
Research Article
Local Fractional Function Decomposition Method
for Solving Inhomogeneous Wave Equations with Local
Fractional Derivative

Shun-Qin Wang,1 Yong-Ju Yang,1 and Hassan Kamil Jassim2

1 School of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, China
2Department of Mathematics, University of Mazandaran, Babolsar 47416-95447, Iran

Correspondence should be addressed to Yong-Ju Yang; tomjohn1007@126.com

Received 17 November 2013; Accepted 9 December 2013; Published 2 January 2014

Academic Editor: Hossein Jafari

Copyright © 2014 Shun-Qin Wang et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose the local fractional function decomposition method, which is derived from the coupling method of local fractional
Fourier series and Yang-Laplace transform. The forms of solutions for local fractional differential equations are established. Some
examples for inhomogeneous wave equations are given to show the accuracy and efficiency of the presented technique.

1. Introduction

Fractional differential equationswith arbitrary orders [1] have
attracted more and more attention to their extensive applica-
tions in various areas, such as physics, applied mathematics,
and biology [2–8]. As a result, great deal of methods for
solving the fractional differential equations are developed
[9–21], such as the heat balance integral method [9, 10],
the homotopy analysis method [11], the variational iteration
method [12], the homotopy decomposition method [13, 14],
and the Adomian decomposition method [15, 16].

The fractional differential equations were considered in
sense of the Caputo derivative, the Riemann-Liouville deriva-
tive, and the Grünwald-Letnikov derivative [17]. However,
they do not deal with the nondifferentiable functions defined
on Cantor sets. Local fractional derivative [18, 19] is the best
method for describing the nondifferential problems defined
on Cantor sets. For example, the heat equations arising in
fractal transient conduction were investigated in [19–22].The
Helmholtz and diffusion equations on the Cantor sets within
local fractional derivative were discussed [23]. The Navier-
Stokes equations on Cantor sets were suggested in [24].There
are some methods for solving the local fractional differential
equations, such as the local fractional variational iteration
method [20], the Yang-Fourier transform [21], the Yang-
Laplace transform [22], the local fractional Fourier series

method [25], and the local fractional Adomian decomposi-
tion method [26].

In this paper, our aims are to present the couplingmethod
of local fractional seriesmethod andYang-Laplace transform,
which is called as the local fractional function decomposition
method, and to use it to solve the differential equations
with local fractional derivative. The organization of the
manuscript is as follows. In Section 2, the basic mathematical
tools are introduced. In Section 3, the local fractional func-
tion decomposition method for solving the differential equa-
tions with local fractional derivative is investigated. In Sec-
tion 4, several examples are considered. Finally, in Section 5
the conclusions are given.

2. Mathematical Fundamentals

In this section, we introduce the basic notions of local frac-
tional continuity, local fractional derivative, local fractional
Fourier series, and special function in fractal space [18, 19],
which are used in the paper.

Definition 1. Suppose that there is [19]
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with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅; then 𝑓(𝑥) is

called local fractional continuous at 𝑥 = 𝑥
0
and it is denoted

by lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥
0
).

Definition 2. Suppose that the function 𝑓(𝑥) satisfies con-
dition (1), for 𝑥 ∈ (𝑎, 𝑏); it is so-called local fractional
continuous on the interval (𝑎, 𝑏), denoted by

𝑓 (𝑥) ∈ 𝐶
𝛼

(𝑎, 𝑏) . (2)

Definition 3. In fractal space, let 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏), local

fractional derivative of 𝑓(𝑥) of order 𝛼 at 𝑥 = 𝑥
0
is given by

[19]
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0
))
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0
)
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,

(3)

where Δ

𝛼
(𝑓(𝑥) − 𝑓(𝑥

0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

Local fractional derivative of high order and local frac-
tional partial derivative are defined, respectively, in the
following forms [18, 19]:

𝑓
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(4)

