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A wavelet neural network with time delay is proposed based on nonlinear autoregressivemodel with exogenous inputs (NARMAX)
model, and the sensitivity method is applied in the selection of network inputs. The inclusion of delayed system information
improves the network’s capability of representing the dynamic changes of time-varying systems. The implement of sensitivity
analysis reduces the dimension of input as well as the dimension of networks, thus improving its generalization ability. The time
delay wavelet neural network was implemented to real-time ship motion prediction, simulations are conducted based on the
measured data of vessel “YUKUN,” and the results demonstrate that the feasibility of the proposed method.

1. Introduction

Ship motion dynamics is related greatly to the navigational
conditions such as loading and draft; the changes of dynamics
also are influenced by environmental disturbances such as
wind, wave, and current. Therefore, the identification and
control of ship motion is complex and is being a challenge
in the area of ship engineering [1]. Furthermore, the accurate
identification and prediction are important issues in ship and
its controller design. To overcome the problems of accuracy
and adaptiveness in applying the custom methods, more
and more current studies incorporate the booming artificial
intelligent techniques such as neural networks and fuzzy
inference [2].

As a kind of data-driven approach [3–5], neural network
gainedmuch popularity in recent years attributed to itsmerits
such as nonlinearity and adaptivity. Among various kinds
of neural networks, backpropagation (BP) network is the
most widely used network type. But the BP network has its
drawbacks such as slow convergence speed and existence of
phenomenon of local minima, which limited its practical
engineering applications. Various types of neural networks
and their learning algorithms have been proposed. Wavelet
neural network (WNN), which was proposed in late 20th
centuries, is a kind of local response type neural network
and attracts many research interests in areas of intelligent

computation. It makes use of wavelet function as active func-
tion instead of sigmoid function in BP network and estab-
lishes the connection between the wavelet transform and
network parameters by using affine connection [6]. Wavelet
has characteristics of time-frequency local and zoom ability,
and neural network has characteristics of strong abilities
of self-learning, robustness, and generalization. The wavelet
neural networks take both advantages of wavelet transform
and neural network and realizes wavelet transform by adjust-
ing wavelet neurons adaptively. Wavelet network has been
demonstrated to have good function approximation and
pattern recognition capabilities, which have been utilized
successfully in various areas such as adaptive control, signal
filtering, and fault detection [7].

Variousmeasures have been taken to improve the approx-
imation and prediction ability of neural networks such as
raw data processing [8]. In order to represent the dynamic
characteristics of time delay system more efficiently, we
improve wavelet network in this study by introducing the
history information of system into the network input layer,
construct the wavelet network with time delays, and realize
the model of nonlinear autoregressive moving average with
exogenous inputs (NARMAX) [9]. The neural network with
time delay possesses the same network structure as the
NARMAX model and both of them take consideration of
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Figure 1: Structure of time delay WNN.

history information of system dynamics, and NARMAX has
been proved to be able to represent input-output mapping of
time-varying dynamics; therefore, the proposed method has
the inertia ability to represent time-varying system dynamics.
Sensitivity analysis method is applied for deciding the inputs
of the mode to reduce the number of inputs and hence
the dimension of neural network consequently, which is an
important issue in improving the generalization ability of
the network. To demonstrate the efficiency of the proposed
wavelet network model, the measured ship motion data
of motor vessel “YUKUN” is implemented for simulation
experiment.

2. NARMAX Prediction Model Based on
Time Delay WNN

2.1. Network Structure of Time Delay WNN. There are three
layers in conventional neural network including input layer,
hidden layer, and output layer. In the proposedwavelet neural
network, the current input information is conveyed to the
input layer of wavelet neural network together with history
information of system, and the information is conducted and
the results are conveyed to the output layer. The network
processes the current and historical information of system
simultaneously. After the learning and fitting processes of
network, the acquired network is then applied for prediction
of time delay system [10, 11] based on the NARMAX model.
The structure of the proposed time delayWNN is depicted in
Figure 1.

NARMAX model is widely used in system identification
and prediction [12, 13]:

𝑦 (𝑘)

= 𝑓 (𝑦 (𝑘 − 1) , . . . , 𝑦 (𝑘 − 𝑛𝑦) , 𝑢 (𝑘 − 1) , . . . , 𝑢 (𝑘 − 𝑛𝑢)) ,

(1)

where x and y are system input and output and ny and nu
are the order of system output and input, respectively. It can
be noted in (1) that the multidimension inputs of NARMAX
model include the past ny system outputs and nu system
inputs.

