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On the basis of the family of quasifiliform Lie algebra laws of dimension 9 of 16 parameters and 17 constraints, this paper is devoted
to identify the invariants that completely classify the algebras over the complex numbers except for isomorphism. It is proved that
the nullification of certain parameters or of parameter expressions divides the family into subfamilies such that any couple of them
is nonisomorphic and any quasifiliform Lie algebra of dimension 9 is isomorphic to one of them. The iterative and exhaustive
computation with Maple provides the classification, which divides the original family into 263 subfamilies, composed of 157 simple
algebras, 77 families depending on 1 parameter, 24 families depending on 2 parameters, and 5 families depending on 3 parameters.

1. Introduction

The interest in classifying nilpotent Lie algebras is broad both
within the academic community and the industrial engineer-
ing community, since they are applied in classical mechanical
problems and current research in scientific disciplines as
modern geometry, solid state physics, or particle physics [1–
5]. Lie algebras classification consists in determining equiva-
lence relations that subdivide the original set in equivalence
classes defined by at least one element in each set, and it is
usual to classify the algebras except for isomorphisms. The
solvable Lie algebras classification problem comes down in
a sense to the nilpotent Lie algebras classification [6] and
computer algebra has been indispensable. However, the more
the dimension increases, the more and more complex is
the determination of exhaustive lists of Lie algebras, so new
computation methodologies are a present field of research
[7, 8] with current symbolic manipulation programs such as
Reduce, Mathematica, or Maple [9].

The classification of nilpotent Lie algebras over the
complex numbers experimented an important advance based
on the works of Ancochéa-Bermúdez and Goze [10] intro-
ducing an invariant more potent than the previously existing:
the characteristic sequence or Goze’s invariant (defined in

Section 2.1). Those authors were able, by using the charac-
teristic sequence as an invariant, to classify the nilpotent Lie
algebras of dimension 7 [11] and the filiform Lie algebras of
dimension 8 [12]. Later, by using that invariant, Gomez and
Echarte [13] classify the filiform Lie algebras of dimension
9. Afterward, Castro et al. [14] develop an algorithm for
symbolic language for finding the generic families of filiform
Lie algebras in any dimension with the restrictions required
to the parameters.

Subsequent works about quasifiliform Lie algebras clas-
sification were centered on specific types of families or
subclasses, obtaining results applicable to higher dimensions.
For instance, the classifications of naturally graded [15] and
graded by derivations [16] quasifiliform Lie algebras. These
works extended to other algebras, with a high nilindex, the
classification of graded filiform Lie algebras, studied initially
by Vergne [17, 18], obtained from the gradation related to the
filtration produced in a natural way by the descending central
sequence.

In this paper we focus on a method of identification
of the invariants that completely classify the nilpotent Lie
algebras of dimension 9 over the complex numbers except
for isomorphisms. With this aim, the dimensions of the
subalgebras of its derived series, of its descending central
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series, and of its descending central series centralizers are
used as class invariants. The exhaustive analysis has been
developed with significant computational effort; the total
code is 2820 pages in 37 files, summingmore than 12000 lines
of Maple code, and these programs have provided 3038 pages
of results [19].We strongly recommend the reading of Bäuerle
and de Kerf [20], Benjumea et al. [21], and Sendra et al. [22] to
become familiar with Lie algebras terminology and symbolic
computation with Maple.

2. The Subfamilies of Laws

2.1. Preliminaries. Let g be a nilpotent Lie algebra; the charac-
teristic sequence of 𝑎𝑑(𝑋) is denoted by 𝑐(𝑋) = (𝑐

1
, . . . , 𝑐

𝑘
, 1),

and for the lexicographic order 𝑐(g) = Max
𝑋∈g−[g,g]𝑐(𝑋) is

known as the Goze’s invariant or characteristic sequence [23].
Obviously 𝑐(g) is an invariant for the isomorphisms and, by
construction, there is at least one vector 𝑋 ∈ g − [g, g] such
that 𝑐(g) = 𝑐(𝑋); all vector verifying this condition is called
characteristic vector of the algebra.

