛

3
is always the
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Figure 3: The flow chart to generate a simulated TP antipersistent
sequence.
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Figure 4: The PDF of the distribution of the SRR values when
applying the original SASR to the random sequences.

minimum in the three. According to the mapping from the
triplet to the complex number (4), it causes the walk to move
leftward slightly for each step and further produces a slightly
negative SRR value.

As discussed above, the slightly leftward trend is caused
by a negative noise raised by the original SASRmethod itself.
The noise may comprehensively exist in all TP walks. It needs
an improved method to eliminate it.

3.2. Application of theMature SASR to Random Sequences. As
mentioned in Section 2, themature SASR uses amature TPM

5
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0.00 0.05 0.10−0.10 −0.05

Figure 5: The PDF of the distribution of the SRR values when
applying the mature SASR to the random sequences.

instead of the original matrix. The mature TPM is always
derived when 𝑛

1
= 𝑛
2
= 𝑛
3
, and it is supposed to eliminate

the noise.
The mature SASR is applied to the random sequences

and the distribution of the SRR values is plotted in Figure 5.
It shows that it is close to the normal distribution with an
expected value of 0. The sample mean of the SRR values is
4.87 × 10

−4 and the sample standard deviation is 1.79 × 10−2.
The one-sample 𝑡-test obtains a𝑃 value of 22.5% (two-tailed),
which shows no significant difference from the unbiased
distribution. So it is verified that, by using the mature SASR,
the TP walks for random sequences are unbiasedly random
around the zero point in the complex plane. The negative
noise is eliminated by this modification.

It should be pointed out that, compared with the original
SASR method, the mature SASR equally eliminates the nega-
tive noise that originally exists in all TP walks for both non-
TP and TP intensive sequences. Therefore, this modification
of the method does not impact the capability of the method
in detecting the TP intensive pattern.

3.3. The TP Antipersistent Sequences. The TP profile was
presented in Frenkel and Korotkov’s work [11, 12] using a
triplet periodicity matrix (TPM) as mentioned in Section 2.
The TP profiles in the parts of a non-TP sequence have no
correlation with each other. It shows a “Brownian pattern” in
the sequence. On the other hand, in a simple TP intensive
sequence 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}, a certain base Λ appears at

position 𝑗 in the 3 bp period with a probability:

Pr {𝑥
𝑡
= Λ, 𝑡 =

3
𝑗} =

𝑚
Λ𝑗

𝑁
. (14)

Kotlar and Lavner’s finding [23] suggests that, in coding
regions of a given organism, the TP profile, by which
nucleotide bases appear in the triplet period, tends to keep
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unchanged. It can be considered as a “persistent pattern” in
the sequence. That is, for any position 𝑡

0
,

Pr {𝑡 =
3
𝑗
0
| 𝑡 ≤ 𝑡

0
, 𝑥
𝑡
= Λ}

= Pr {𝑡 =
3
𝑗
0
| 𝑡 > 𝑡

0
, 𝑥
𝑡
= Λ} .

(15)

Besides the “Brownian pattern” and the “persistent pat-
tern” mentioned above, a theoretically potential pattern
is considered, namely, the “antipersistent pattern.” For the
antipersistent pattern, any part of the sequence has the TP
profile opposite to the rest parts. In other words, a certain
base Λ avoids appearing at the position 𝑗 in the 3 bp period,
which is preferred in other parts of the sequence. An ideal
probability model is built here as a simple case of the
TP antipersistency. That is, at any given position 𝑡

0
in the

sequence, a certain base Λ appears with a probability:

Pr {𝑥
𝑡
0

= Λ | 𝑡
0
=
3
𝑗
0
}

= Pr {𝑥
𝑡
= Λ | 𝑡 > 𝑡

0
, 𝑡 ̸=
3
𝑗
0
} .

(16)

So that, for any position 𝑡
0
presenting Λ in the sequence,

Pr {𝑡
0
=
3
𝑗
0
| 𝑥
𝑡
0

= Λ}

=

Pr {𝑡
0
=
3
𝑗
0
} ⋅ Pr {𝑥

𝑡
0

= Λ | 𝑡
0
=
3
𝑗
0
}

∑
𝑗
Pr {𝑡
0
=
3
𝑗} ⋅ Pr {𝑥

𝑡
0

= Λ | 𝑡
0
=
3
𝑗}

≈
Pr {𝑥
𝑡
= Λ | 𝑡 > 𝑡

0
, 𝑡 ̸=
3
𝑗
0
}

∑
𝑗
Pr {𝑥
𝑡
= Λ | 𝑡 > 𝑡

0
, 𝑡 ̸=
3
𝑗}

(for 𝑗 = 1, 2, 3 Pr {𝑡
0
=
3
𝑗} ≈

1

3
)