Definition 4. In fractal space, the Mittage Leffler function,
sine function, cosine function, hyperbolic sine function, and
hyperbolic cosine function are, respectively, defined by [18,
19]
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𝛼
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, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1,
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2
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(5)

Definition 5. Let 𝑓(𝑥) be 2𝑙-periodic. For 𝑘 ∈ 𝑍 and 𝑓(𝑥) ∈

𝐶
𝛼
(−∞, +∞), the local fraction Fourier series of 𝑓(𝑥) is

defined as (see [18, 25])
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+

∞
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𝛼
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where
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=
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𝛼
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𝛼
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𝛼
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𝛼
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𝑏
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=

1
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𝛼
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𝛼
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𝛼
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𝛼
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(7)

are the local fraction Fourier coefficients.

Definition 6. Let (1/Γ(1 + 𝛼)) ∫

∞

0
|𝑓(𝑥)|(𝑑𝑥)

𝛼
< 𝑘 < ∞. The

Yang-Laplace transforms of 𝑓(𝑥) is given by [18, 22]

𝐿
𝛼

{𝑓 (𝑥)} = 𝑓
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(8)

where the latter integral converges and 𝑠

𝛼
∈ 𝑅

𝛼.

Definition 7. The inverse formula of the Yang-Laplace trans-
forms of 𝑓(𝑥) is given by [18, 22]:

𝐿

−1

𝛼
{𝑓

𝐿,𝛼

𝑠
(𝑠)} = 𝑓 (𝑡)
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1
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𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼

(𝑠

𝛼
𝑡

𝛼
) 𝑓

𝐿,𝛼

𝑠
(𝑠) (𝑑𝑠)

𝛼
,

0 < 𝛼 ≤ 1,

(9)

where 𝑠

𝛼
= 𝛽

𝛼
+ 𝑖

𝛼
𝜔

𝛼; fractal imaginary unit 𝑖

𝛼 and Re(𝑠) =

𝛽 > 0.

3. Local Fractional Function
Decomposition Method

In this section we will present the local fractional function
decomposition method.

At first, we present the local fractional differential equa-
tion

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
2𝛼

+ 𝑘
1

𝜕

𝛼
𝑢 (𝑥, 𝑡)
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𝛼

+ 𝑘
2

𝜕
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𝑢 (𝑥, 𝑡)
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2𝛼

+ 𝑘
3

𝜕

𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝛼

= 𝑓 (𝑥, 𝑡)

(10)

with constants 𝑘
1
, 𝑘
2
, 𝑘
3
, 0 < 𝛼 ≤ 1/2 and with boundary and

initial conditions

𝑢 (0, 𝑡) = 𝑢 (𝑙, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝜑 (𝑥) ,

𝜕

𝛼
𝑢 (𝑥, 𝑜)

𝜕𝑡
𝛼

= 𝜓 (𝑥) .

(11)

Now we discuss the solution of (10).
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According to the decomposition of the local fractional
function, with respect to the system {sin

𝛼
𝑛

𝛼
(𝜋𝑥/𝑙)

𝛼
}, the

following functions coefficients can be given by

𝑢 (𝑥, 𝑡) =

∞

∑
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V
𝑛 (
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𝛼
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𝑓 (𝑥, 𝑡) =

∞
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∞
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∞
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𝛼
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(
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.
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Substituting (12) into (10) implies that

𝜕

𝛼V
𝑛

(𝑡)
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𝛼

+ 𝑘
1

𝜕

𝛼V
𝑛

(𝑡)

𝜕𝑡
𝛼

+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

V
𝑛

(𝑡)

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

V
𝑛

(𝑡) = 𝑓
𝑛

(𝑡) ,

V
𝑛 (

0) = 𝐶
𝑛
, V󸀠

𝑛
(0) = 𝐷

𝑛
.