The abelian algebra of dimension 𝑛 is the only one with
Goze’s invariant (1, . . . , 1), in metabelian algebras the char-
acteristic series is (2, . . . 2, 1, . . . 1), in Heisenberg algebras it
is (2, 1, . . . , 1), in filiform algebras it is (𝑛 − 1, 1), and in
quasifiliform algebras it is (𝑛 − 2, 1, 1). A Lie algebra g is
nilpotent if and only if the characteristic polynomial of the
matrix 𝑎𝑑(𝑥) is 𝜆9, for every vector 𝑥 of g. Anyway this
condition is often difficult to be applied, so the moment in
the process, when the nilpotence condition should be applied
or, much better, when the condition should be applied for
each vector, has to be chosen carefully.The condition of being
quasifiliform can be also interpreted in terms of matrices.
Thus the vectors candidate to characteristic vectors, that is,
the vectors in g − [g, g], have to satisfy that the respective
adjoint matrices do not have nonnull minors of order ⩽7. As
in the case of the nilpotence, this condition has to be applied
with caution and in several stages.

Every quasifiliform Lie algebra of dimension 9 can have
an adapted base {𝑥

0
, 𝑥
1
, . . . , 𝑥

8
} such that

[𝑥
0
, 𝑥
𝑖
] = 𝑥
𝑖+1
, 1 ⩽ 𝑖 ⩽ 6; [𝑥

0
, 𝑥
𝑖
] = 0, 7 ⩽ 𝑖 ⩽ 8.

(1)

On the whole all the bracket products can be described by

[𝑥
𝑖
, 𝑥
𝑗
] =

𝑛−1

∑

𝑘=0

𝐶
𝑘

𝑖𝑗
⋅ 𝑥
𝑘
, 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛 − 1, (2)

where 𝐶𝑘
𝑖𝑗
are the algebra structure constants.

The laws of every complex quasifiliform Lie algebra
(QFLA) of dimension 9 can be described by the following
family with 16 parameters and 17 polynomial restriction
equations [19] derived from the Jacobi identity:

[𝑥
0
, 𝑥
𝑖
] = 𝑥
𝑖+1
, 1 ⩽ 𝑖 ⩽ 6, (3a)

[𝑥
1
, 𝑥
2
] = 𝛼
1
𝑥
4
+ 𝛼
2
𝑥
5
+ 𝛼
3
𝑥
6
+ 𝛼
4
𝑥
7
+ 𝛼
5
𝑥
8
, (3b)

[𝑥
1
, 𝑥
3
] = 𝛼
1
𝑥
5
+ 𝛼
2
𝑥
6
+ 𝛼
3
𝑥
7
, (3c)

[𝑥
1
, 𝑥
4
] = 𝛼
6
𝑥
5
+ 𝛼
7
𝑥
6
+ 𝛼
8
𝑥
7
+ 𝛼
9
𝑥
8
, (3d)

[𝑥
1
, 𝑥
5
] = 2𝛼

6
𝑥
6
+ (2𝛼
7
− 𝛼
1
) 𝑥
7
, (3e)

[𝑥
1
, 𝑥
6
] = 𝛼
10
𝑥
7
+ 𝛼
11
𝑥
8
, (3f)

[𝑥
1
, 𝑥
8
] = 𝛼
12
𝑥
3
+ 𝛼
13
𝑥
4
+ 𝛼
14
𝑥
5
+ 𝛼
15
𝑥
6
+ 𝛼
16
𝑥
7
, (3g)

[𝑥
2
, 𝑥
3
] = −𝛼

6
𝑥
5
+ (𝛼
1
− 𝛼
7
) 𝑥
6
+ (𝛼
2
− 𝛼
8
) 𝑥
7
− 𝛼
9
𝑥
8
,

(3h)

[𝑥
2
, 𝑥
4
] = −𝛼

6
𝑥
6
+ (𝛼
1
− 𝛼
7
) 𝑥
7
, (3i)

[𝑥
2
, 𝑥
5
] = (2𝛼

6
− 𝛼
10
) 𝑥
7
− 𝛼
11
𝑥
8
, (3j)