≈
Pr {𝑡 ̸=

3
𝑗
0
| 𝑡 > 𝑡

0
} ⋅ Pr {𝑥

𝑡
= Λ | 𝑡 > 𝑡

0
, 𝑡 ̸=
3
𝑗
0
}

∑
𝑗
Pr {𝑡 ̸=

3
𝑗 | 𝑡 > 𝑡

0
} ⋅ Pr {𝑥

𝑡
= Λ | 𝑡 > 𝑡

0
, 𝑡 ̸=
3
𝑗}

(for 𝑗 = 1, 2, 3 Pr {𝑡 ̸=
3
𝑗 | 𝑡 > 𝑡

0
} ≈

2

3
)

=
1

2
Pr {𝑡 ̸=

3
𝑗
0
| 𝑡 > 𝑡

0
, 𝑥
𝑡
= Λ} .

(17)

Therefore, this model is found to be opposite to the
“persistent pattern” of (15). In practice, we simulate such
TP antipersistent sequences by the method mentioned in
Section 2.

3.4. Applications of the Algorithms to TP Antipersistent
Sequences. Theoriginal SASR is first applied to the simulated
TP antipersistent sequences (see Section 2). The distribution
of the SRR values of the TP walks is plotted in Figure 6,
compared with that for the random sequences. It shows an
obvious difference between these two distributions.

The simulation above reveals a leftward moving trend of
the TP walks for TP antipersistent sequences. The reason of
such a behavior is discussed as below. Consider any short
section containing three sequential positions 𝑡

0
−2, 𝑡
0
−1, and

𝑡
0
(𝑡
0
is amultiple of 3; i.e., 𝑡

0
mod3=0) in a sequencewith the

TP antipersistent probability model mentioned previously.
The posterior subsequences at these three positions share a
similar TPM with a shift:

𝑀
Λ
(𝑃
𝑋
(𝑡
0
− 𝑖)) ≈ 𝑀

Λ
(𝑃
𝑋
(𝑡
0
)) ≫ 𝑖, (𝑖 = 0, 1, 2) . (18)

Meanwhile, according to (9), base Λ appears at these
positions with a probability:

Pr {𝑥
𝑡
0
−𝑖
= Λ} ≈

∑
𝑗 ̸=3−𝑖

𝑚
Λ𝑗

∑
𝑗 ̸=3−𝑖

𝑚
𝐴𝑗
+ 𝑚
𝑇𝑗
+ 𝑚
𝐶𝑗
+ 𝑚
𝐺𝑗

. (19)

Here, 𝑚
Λ𝑗

stands for the entry in the TPM of the
posterior subsequence at position 𝑡

0
; that is, 𝑀

Λ
(𝑃
𝑋
(𝑡
0
)) =

{𝑚
Λ1
, 𝑚
Λ2
, 𝑚
Λ3
}. Meanwhile, we have

∑

Λ

𝑚
Λ1
≈ ∑

Λ

𝑚
Λ2
≈ ∑

Λ

𝑚
Λ3
≈
𝑁 − 𝑡
0

3
. (20)

Hence, these three steps in the walk move to

𝐸(∑

𝑖

𝑠
𝑡
0
−𝑖


𝑢 (𝑠
𝑡
0
−𝑖
)


)

≈ 𝐸(∑

𝑖

𝑀
𝑥
𝑡0−𝑖

(𝑃
𝑋
(𝑡
0
)) ≫ 𝑖


𝑢 (𝑀
𝑥
𝑡0−𝑖

(𝑃
𝑋
(𝑡
0
)))


)

(according to (11) and (18))

= ∑

𝑖

∑

Λ=𝐴,𝑇,𝐶,𝐺

(

∑
𝑗 ̸=3−𝑖

𝑚
Λ𝑗

∑
𝑗 ̸=3−𝑖

𝑚
𝐴𝑗
+ 𝑚
𝑇𝑗
+ 𝑚
𝐶𝑗
+ 𝑚
𝐺𝑗

⋅
𝑀
Λ
(𝑃
𝑋
(𝑡
0
)) ≫ 𝑖

𝑢 (𝑀Λ (𝑃𝑋 (𝑡0)))


)

(according to (19))

≈
3

2 (𝑁 − 𝑡
0
)