(14)

Suppose that the Yang-Laplace transforms of functions V
𝑛
(𝑡)

and 𝑓
𝑛
(𝑡) are 𝑉

𝑛
(𝑠) and 𝐹

𝑛
(𝑠), respectively. Then we obtain

𝑠

2𝛼
𝑉
𝑛 (

𝑠) − 𝐶
𝑛
𝑠

𝛼
− 𝐷
𝑛

+ 𝑘
1

(𝑠

𝛼
𝑉
𝑛 (

𝑠) − 𝐷
𝑛
)

+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

𝑉
𝑛 (

𝑠) + 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

𝑉
𝑛 (

𝑠) = 𝐹
𝑛 (

𝑠) .

(15)

That is

𝑉
𝑛

(𝑠) =

𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

+ 𝐶
𝑛
𝑠

𝛼

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼

+

𝐹
𝑛

(𝑠)

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
.

(16)

Hence, we have

V
𝑛

(𝑡)

= 𝐿

−1

𝛼
[𝑉
𝑛

(𝑠)]

=

1

(2𝜋)

𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼

(𝑠

𝛼
𝑡

𝛼
) 𝑉
𝑛

(𝑠) (𝑑𝑠)

𝛼

=

1

(2𝜋)

𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼

(𝑠

𝛼
𝑡

𝛼
)

×

𝐹
𝑛 (

𝑠)

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2(

𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3(

𝑛𝜋/𝑙)

𝛼
(𝑑𝑠)

𝛼

+

1

(2𝜋)

𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼

(𝑠

𝛼
𝑡

𝛼
)

×

𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

+ 𝐶
𝑛
𝑠

𝛼

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
(𝑑𝑠)

𝛼
.

(17)

Let

V
𝑛 (

𝑡) = V
1,𝑛 (

𝑡) + V
2,𝑛 (

𝑡) ,

V
1,𝑛

(𝑡)

=

1

(2𝜋)

𝛼

× ∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼

(𝑠

𝛼
𝑡

𝛼
)

×

𝐹
𝑛

(𝑠)

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
(𝑑𝑠)

𝛼
,

V
2,𝑛 (

𝑡)

=

1

(2𝜋)

𝛼

× ∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼

(𝑠

𝛼
𝑡

𝛼
)

×

𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

+ 𝐶
𝑛
𝑠

𝛼

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
(𝑑𝑠)

𝛼
.

(18)

Hence, we get

𝑉
1,𝑛 (

𝑠) =

𝐹
𝑛 (

𝑠)

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
,

𝑉
2,𝑛

(𝑠) =

𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

+ 𝐶
𝑛
𝑠

𝛼

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2(

𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3(

𝑛𝜋/𝑙)

𝛼
.

(19)

Then, making use of (8) and (9) and rearranging integration
sequence, we have the following several formulas about V

1,𝑛
(𝑡)

and V
2,𝑛

(𝑡).
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(I) Suppose that

−

1

4

𝑘

2

1
+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

> 0,

𝑠

2𝛼
+ 𝑘
1
𝑠

𝛼
+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

= (𝑠

𝛽
+

𝑘
1

2

)

2

+ 𝐷

󸀠2

𝑛
,

(20)

where 𝐷

󸀠

𝑛
= √−(1/4)𝑘

2

1
+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
.

Then, we get

V
1,𝑛

(𝑡) =

1

𝐷
󸀠

𝑛
Γ (1 + 𝛼)

× ∫

𝑡

0

𝐸
𝛼

(

−𝑘
1
𝜏

𝛼

2
𝛼

) sin
𝛼
𝐷

󸀠

𝑛
𝜏𝑓
𝑛 (

𝑡 − 𝜏) (𝑑𝜏)

𝛼
.