[𝑥
2
, 𝑥
8
] = 𝛼
12
𝑥
4
+ 𝛼
13
𝑥
5
+ 𝛼
14
𝑥
6
+ 𝛼
15
𝑥
7
, (3k)

[𝑥
3
, 𝑥
4
] = (−3𝛼

6
+ 𝛼
10
) 𝑥
7
+ 𝛼
11
𝑥
8
, (3l)

[𝑥
3
, 𝑥
8
] = 𝛼
12
𝑥
5
+ 𝛼
13
𝑥
6
+ 𝛼
14
𝑥
7
, (3m)

[𝑥
4
, 𝑥
8
] = 𝛼
12
𝑥
6
+ 𝛼
13
𝑥
7
, (3n)

[𝑥
5
, 𝑥
8
] = 𝛼
12
𝑥
7 (3o)

subject to

𝛼
5
𝛼
12
= 0, (4a)

𝛼
6
𝛼
12
= 0, (4b)

𝛼
6
𝛼
13
= 0, (4c)

𝛼
9
𝛼
12
= 0, (4d)

𝛼
9
𝛼
13
= 0, (4e)

𝛼
9
𝛼
14
= 0, (4f)

𝛼
10
𝛼
12
= 0, (4g)

𝛼
11
𝛼
12
= 0, (4h)

𝛼
11
𝛼
13
= 0, (4i)

𝛼
11
𝛼
14
= 0, (4j)

𝛼
11
𝛼
15
= 0, (4k)

𝛼
11
𝛼
16
= 0, (4l)

𝛼
11
(3𝛼
1
− 𝛼
7
) = 0, (4m)

𝛼
12
(𝛼
1
− 𝛼
7
) = 0, (4n)

𝛼
5
𝛼
13
− 2𝛼
2

6
− 𝛼
9
𝛼
15
= 0, (4o)

2 (𝛼
2
− 𝛼
8
) 𝛼
12
+ 3 (𝛼

1
− 𝛼
7
) 𝛼
13
+ 2 (𝛼

6
− 𝛼
10
) 𝛼
14
= 0,

(4p)

𝛼
5
𝛼
14
− 2 (2𝛼

1
+ 𝛼
7
) 𝛼
6
− 𝛼
9
𝛼
16
+ (3𝛼
1
− 𝛼
7
) 𝛼
10
= 0 (4q)

with the application of the Jacobi identity to the 3-tuple
(𝑥
0
, 𝑥
𝑖
, 𝑥
𝑗
), where 𝑥

𝑖
, 𝑥
𝑗
are base vectors different from
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Table 1: Notation for the QFLA parameters.

𝛼
1
= 𝐶
4

12
𝛼
2
= 𝐶
5

12
𝛼
3
= 𝐶
6

12
𝛼
4
= 𝐶
7

12

𝛼
5
= 𝐶
8

12
𝛼
6
= 𝐶
5

14
𝛼
7
= 𝐶
6

14
𝛼
8
= 𝐶
7

14

𝛼
9
= 𝐶
8

14
𝛼
10
= 𝐶
7

16
𝛼
11
= 𝐶
8

16
𝛼
12
= 𝐶
3

18

𝛼
12
= 𝐶
4

18
𝛼
14
= 𝐶
5

18
𝛼
15
= 𝐶
6

18
𝛼
16
= 𝐶
7

18

𝑥
0
vector. Table 1 shows the structure constants correspond-

ing with the 16 parameters. From here forward the Lie
Algebra Families will be denoted as 𝜇(𝛼

1
1

, . . . , 𝛼
16
).

Our objective is to study exhaustively the case of dimen-
sion 9; therefore the coefficients identification is tackled
in an iterative and interactive way by imposing the Jacobi
identity. Maple programs have been developed so that all
the equations resulting from the application of the above-
mentioned conditions are obtained, the simplest conditions
are applied, and the process is repeated until there are no
restrictions of simple application.