∑

Λ=𝐴,𝑇,𝐶,𝐺

∑
𝑖
[(∑
𝑗 ̸=3−𝑖

𝑚
Λ𝑗
) ⋅ 𝑀
Λ
(𝑃
𝑋
(𝑡
0
)) ≫ 𝑖]

𝑢 (𝑀Λ (𝑃𝑋 (𝑡0)))


(according to (20))

=
3

2 (𝑁 − 𝑡
0
)

∑

Λ=𝐴,𝑇,𝐶,𝐺

{𝛼
1
, 𝛼
2
, 𝛼
3
}

𝑢 (𝑀Λ (𝑃𝑋 (𝑡0)))


,

(21)

where

𝛼
1
= 𝛼
2
= 𝑚
Λ1
𝑚
Λ2
+ 𝑚
Λ2
𝑚
Λ3
+ 𝑚
Λ3
𝑚
Λ1

+ 𝑚
2

Λ1
+ 𝑚
2

Λ2
+ 𝑚
2

Λ3
,

𝛼
3
= 2𝑚
Λ1
𝑚
Λ2
+ 2𝑚
Λ2
𝑚
Λ3
+ 2𝑚
Λ3
𝑚
Λ1
.

(22)

Obviously, in this case, we have 𝛼
1
= 𝛼
2
≥ 𝛼
3
. Therefore,

in (21), the first two elements of the expected vector dominate
the third one. According to (4), it causes the TP walk to move
leftward in the complex plane.
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Figure 6:The distribution of the SRR values when the original SASR is applied to the simulated TP antipersistent sequences (black) compared
with those for the random sequences (gray). (a) The probability density function (PDF). (b) The cumulative distribution function (CDF).
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Figure 7:The distribution of the SRR values when themature SASR is applied to the simulated TP antipersistent sequences (black) compared
with those for the random sequences (gray). (a) The probability density function (PDF). (b) The cumulative distribution function (CDF).

However, since the TP walks, from the original SASR,
comprehensively contain a negative noise as mentioned
before, it is difficult to determine to what extent the noise has
impacted the gap between the two distributions in Figure 6.
Therefore, to visualize the real gap between the two patterns,
it needs the mature SASR, in which the noise has been
eliminated.

The mature SASR is then applied to the simulated TP
antipersistent sequences. The distribution of the SRR values
of the TP walks is plotted in Figure 7, compared with that
for the random sequences. The PDF curve for the simulated

TP antipersistent sequences is on the left side to that for
the random sequences, and the cumulative distribution
function (CDF) curves indicate that there are 85% simulated
sequences with negative SRR values, while the SRR values
of the random sequences distribute fifty-fifty in negative and
positive areas. It is found that the sample mean 𝑋 and the
sample deviation 𝑆 of the 2,000 SRR values for the simulated
anti-TP dataset are −1.57× 10−2 and 1.73× 10−2, respectively.
A 𝑃 value of 0 indicates the significant difference between
this distribution and that for random sequences. It must be
noticed that, although the gap between the two distributions
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is less than that in Figure 6, such a gap is completely due to the
difference between the sequence patterns, without any noise.
So the mature SASR is more suitable in visualizing the TP
antipersistency than the original SASR.

The results from the simulations and the discussions
above indicate that the mature SASR is able to discriminate
TP antipersistent sequences from random sequences. The
antipersistent pattern can be identified according to a left-
ward moving trend in the TP walk.

4. Conclusions

In this work, a new measure, that is, SRR, is presented to
qualitatively investigate the behavior of the original SASR’s
outputs, that is, the TP walks, for sequences considering
both the leftward trend and rightward trend. After that, for
random sequences, an abnormal behavior of the walks from
the original SASR is revealed: the TP walks for the random
sequences slightly move leftward, rather than unbiased ran-
dom as expected in Chen and Ji’s work [24]. This abnormity
is caused by a negative noise raised by the original SASR
method itself. And the noise comprehensively exists in all TP
walks.

A modification of the original SASR, that is, the mature
SASR, is then given in order to eliminate the noise and
correct the behavior of the TP walks, without impacting the
capability of themethod in detecting theTP intensive pattern.
The application to the simulated random sequences verifies
that, by using the mature SASR, the TP walks for random
sequences are unbiasedly random around the zero point in
the complex plane.

Furthermore, a potential sequence pattern opposite to the
TP persistent pattern, that is, the TP antipersistent pattern,
is explored. The applications of the algorithms on simulated
datasets show their capabilities in detecting such a potential
sequence pattern. The mature SASR is said to be an effective
tool for the visualization of TP-related features, including
non-TP, TP persistency, and TP antipersistency.
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