(21)

When

𝑉
2,𝑛

(𝑠) =

𝐶
𝑛

(𝑠

𝛼
+ (𝑘
1
/2)) + (𝐷

𝑛
+ 𝑘
1
𝐷
𝑛

− (𝑘
1
/2) 𝐶
𝑛
)

(𝑠
𝛼

+ (𝑘
1
/2))

2
+ 𝐷
󸀠2

𝑛

,

(22)

we get

V
2,𝑛

(𝑡) = 𝐶
𝑛
𝐸
𝛼

(

−𝑘
1
𝑡

𝛼

2
𝛼

) cos
𝛼
√

𝐷
󸀠
𝑡

𝛼

+ (𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

−

𝑘
1

2

𝐶
𝑛
) 𝐸
𝛼

(

−𝑘
1
𝑡

𝛼

2
𝛼

) sin
𝛼
√

𝐷
󸀠
𝑡

𝛼
.

(23)

(II) If

−

1

4

𝑘

2

1
+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

= 0,

𝑠

2𝛼
+ 𝑘
1
𝑠

𝛼
+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

= (𝑠

𝛼
+

𝑘
1

2

)

2

,

(24)

then we have

V
1,𝑛

(𝑡) =

1

Γ (1 + 𝛽)

∫

𝑡

0

𝐸
𝛼

(

−𝑘
1
𝜏

𝛼

2
𝛼

) 𝜏

𝛼
𝑓
𝑛

(𝑡 − 𝜏) (𝑑𝜏)

𝛼
. (25)

When

𝑉
2,𝑛 (

𝑠) =

𝐶
𝑛

(𝑠

𝛼
+ (𝑘
1
/2)) + (𝐷

𝑛
+ 𝑘
1
𝐷
𝑛

− (𝑘
1
/2) 𝐶
𝑛
)

(𝑠
𝛼

+ (𝑘
1
/2))

2
,

(26)

we arrive at

V
2,𝑛

(𝑡) =

𝐶
𝑛

Γ (1 + 𝛼)

𝐸
𝛼

(

−𝑘
1
𝑡

𝛼

2
𝛼

)

+

𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

− (𝑘
1
/2) 𝐶
𝑛

Γ (1 + 𝛼)

𝑡

𝛼
𝐸
𝛼

(

−𝑘
1
𝑡

𝛼

2
𝛼

) .

(27)

(III) Let

−

1

4

𝑘

2

1
+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

< 0, (28)

𝑠

2𝛼
+ 𝑘
1
𝑠

𝛼
+ 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

+ 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

= (𝑠

𝛼
+

𝑘
1

2

)

2

− 𝐷

󸀠2

𝑛
,

(29)

where 𝐷

󸀠

𝑛
= √(1/4)𝑘

2

1
− 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
− 𝑘
3
(𝑛𝜋/𝑙)

𝛼.
Then, we have

V
1,𝑛 (

𝑡) =

1

Γ (1 + 𝛼) 𝐷
󸀠

𝑛

× ∫

𝑡

0

𝐸
𝛼

(

−𝑘
1
𝜏

𝛼

2
𝛼

) 𝑠ℎ
𝛼
𝐷

󸀠

𝑛
𝜏

𝛼
𝑓
𝑛 (

𝑡 − 𝜏) (𝑑𝜏)

𝛽
.

(30)

When

𝑉
2,𝑛

(𝑠)

=

𝐶
𝑛

(𝑠

𝛼
+ (𝑘
1
/2)) + (𝐷

𝑛
+ 𝑘
1
𝐷
𝑛

− (𝑘
1
/2) 𝐶
𝑛
)

(𝑠
𝛼

+ (𝑘
1
/2))

2
− 𝐷
󸀠2

𝑛

=

(𝑘
1

+ 1) 𝐷
𝑛

+ (𝐷

󸀠

𝑛
− (𝑘
1
/2)) 𝐶

𝑛

2𝐷
󸀠

𝑛
(𝑠
𝛼

+ (𝑘
1
/2) − 𝐷

󸀠

𝑛
)