The exhaustiveness of the classification is developed by
analyzing 𝑎𝑙𝑙 the possible combinations of values of the 16
parameters (𝛼

1
, . . . , 𝛼

16
), which is summarized within the

cases shown in the following subsections: case A.1 (𝛼
11

̸= 0

and 𝛼
1
̸= 0), A.2 (𝛼

11
̸= 0 and 𝛼

1
= 0), B.1.1 (𝛼

11
= 0, 𝛼

9
̸= 0,

and 𝛼
6
̸= 0), B.1.2 (𝛼

11
= 0, 𝛼

9
̸= 0, and 𝛼

6
= 0), B.2.1 (𝛼

11
= 0,

𝛼
9
= 0, and 𝛼

5
̸= 0), and B.2.2 (𝛼

11
= 0, 𝛼

9
= 0, and

𝛼
5
= 0). In all the cases the nonisomorphism is proved in

the corresponding propositions.

2.2. General Case

Proposition 1. ThenilpotentQFLAof dimension 9 and𝛼
11

̸= 0

are nonisomorphic to the algebras with 𝛼
11
= 0.

Proof. For the family described by (3a)–(3o) and (4a)–
(4q), its descending central series is C1g = ⟨𝑥

2
, 𝑥
3
, 𝑥
4
,

𝑥
5
, 𝑥
6
, 𝑥
7
, 𝛼
5
𝑥
8
, 𝛼
9
𝑥
8
, 𝛼
11
𝑥
8
⟩, C2g = ⟨𝑥

3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝛼
5
𝑥
8
,

𝛼
9
𝑥
8
, 𝛼
11
𝑥
8
⟩, C3g = ⟨𝑥

4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝛼
9
𝑥
8
, 𝛼
11
𝑥
8
⟩, C4g = ⟨𝑥

5
,

𝑥
6
, 𝑥
7
, 𝛼
9
𝑥
8
, 𝛼
11
𝑥
8
⟩,C5g = ⟨𝑥

6
, 𝑥
7
, 𝛼
11
𝑥
8
⟩, and so forth.Thus

Dim[C5g] = 3 if 𝛼
11

̸= 0 and Dim[C5g] = 2 if 𝛼
11
= 0.

Therefore the nullity of 𝛼
11
constitutes the first classification

criterion.

2.3. Case A. 𝛼
11

̸= 0.

Proposition 2. The nilpotent QFLA of dimension 9 with
𝛼
11

̸= 0∧𝛼
1
̸= 0 are nonisomorphic to the algebras with𝛼

11
̸= 0∧

𝛼
1
= 0.

Proof. If𝛼
11

̸= 0, from restrictions (4a)–(4q) it can be deduced
that 𝛼

6
= 𝛼
12
= 𝛼
13
= 𝛼
14
= 𝛼
15
= 𝛼
16
= 0 and 𝛼

7
= 3𝛼
1
. By

computing the Jacobi equations, the family of laws is reduced
to

[𝑥
0
, 𝑥
𝑖
] = 𝑥
𝑖+1
, 1 ⩽ 𝑖 ⩽ 6, (5a)

[𝑥
1
, 𝑥
2
] = 𝛼
1
𝑥
4
+ 𝛼
2
𝑥
5
+ 𝛼
3
𝑥
6
+ 𝛼
4
𝑥
7
+ 𝛼
5
𝑥
8
, (5b)

[𝑥
1
, 𝑥
3
] = 𝛼
1
𝑥
5
+ 𝛼
2
𝑥
6
+ 𝛼
3
𝑥
7
, (5c)

[𝑥
1
, 𝑥
4
] = 3𝛼

1
𝑥
6
+ 𝛼
8
𝑥
7
+ 𝛼
9
𝑥
8
, (5d)

[𝑥
1
, 𝑥
5
] = 5𝛼

1
𝑥
7
, (5e)

[𝑥
1
, 𝑥
6
] = 𝛼
10
𝑥
7
+ 𝛼
11
𝑥
8
, (5f)

[𝑥
2
, 𝑥
3
] = −2𝛼

1
𝑥
6
+ (𝛼
2
− 𝛼
8
) 𝑥
7
− 𝛼
9
𝑥
8
, (5g)

[𝑥
2
, 𝑥
4
] = −2𝛼

1
𝑥
7
, (5h)

[𝑥
2
, 𝑥
5
] = −𝛼

10
𝑥
7
− 𝛼
11
𝑥
8
, (5i)