Equation (1) is the identification model of the mapping
between the current systemwith respect to the history system

inputs and outputs. When the identified model is utilized for
prediction, we can replace the t in the equation with 𝑡+1, and
we get
𝑦 (𝑘 + 1)

= 𝑓 (𝑦 (𝑘) , . . . , 𝑦 (𝑘 − 𝑛𝑦 + 1) , 𝑢 (𝑘) , . . . , 𝑢 (𝑘 − 𝑛𝑢 + 1)) .

(2)
If we need to give multistep predictions, for example, 2-

step-ahead prediction, we need to replace the t in the equa-
tion with t + 2 likewise:

𝑦 (𝑘 + 2) = 𝑓 (𝑦 (𝑘 + 1) , 𝑦 (𝑘) , . . . , 𝑦 (𝑘 − 𝑛𝑦 + 2) ,

𝑢 (𝑘) , . . . , 𝑢 (𝑘 − 𝑛𝑢 + 1) ) ,

(3)

where 𝑦(𝑘 + 1) is the predicted value of 𝑦(𝑘 + 1). In multistep
ahead prediction process, as the value of 𝑦(𝑘+1) is unknown
in time of t, in the cascade prediction method, the predicted
value by (2) is used to substitute 𝑦(𝑘 + 1) required in (3) to
realize the 2-step-ahead prediction.

Themultistep prediction process can be realized likewise.
But in this cascade prediction method, the prediction accu-
racy of multistep prediction based much on the accuracy of
the previous predicted results and all the prediction error in
the previous steps are brought to the final prediction result.
So, another kind of prediction, which is referred to as direct
prediction, is adopted in this paper. As direct prediction,
process the prediction of different steps ahead individually
and avoid the accumulation of prediction error consequently.

2.2. Learning Algorithm of Wavelet Neural Network

2.2.1. Initialization of WNN Parameters. Let the number of
WNN inputs be M and the number of hidden units. In
WNN, the most conventionally used wavelet active functions
in hidden layer are Morlet wavelet, Harrab wavelet, and
Gaussianwavelet. In this study,wemake use ofMorletwavelet
as the active function of WNN:

𝜓 (𝑡) = cos (1.75𝑡) exp(−𝑡
2

2
) . (4)

Time delay wavelets have merits such as high resolution
ratio, strong robustness, and efficient computation ability as
well as low error rate [14].The network output is computed as
follows:

𝑦 (𝑡) =

𝐾

∑

𝑘=1

𝑤𝑘𝜓(
𝑡 − 𝑏𝑘

𝑎𝑘

) , (5)

where ak and bk are scale factor and translation factor of
basis function, respectively. And wk is the connection weight
between the kth hidden wavelet neuron and the output
neuron.

2.2.2. Adjustment of WNN Parameters. The cost function of
WNN learning is expressed in

𝐸 =
1

2

𝐿

∑

𝑙=1

(𝑦 (𝑡𝑙) − 𝑦 (𝑡𝑙))
2
, (6)
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where 𝑦(𝑡𝑙) is the desired output, 𝑦(𝑡𝑙) is the actual output, tl
is the sample input, and l is the number of samples. Here, let

𝑡


𝑙
=
𝑡𝑙 − 𝑏𝑘

𝑎𝑘

. (7)

The gradient messages of wk, ak, and bk are expressed
hereunder:

𝜕𝐸

𝜕𝑤𝑘

= −

𝐿

∑

𝑙=1

[𝑦 (𝑡𝑙) − 𝑦 (𝑡𝑙)] cos (1.75𝑡


𝑙
) exp[−

𝑡
2

𝑙

2
] , (8)
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𝜕𝑎𝑘
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∑
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(𝑦 (𝑡𝑙) − 𝑦 (𝑡𝑙)) ×
𝑏𝑘𝑤𝑘

𝑎2
𝑘
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(9)

𝜕𝐸

𝜕𝑏𝑘
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(𝑦 (𝑡𝑙) − 𝑦 (𝑡𝑙)) ×
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(10)

Based on the gradient message, the parameters are
adjusted by minimizing the cost function. The iterations of
adjustment should take into consideration both accuracy and
training speed.