+

(𝐷

󸀠

𝑛
+ (𝑘
1
/2)) 𝐶

𝑛
− (𝑘
1

+ 1) 𝐷
𝑛

2𝐷
󸀠

𝑛
(𝑠
𝛼

+ (𝑘
1
/2) + 𝐷

󸀠

𝑛
)

,

(31)

we obtain

V
2,𝑛

(𝑡) =

(𝑘
1

+ 1) 𝐷
𝑛

+ (𝐷

󸀠

𝑛
− (𝑘
1
/2)) 𝐶

𝑛

2𝐷
󸀠

𝑛

× 𝐸
𝛼

((𝐷

󸀠

𝑛
−

𝑘
1

2
𝛼

) 𝑡

𝛼
)

+

(𝐷

󸀠

𝑛
+ (𝑘
1
/2)) 𝐶

𝑛
− (𝑘
1

+ 1) 𝐷
𝑛

2𝐷
󸀠

𝑛

× 𝐸
𝛼

((−𝐷

󸀠

𝑛
−

𝑘
1

2
𝛼

) 𝑡

𝛼
) .

(32)

The above results are the desired solutions.

4. Illustrative Examples

In order to illustrate the above results in Section 3, we give the
following several examples.

Example 1. The local fractional Laplace differential equation
is written in the following form [18, 19]:

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
2𝛼

+

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
2𝛼

= 0 (33)
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subjected to the boundary and initial conditions described by

𝑢 (𝑥, 0) = sin
𝛼

(𝑥

𝛼
) ,

𝜕

𝛼
𝑢 (𝑥, 𝑜)

𝜕𝑡
𝛼

= sin
𝛼

(𝑥

𝛼
) ,

𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0.

(34)

From (33), the final solution can be easily deduced as follows:

𝑢 (𝑥, 𝑡) = sin
𝛼

(𝑥

𝛼
) 𝐸
𝛼

(𝑡

𝛼
) . (35)

Example 2. We consider the following inhomogeneous wave
equation with local fractional derivative:

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
2𝛼

−

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
2𝛼

− sin
𝛼
𝑥

𝛼
= 0 (36)

subjected to the boundary and initial conditions

𝑢 (𝑥, 0) = sin
𝛼

(𝑥

𝛼
) ,

𝜕

𝛼
𝑢 (𝑥, 𝑜)

𝜕𝑡
𝛼

= 0,

𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0.

(37)

In order to find its solution, we suppose that

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

V
𝑛

(𝑡) sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝑓 (𝑥, 𝑡) = sin
𝛼
𝑥

𝛼
=

∞

∑

𝑛=1

𝑓
𝑛

(𝑡) sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝜑 (𝑥) = sin
𝛼
𝑥

𝛼
=

∞

∑

𝑛=1

𝐶
𝑛
sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝜓 (𝑥) = 0 =

∞

∑

𝑛=1

𝐷
𝑛
sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

(38)

which leads to

𝑓
𝑛

(𝑡) = 0, (𝑛 ̸= 1) ,

𝑓
1

(𝑡) = 1,

𝐶
𝑛

= 0, (𝑛 ̸= 1) ,

𝐶
1

= 1,

𝐷
𝑛

= 0.

(39)

Contrasting (37) with (35), we directly get

𝑘
1

= 𝑘
3

= 0,

𝑘
2

= −1,

𝐷

󸀠

𝑛
=

√

1

4

𝑘
2

1
− 𝑘
2
(

𝑛𝜋

𝑙

)

2𝛼

− 𝑘
3
(

𝑛𝜋

𝑙

)

𝛼

= 1, (𝑛 = 1) ,

𝐷

󸀠

𝑛
= 0, (𝑛 ̸= 1) .