[𝑥
3
, 𝑥
4
] = 𝛼
10
𝑥
7
+ 𝛼
11
𝑥
8 (5j)

without restrictions derived from the Jacobi identity (4a)–
(4q). It can be observed that 𝑥

7
and 𝑥

8
are now central; thus

the application of the elementary change of base

𝑦
𝑖
= 𝑥
𝑖
, 𝑖 ̸= 8,

𝑦
8
= 𝛼
10
⋅ 𝑥
7
+ 𝛼
11
⋅ 𝑥
8

(6)

permits us to suppose that 𝛼
10
= 0 and 𝛼

11
= 1. Then

(5f), (5i), and (5j) are simplified and the derived series is
D1g = ⟨𝑥

2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
⟩, D2g = ⟨−2𝛼

1
𝑥
6
, (𝛼
2
−

𝛼
8
)𝑥
7
, −𝛼
9
𝑥
8
, −2𝛼
1
𝑥
7
, 𝑥
8
⟩, and so forth. Thus Dim[D2g] = 3

if 𝛼
1
̸= 0 and Dim[D2g] ⩽ 2 if 𝛼

1
= 0. Therefore the nullity of

𝛼
1
constitutes a new classification criterion.

In this subsection (case A), the notation to describe
the parameters of the subfamily 𝑖 is reduced to 𝜇

𝑖
(𝛼
1
, 𝛼
2
,

𝛼
3
, 𝛼
4
, 𝛼
5
, 𝛼
7
, 𝛼
8
, 𝛼
9
) for simplification. Figure 1 shows the

classification in 19 subfamilies in the case A. They are clas-
sified with the criteria summarized in Figure 2 and detailed
in the following cases.

2.3.1. Case A.1. One has 𝛼
11

̸= 0 and 𝛼
1
̸= 0.

Proposition 3. Case A.1 permits us to suppose that 𝛼
1
= 1.

Proof. With the elementary change of base CB,

𝑦
0
= 𝑥
0
,

𝑦
𝑖
=

𝑥
𝑖

𝛼
1

, 1 ⩽ 𝑖 ⩽ 7,

𝑦
8
=

𝑥
8

𝛼
2

1

,

(7)

|CB| = 1/𝛼9
1
̸= 0 and then 𝛼

1
= 1.

The subfamilies of laws with the structure (5a)–(5j) are
𝜇
𝑖
(1, 𝛼
2
, 𝛼
3
, 𝛼
4
, 𝛼
5
, 3, 𝛼
8
, 𝛼
9
) with 𝑖 = 1, 2, 3.

Let us denote, from here forward, by 𝛿 the new parame-
ters obtained from the changes of base and 𝜇 the Lie algebra
families depending on these new parameters 𝛿 (which in
general depend on the 16 parameters 𝛼), in order to differ-
entiate the new representation 𝜇

𝑖
(𝛿
𝑗
) from the representation

of the families depending in general on the 16 parameters
𝜇
𝑖
(𝛼
1
, . . . , 𝛼

16
).
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1 1 0 0 0 0 3 1
2 1 0 0 0 0 3 0 1
3 1 0 0 0 0 3 0 0
4 0 1 0 0 0 1 0
5 0 1 0 0 1 0
6 0 1 1 0 0 0 0
7 0 0 1 0 0 1 0
8 0 1 0 1 0 0 4 0
9 0 1 0 0 0 0 4 0

10 0 1 0 1 0 0 0 0
11 0 1 0 0 0 0 0 0
12 0 0 1 0 0 0 1 0
13 0 0 0 1 0 0 1 0
14 0 1 1 0 0 0 1 0
15 0 1 0 0 0 0 1 0
16 0 0 1 1 0 0 0 0
17 0 0 1 0 0 0 0 0
18 0 0 0 1 0 0 0 0
19 0 0 0 0 0 0 0 0

Aa Direct result

𝜆

𝜆

𝜆

𝜆

𝜆

1/4

𝜇 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼7 𝛼8 𝛼9

Aa Classification criterion 
Aa

Additional result
Aa
Aa

Classifcation criterion from previous cases

Additional result from previous cases

Figure 1: Case A: 𝛼
11

̸= 0; classification of the nonisomorphic QFLA
of dimension 9 (the last 7 values, 0, 1, 0, 0, 0, 0, 0, common to the 19
families have been omitted from the figure for simplicity).