2.3. Selection of Network Inputs Based on Sensitivity Analysis.
The method of sensitivity analysis is usually used in eval-
uating the influences of the changes to the model output,
and it plays an important role for model construction, model
simplification, and thus the generalization ability of model. It
has beenwidely used in areas such as engineering, economics,
and sociology [15, 16]. Rhee and Kim analyze the relationship
between parameter sensitivity and identification accuracy
[17].

For the NARMAX model based on neural network, we
need to establish suitable inputs for the model [18]. If there
are too few inputs, the network cannot represent the input-
output mapping of system with sufficient accuracy; if there
are too many inputs, the network dimension will increase
consequently. Both of themwill deteriorate the generalization
capability of the network. As there are no optimal input
variables so far for shipmotion prediction, it is appropriate to
evaluate the importance of individual input and decide which
inputs should be taken into the input layer of network.

The input-output derivatives are useful indices for eval-
uating the network’s input to the output. There are two
kinds of conclusions which can be drawn from the values of
derivatives. One is the influences of tiny changes of input to

the output; the other is the contribution of each input to the
overall output.

Morlet wavelet like (4) is implemented in this study and
served as the active function of hidden neurons. According to
(10), we can calculate the derivatives of output to each input
and evaluate the influence of the input to the output. Negative
value of the derivative shows that, with the increase of the
input, the output will decrease; and the positive value of the
derivative shows that the increase of the input will cause the
increase of output consequently.

Based on the calculation of the derivatives, the influence
of input to the output can be derived accordingly. The influ-
ence can be measured by index of sum of square derivatives
(SSD):

SSD =

𝑁

∑

𝑗=1

(𝑑𝑗𝑖)
2

, (11)

where

𝑑𝑗𝑖 = 𝑆𝑗

𝑛ℎ

∑

ℎ=1

𝑤ℎ𝑜𝐼ℎ𝑗 (1 − 𝐼ℎ𝑗)𝑤𝑖ℎ, (12)

where Sj is the derivative of output with respect to input
𝜕𝑦/𝜕𝑏𝑘, Ihj is the response of the hth hidden neuron, and who
and wih are the connection weights between the output layer
to the hth hidden neuron and the hth hidden neuron to the
ith input, respectively.

The values of SSD corresponding to each input can be
used to evaluate the contribution of each input to the output.
It can be noticed that the threshold of SSD for individual
input can influence the selection greatly. To improve the
robustness of the selection, we set up the threshold for the
sum of SSD.That is, we sort the influence of inputs according
to corresponding values of SSD in inverse order.The selection
begins with the smallest SSD and so on till the iSth SSD:

𝑖𝑆

∑

𝑖=1

SSD𝑖 ≤ 𝜌. (13)

The first to the iSth neurons are selected based on the
selection of corresponding values of SSD. By this deletion
process, the inputs with correlation little to the output will
be deleted from network. The deletion can lead to a compact
network structure and hence improve the generalization
ability of network. In implementing the aforesaid pruning
method, we set a larger number of inputs initially and prune
those contributing less to the output.

To improve the generalization ability, we need a com-
pact network structure. However, the dimension of network
involves not only the number of inputs but also the number of
hidden neurons. In deciding the number of hidden neurons,
wemake use of Akaike information criterion (AIC) to choose
the optimal neuron number when the value of AIC reaches its
minimum. AIC is an index for achieving network structure
with optimal generalization ability, which considers both
hidden neurons number and identification accuracy [19].
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Table 1: Main principles of M/V “YUKUN.”

Items Values Units
LOA 116 m
LBP 105 m
Breadth 18 m
Depth 8.35 m
Designed draft 5.4 m
Gross tonnage 6106 /
Designed speed 16.9 kn
Coefficient of blocks 0.5525 /
Displacement 5591.3 t

3. Simulation Experiment of
Ship Motion Prediction

To validate the prediction capability of the proposed time
delay wavelet neural network, we make use of the measure-
ment data of motor vessel “YUKUN,” which is a training
and scientific researching ship of DalianMaritimeUniversity.
The application of real measured data can also validate the
antidisturbance ability because the measured data have taken
the influences of wind, wave, and current.