(40)

According to (30) and (32), we can derive

V
𝑛

(𝑡) = 0, (𝑛 ̸= 1) , (41)

V
1,1 (

𝑡)

=

1

Γ (1 + 𝛼) 𝐷
󸀠

1

∫

𝑡

0

𝐸
𝛼

(

−𝑘
1
𝜏

𝛼

2
𝛼

) 𝑠ℎ
𝛼
𝐷

󸀠

1
𝜏

𝛼
𝑓
1 (

𝑡 − 𝜏) (𝑑𝜏)

𝛼

=

1

Γ (1 + 𝛼)

∫

𝑡

0

𝑠ℎ
𝛼
𝜏

𝛼
(𝑑𝜏)

𝛼

=

𝐸
𝛼

(𝑡

𝛼
) + 𝐸
𝛼

(−𝑡

𝛼
)

2

− 1,

(42)

V
1,2 (

𝑡) =

𝐸
𝛼

(𝑡

𝛼
) + 𝐸
𝛼

(−𝑡

𝛼
)

2

.
(43)

Conclusively, we get

V
1

(𝑡) = 𝐸
𝛼

(𝑡

𝛼
) + 𝐸
𝛼

(−𝑡

𝛼
) − 1, V

𝑛
(𝑡) = 0, (𝑛 ̸= 1) .

(44)

Thus, we obtain

𝑢 (𝑥, 𝑡) = [𝐸
𝛼

(𝑡

𝛼
) + 𝐸
𝛼

(−𝑡

𝛼
) − 1] sin

𝛼
(𝑥

𝛼
) . (45)

Example 3. The inhomogeneous wave equation with local
fractional differential operator is written in the following
form:

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
2𝛼

+

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
2𝛼

= 1. (46)

The boundary and initial conditions are described by

𝑢 (𝑥, 0) = sin
𝛼
𝑥

𝛼
,

𝜕

𝛼
𝑢 (𝑥, 𝑜)

𝜕𝑡
𝛼

= 0.

(47)

In order to find the solution of (46), we set

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

V
𝑛

(𝑡) sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝑓 (𝑥, 𝑡) = 1 =

∞

∑

𝑛=1

𝑓
𝑛

(𝑡) sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝜑 (𝑥) = sin
𝛼
𝑥

𝛼
=

∞

∑

𝑛=1

𝐶
𝑛
sin
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝜓 (𝑥) = 0 =

∞

∑

𝑛=1

𝐷
𝑛
sin
𝛼
𝑛

𝛼
𝑥

𝛼
.

(48)

Hence, we get

𝑓
𝑛 (

𝑡) =

2 [1 − (−1)

𝑛
]

𝑛

,

𝐶
𝑛

= 0 (𝑛 ̸= 1) ,

𝐶
1

= 1,

𝐷
𝑛

= 0.

(49)
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Let

𝑠

2𝛼
+ 𝑛

2𝛼
= (𝑠

𝛼
)

2
+ 𝐷

󸀠2

𝑛
,

𝐷

󸀠

𝑛
= 𝑛

𝛼
.

(50)

Making use of (21) and (23),we can write

V
1,𝑛

(𝑡) =

1

𝐷
󸀠

𝑛
Γ (1 + 𝛼)

2 [1 − (−1)

𝑛
]

𝑛
𝛼

∫

𝑡

0

sin
𝛼

(𝑛𝜏)

𝛼
(𝑑𝜏)

𝛼

= (1 − cos
𝛼

(𝑛𝜏)

𝛼
)

2 [1 − (−1)

𝑛
]

𝑛
𝛼

.

(51)

When

𝑉
2,𝑛

(𝑡) =

𝐷
𝑛

+ 𝑘
1
𝐷
𝑛

+ 𝐶
𝑛
𝑠

𝛼

𝑠
2𝛼

+ 𝑘
1
𝑠
𝛼

+ 𝑘
2
(𝑛𝜋/𝑙)

2𝛼
+ 𝑘
3
(𝑛𝜋/𝑙)

𝛼
=

𝑠

𝛼

𝑠
2𝛼

+ 𝑛
2𝛼

,

(52)

we obtain

V
2,1

(𝑡) = cos
𝛼
𝑡

𝛼
,

V
2,𝑛 (

𝑡) = 0, (𝑛 ̸= 1) .