Proposition 4. The nilpotent QFLA of dimension 9 with
𝛼
11

̸= 0 and 𝛼
1
̸= 0 can be classified in three nonisomorphic

subfamilies 𝜇
𝑖
with 𝑖 from 1 to 3, described in Figure 1, according

to the conditions described in Figure 2.

Proof. Let us apply the change of base:

𝑦
0
= 𝑃
0
𝑥
0
+ 𝑃
1
𝑥
1
+ 𝑃
2
𝑥
2
+ 𝑃
3
𝑥
3
+ 𝑃
4
𝑥
4

+ 𝑃
5
𝑥
5
+ 𝑃
6
𝑥
6
+ 𝑃
7
𝑥
7
+ 𝑃
8
𝑥
8
,

𝑦
1
= 𝑄
0
𝑥
0
+ 𝑄
1
𝑥
1
+ 𝑄
2
𝑥
2
+ 𝑄
3
𝑥
3
+ 𝑄
4
𝑥
4

+ 𝑄
5
𝑥
5
+ 𝑄
6
𝑥
6
+ 𝑄
7
𝑥
7
+ 𝑄
8
𝑥
8
,

𝑦
𝑖+1
= [𝑦
0
, 𝑦
𝑖
] , 1 ⩽ 𝑖 ⩽ 6,

𝑦
8
= [𝑦
1
, 𝑦
6
] .

(8)

The subfamilies of laws are 𝜇
𝑖
(𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
5
, 𝛿
8
, 𝛿
9
). The deter-

minant of the changematrix is𝑃18
0
(𝑃
0
𝑄
1
− 𝑃
1
𝑄
0
)
9; thus𝑃

0
̸= 0

and (𝑃
0
𝑄
1
− 𝑃
1
𝑄
0
) ̸= 0. Since the coefficient of 𝑦

3
and 𝑦

4

in [𝑦
1
, 𝑦
2
] must be null, then 𝑄

0
= 0 and 𝑄

1
= 𝑃
2

0
. Let us

apply (8) again and the only restriction is 𝑃
0
̸= 0. Thus, with

the coefficient identifications, the new parameters are

𝛿
2
=

(−2𝑃
1
+ 𝛼
2
𝑃
0
)

𝑃
2

0

, (9)

𝛿
3
=

(−2𝑄
2

2
+ 4𝑃
2

0
𝑄
3
− 7𝑃
1
𝛼
2
𝑃
3

0
+ 7𝑃
2

1
𝑃
2

0
+ 𝛼
3
𝑃
4

0
)

𝑃
6

0

, (10)

𝛿
4
= (𝛼
4
𝑃
6

0
− 2𝛼
2

2
𝑃
5

0
𝑃
1
− 2𝛼
2
𝑃
4

0
𝑄
3
+ 𝛼
2
𝑃
2

0
𝑄
2

2

− 𝛼
2
𝑃
5

0
𝑃
1
𝛼
8
+ 2𝑄
3

2
− 12𝑃

1
𝛼
3
𝑃
5

0

− 42𝑃
1
𝑃
3

0
𝑄
3
− 44𝑃

3

1
𝑃
3

0
+ 56𝑃

4

0
𝑃
2

1
𝛼
2

+ 18𝑃
1
𝑄
2

2
𝑃
0
− 6𝑃
2

0
𝑄
3
𝑄
2
+ 6𝑃
4

0
𝑄
4

+ 6𝑃
2
𝑃
3

0
𝑄
2
+ 𝑃
4

0
𝑃
2

1
𝛼
8
− 6𝑃
5

0
𝑃
3

+2𝛼
8
𝑃
4

0
𝑄
3
− 𝑄
2

2
𝑃
2

0
𝛼
8
) × (𝑃

9

0
)

−1

,

(11)