The shipboard measuring system can measure the ship’s
motion status precisely which includes the wind, wave,
current, and the measurement noise. The main principals of
“YUKUN” are shown in Table 1.

The measured data during sea voyage of “YUKUN” is
adopted for the simulation experiment of ship motion pre-
diction. The prediction model is NAMAX which is realized
by time delay WNN, and the inputs are selected through
sensitivity analysismethod.The synchronouslymeasured raw
data include longitude, latitude, heading degrees, roll angle,
pith angle, speed over ground, and speed over ground. To
establish the prediction model, the contributions of inputs to
the output 𝜓(𝑡) are firstly evaluated by the sensitivity analysis
and the inputs are selected as 6 variables: 𝜓(𝑡 − 1), 𝜓(𝑡 − 2),
𝜓(𝑡 − 3), 𝜓(𝑡 − 4), 𝜑(𝑡 − 1), and 𝜑(𝑡 − 2), where 𝜑 is the roll
angle of shipmotion.The sample interval of themeasurement
is 1s. So the k-step-ahead prediction means prediction of k
seconds ahead. Simulation of 300 steps was conducted for
each simulation.

Therefore, with the selected inputs and the desired output,
the ship heading angle prediction model is established as

𝜓 (𝑡) = 𝑓 (𝜓 (𝑡 − 1) , 𝜓 (𝑡 − 2) , 𝜓 (𝑡 − 3) ,

𝜓 (𝑡 − 4) , 𝜑 (𝑡 − 1) , 𝜑 (𝑡 − 2)) .

(14)

It can be noticed that the model is NARMAX which is
realized by time delay WNN. In the simulation, the samples
are presented to theWNN sequentially, which is encountered
in practical applications like online ship motion prediction
and control. And there are two stages of computation in each
step. Firstly, the presented data are used to train theWNNand
the network parameters are determined accordingly; once
the model is established and the parameters are decided, the
achieved network will be implemented for prediction. That
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Figure 2: Measured ship heading direction.

is, with the trained model in (14), the ship motion of 1-step-
ahead is achieved:

𝜓 (𝑡 + 1) = 𝑓 (𝜓 (𝑡) , 𝜓 (𝑡 − 1) , 𝜓 (𝑡 − 2) ,

𝜓 (𝑡 − 3) , 𝜑 (𝑡) , 𝜑 (𝑡 − 1)) .

(15)

For multistep prediction, we use direct prediction instead
of cascade prediction. For 2-step-ahead prediction, the input-
output mapping is identified:

𝜓 (𝑡) = 𝑓 (𝜓 (𝑡 − 2) , 𝜓 (𝑡 − 3) , 𝜓 (𝑡 − 4) ,

𝜓 (𝑡 − 5) , 𝜑 (𝑡 − 2) , 𝜑 (𝑡 − 3)) .

(16)

After the training process, the predictions can be made
with the current available ship motion information at time of
t:

𝜓 (𝑡 + 2) = 𝑓 (𝜓 (𝑡) , 𝜓 (𝑡 − 1) , 𝜓 (𝑡 − 2) ,

𝜓 (𝑡 − 3) , 𝜑 (𝑡) , 𝜑 (𝑡 − 1)) .

(17)

Likewise, the method can be generalized to conditions of
multistep prediction. For k-step-ahead prediction, the iden-
tification model and prediction model can be represented
hereunder:

𝜓 (𝑡 + 𝑘) = 𝑓 (𝜓 (𝑡) , 𝜓 (𝑡 − 1) , 𝜓 (𝑡 − 2) , 𝜓 (𝑡 − 3) ,

𝜑 (𝑡) , 𝜑 (𝑡 − 1)) ,

𝜓 (𝑡) = 𝑓 (𝜓 (𝑡 − 𝑘) , 𝜓 (𝑡 − 𝑘 − 1) , 𝜓 (𝑡 − 𝑘 − 2) ,

𝜓 (𝑡 − 𝑘 − 3) , 𝜑 (𝑡 − 𝑘) , 𝜑 (𝑡 − 𝑘 − 1)) .

(18)

To evaluate the prediction ability formultistep prediction,
1-, 2-, and 3-step-ahead predictions were conducted, respec-
tively, attributed to the nature of direct prediction where the
more steps of prediction do not depend on the results of the
previous less steps of prediction. The measured ship heading
angle during the ship voyage is depicted in Figure 2.