(53)

Conclusively, we arrive at

V
1

(𝑡) = V
1,1

(𝑡) + V
2,1

(𝑡) = 4 − 3cos
𝛼
𝑡

𝛼
,

V
𝑛

(𝑡) = (1 − cos
𝛼
(𝑛𝑡)

𝛼
)

2 [1 − (−1)

𝑛
]

𝑛
𝛼

, (𝑛 ̸= 1) .

(54)

Hence, we obtain the solution of (46) in the following form:

𝑢 (𝑥, 𝑡) = (4 − 3cos
𝛼
𝑡

𝛼
) sin
𝛼
(

𝜋𝑥

𝑙

)

𝛼

+

∞

∑

𝑛=2

(1 − cos
𝛼
(𝑛𝑡)

𝛼
)

2 [1 − (−1)

𝑛
]

𝑛
𝛼

sin
𝛼
𝑛

𝛼
(

𝜋𝑥

𝑙

)

𝛼

.

(55)

Example 4. The inhomogeneous wave equation with local
fractional differential operator is written in the form

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
2𝛼

−

𝜕

2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
2𝛼

+

𝜕

𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝛼

− cos
𝛼
𝑡

𝛼cos
𝛼
𝑥

𝛼
= 0.

(56)

The boundary and initial conditions are presented as follows:

𝑢 (𝑥, 0) = cos
𝛼

(𝑥

𝛼
) ,

𝜕

𝛼
𝑢 (𝑥, 𝑜)

𝜕𝑡
𝛼

= 0,

𝑢 (−

𝜋

2

, 𝑡) = 𝑢 (

𝜋

2

, 𝑡) = 0.

(57)

Let

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

V
𝑛 (

𝑡) cos𝛼𝑛
𝛼
𝑥

𝛼
,

𝑓 (𝑥, 𝑡) = cos
𝛼
𝑡

𝛼cos
𝛼
𝑥

𝛼
=

∞

∑

𝑛=1

𝑓
𝑛

(𝑡) cos
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝜑 (𝑥) = cos
𝛼
𝑥

𝛼
=

∞

∑

𝑛=1

𝐶
𝑛
cos
𝛼
𝑛

𝛼
𝑥

𝛼
,

𝜓 (𝑥) = 0 =

∞

∑

𝑛=1

𝐷
𝑛
cos
𝛼
𝑛

𝛼
𝑥

𝛼
.

(58)

We can write
𝑓
𝑛 (

𝑡) = 0, (𝑛 ̸= 1) ,

𝑓
1 (

𝑡) = cos
𝛼
𝑡

𝛼
,

𝐶
𝑛

= 0, (𝑛 ̸= 1) ,

𝐶
1

= 0,

𝐷
𝑛

= 0.

(59)

Obviously, we have

𝑘
1

= 0, 𝑘
2

= −1, 𝑘
3

= 1,

𝐷

󸀠

𝑛
= 0.

(60)

From (25) and (27) we obtain
V
1,1

= V
𝑛 (

𝑡) = 0, (𝑛 ̸= 1) ,

V
1,1 (

𝑡) =

1

Γ (1 + 𝛼)

∫

𝑡

0

cos
𝛼(

𝑡 − 𝜏)

𝛼
(𝑑𝜏)

𝛼
= sin
𝛼
𝑡

𝛼
.

(61)

Hence, the nondifferentiable solution of (56) reads as

𝑢 (𝑥, 𝑡) = sin
𝛼
𝑡

𝛼cos
𝛼

(𝑥

𝛼
) . (62)

5. Conclusions

In this work we proposed the local fractional function
decomposition method. The applications of the methods for
solving the inhomogeneous wave equations with local frac-
tional derivative are discussed in detail. The new technique is
an efficient mathematical tool for the scientists to deal with
local fractional differential equations.
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