𝛿
5
= (2𝑃

0
𝑃
1
𝑄
3
𝑄
2
+ 2𝑃
2
𝛼
2
𝑃
3

0
𝑄
2
+ 6𝑃
2

1
𝛼
3
𝑃
4

0

− 2𝑃
2
𝑃
0
𝑄
2

2
− 2𝑃
2

0
𝑄
4
𝑄
2
+ 6𝑃
4

0
𝑃
3
𝑃
1

− 8𝑃
2

1
𝑄
2

2
− 2𝑃
0
𝑃
1
𝑄
2

2
𝛼
2
− 4𝑃
1
𝑃
2
𝑃
2

0
𝑄
2

+ 2𝑃
2
𝑃
3

0
𝑄
3
+ 2𝑃
3
𝑃
3

0
𝑄
2
− 4𝑃
1
𝑃
3

0
𝑄
4

+ 20𝑃
2

0
𝑃
2

1
𝑄
3
− 𝑄
2

2
𝑃
2

0
𝛼
9
+ 2𝑄
3
𝑃
4

0
𝛼
9

+ 𝑃
1
𝑄
2

2
𝑃
0
𝛼
8
− 𝑃
1
𝑃
5

0
𝛼
4
+ 𝑃
2

0
𝑄
2

3
+ 2𝑃
4

0
𝑄
5

+ 𝑃
6

0
𝛼
5
+ 2𝑃
1
𝑃
3

0
𝑄
3
𝛼
2
− 2𝑃
1
𝛼
8
𝑃
3

0
𝑄
3

+ 𝛼
2
𝑃
4

0
𝑃
2

1
𝛼
8
− 𝛼
2
𝑃
5

0
𝑃
1
𝛼
9
− 2𝑃
5

0
𝑃
3
𝛼
2

− 2𝑃
5

0
𝑃
4
+ 15𝑃

2

0
𝑃
4

1
− 𝑃
4

0
𝑃
2

2
+ 𝑃
4

0
𝑃
2

1
𝛼
9

−20𝑃
3

0
𝑃
3

1
𝛼
2
− 𝑃
3

0
𝑃
3

1
𝛼
8
) × (𝑃

10

0
)

−1

,

(12)

𝛿
8
=

(−20𝑃
1
+ 𝛼
8
𝑃
0
)

𝑃
2

0

, (13)

𝛿
9
=

(8𝑃
2

1
𝑃
2

0
− 𝑃
3

0
𝑃
1
𝛼
8
+ 𝑃
4

0
𝛼
9
+ 2𝑃
2

0
𝑄
3
+ 2𝑃
1
𝛼
2
𝑃
3

0
− 𝑄
2

2
)

𝑃
6

0

.

(14)

Let us select 𝑃
1
, 𝑄
3
, 𝑃
3
, and 𝑃

4
appropriately and the

subfamilies of laws result in 𝜇
𝑖
(0, 0, 0, 0, 𝛿

8
, 𝛿
9
)

[𝑦
0
, 𝑦
𝑖
] = 𝑦
𝑖+1
, 1 ⩽ 𝑖 ⩽ 6,

[𝑦
1
, 𝑦
2
] = 𝑦
4
,

[𝑦
1
, 𝑦
3
] = 𝑦
5
,

[𝑦
1
, 𝑦
4
] = 3𝑦

6
+ 𝛿
8
𝑦
7
+ 𝛿
9
𝑦
8
,
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Figure 2: Case A: 𝛼
11

̸= 0; nonisomorphic subfamilies determination.

[𝑦
1
, 𝑦
5
] = 5𝑦

7
,

[𝑦
1
, 𝑦
6
] = 𝑦
8
,

[𝑦
2
, 𝑦
3
] = −2𝑦

6
− 𝛿
8
𝑦
7
− 𝛿
9
𝑦
8
,

[𝑦
2
, 𝑦
4
] = −2𝑦

7
,

[𝑦
2
, 𝑦
5
] = −𝑦

8
,

[𝑦
3
, 𝑦
4
] = 𝑦
8
.