It can be noticed from Figure 2 that, as influenced by
wind, wave, and current when sailing at sea, the heading
degree changes violently. As stated above, ship motion is a
complex process with nonlinearity, time-varying dynamics,
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Figure 3: Identification error for 1-step-ahead prediction using time
delay WNN.
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Figure 4: Prediction result for 1-step-ahead prediction using time
delay WNN.

and uncertainty and hence is hard to predict accurately.
Therefore, the measured ship motion data is utilized to
validate the efficiency of the proposed prediction model.
For 1-step-ahead prediction, the identification error curve is
depicted in Figure 3.

The index root mean square error (RMSE) is adopted for
evaluating the identification ability and the RMSE is 0.2019∘
for 1-step-ahead prediction. It is shown from Figure 3 that
the identification error is small and averaged around zero.
Based on the identification, the prediction was made and the
predicted heading angles together with measured ones are
shown in Figure 4.

It can be seen from Figure 4 that the predicted results
coincide with the measured ones precisely. The RMSE of
prediction is 0.3289∘ for 1-step-ahead prediction. The change
of prediction error is illustrated in Figure 5.

For 2-step-ahead prediction, the same structure of time
delay WNN is adopted and no further adjustments are made
for the prediction model structure. The identification error
for 2-step-ahead prediction is shown in Figure 6.

In the 300 steps of prediction, the identification RMSE
is 0.2002∘ and the 2-step-ahead prediction result is shown in
Figure 7.
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Figure 5: Prediction error for 1-step-ahead prediction using time
delay WNN.
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Figure 6: Identification error for 2-step-ahead prediction using time
delay WNN.

The prediction RMSE is 0.3498∘ and the changes of
prediction error are shown in Figure 8.

For 3-step-ahead prediction, the same WNN structure is
adopted as 1-step- and 2-step-ahead prediction. The change
of identification error is shown in Figure 9.

The identification of RMSE is 0.2313∘. The prediction
is conducted based on the identification result, and the
prediction result is shown in Figure 10.

The prediction of RMSE is 0.3727∘; the prediction errors
are shown in Figure 11.

It can be noticed from simulation results that as the pre-
diction horizon increases from 1 s to 3 s, the time delayWNN
can generate prediction results with satisfactory accuracy.
Prediction accuracy does not vary much with the increase
of prediction horizon. This shows that the direct prediction
avoids accumulation of prediction error and is an efficient
method for multistep prediction. And the structure of time
delayWNNremains unchanged for all the simulations, which
means that the prediction method based on WNN possesses
satisfactory robustness.

In the process of 300 steps of simulation, the 1-step-,
2-step-, and 3-step-ahead predictions cost time of 2.68 s,
2.80 s, and 2.77 s, respectively.The average processing time of
1 step is less than 0.01 s. This shows that the time delay WNN
processes fast.
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Figure 7: Prediction result for 2-step-ahead prediction using time
delay WNN.
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Figure 8: Prediction error for 2-step-ahead prediction using time
delay WNN.

The simulation based on measured data demonstrates
that the proposedmethod can generate multistep predictions
with high accuracy attributed to the adaptive network struc-
ture and local response feature, and its processing speed is
fast attributed to its compact network structure, which are
important for its practical online applications such as online
prediction and control.

4. Conclusions

A wavelet neural network with delayed system information
is constructed and applied for online ship dynamics pre-
diction. The sensitivity analysis is also applied to determine
the inputs to the WNN, which improve the generalization
ability of network. Simulations of ship motion prediction
are conducted based on the real data measured during sea
voyage at sea and the results demonstrate that the model has
fast processing speed, satisfactory accuracy, antidisturbances
ability, and robustness. Our future work will focus on the
online adjustment of network dimension to adapt to the com-
plex changes of ship dynamics. The adaptive wavelet neural
network can be used for online ship motion status prediction
and ship navigational safety evaluation and control.
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Figure 9: Identification error for 3-step-ahead prediction using time
delay WNN.
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Figure 10: Prediction result for 3-step-ahead prediction using time
delay WNN.
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Figure 11: Prediction error for 3-step-ahead prediction using time
delay WNN.
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