(15)

The nullity of −10𝛼
2
+ 𝛼
8

and the nullity of
31𝛼
2

2
+ 8𝛼
9
− 4𝛼
3
− 4𝛼
2
𝛼
8

are invariants. It can be
proved by substituting (9) and (13) in the expressions
−10𝛿
2
+ 𝛿
8
and 31𝛿2

2
+ 8𝛿
9
− 4𝛿
3
− 4𝛿
2
𝛿
8
; then 𝑃

0
is in

the denominator and since it must be nonnull, the nullity
of those expressions is invariant for the change (8). Then
four subcases are determined by the nullity of 𝛿

8
and

𝛿
9
. If 𝛿

8
̸= 0, the subcases corresponding to 𝛿

9
nullity

or nonnullity can be reduced to a subfamily of algebras
𝜇
𝜆

1
(1, 0, 0, 0, 0, 0, 3, 1,𝜆, 0, 1) with one parameter 𝜆 ∈ C, with

𝜆 = (1/8)(−31𝛼
2

2
+8𝛼
9
+4𝛼
3
+4𝛼
2
𝛼
8
)/(−31𝛼

2
+31𝛼
8
)
2. If 𝛿
8
=

0, in the subcase corresponding to 𝛿
9
̸= 0,𝑃
0
can be selected as

(−18𝛼
2

2
+ 16𝛼

9
− 8𝛼
3
)

1/2

/4 since 𝛼
9
̸= (−31𝛼

2

2
+4𝛼
3
+4𝛼
2
𝛼
8
)/8

and 𝛼
8

= 10𝛼
2

imply −9𝛼
2

2
+ 8𝛼

9
− 4𝛼

3
̸= 0.

Thus 𝛿
9

= 1, and the algebra is described by
𝜇
2
(1, 0, 0, 0, 0, 0, 3, 0, 1, 0, 1). Finally, the forth subcase

is the algebra 𝜇
3
(1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1).

2.3.2. Case A.2. One has 𝛼
11

̸= 0 and 𝛼
1
= 0.

Proposition 5. The nilpotent QFLA of dimension 9 with
𝛼
11

̸= 0, 𝛼
1
= 0, and 𝛼

2
= 𝛼
8
are nonisomorphic to the algebras

with 𝛼
11

̸= 0, 𝛼
1
= 0, and 𝛼

2
̸= 𝛼
8
.

Proof. The derived series isD1g = ⟨𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
⟩,

D2g = ⟨(𝛼
2
− 𝛼
8
)𝑥
7
, 𝑥
8
⟩, and so forth; thus Dim[D2g] = 2 if

𝛼
2
̸= 𝛼
8
and Dim[D2g] = 1 if 𝛼

2
= 𝛼
8
. The nullity of 𝛼

2
− 𝛼
8

constitutes a new classification criterion.

Proposition 6. The nilpotent QFLA of dimension 9 with
𝛼
11

̸= 0, 𝛼
1

= 0, and 𝛼
2
̸= 𝛼
8
can be classified in ten

nonisomorphic subfamilies 𝜇
𝑗
with 𝑗 from 4 to 13, described in

Figure 1, according to the conditions described in Figure 2.

Proof. Let us apply the change of base (8). The subfamilies
of laws are 𝜇

𝑗
(𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
5
, 𝛿
8
, 𝛿
9
) and the restrictions 𝑃

0
̸= 0

and𝑄
1
̸= 0. Thus, with the coefficient identifications, the new

parameters are

𝛿
2
=

𝑄
1
𝛼
2

𝑃
3

0

, (16)



6 Journal of Applied Mathematics

𝛿
3
=

𝑄
1
𝛼
3

𝑃
3

0

, (17)

𝛿
4
= − (2𝑄

2

1
𝑃
1
𝛼
2

2
+ 2𝑄
3
𝑃
0
𝑄
1
𝛼
2
− 𝑄
2

2
𝑃
0
𝛼
2

+ 𝛼
2
𝑄
2

1
𝑃
1
𝛼
8
− 𝑄
2

1
𝑃
0
𝛼
4

−2𝑄
1
𝑃
0
𝑄
3
𝛼
8
+ 𝑃
0
𝑄
2

2
𝛼
8
) × (𝑄

1
𝑃
6

0
)

−1

,

(18)

𝛿
5
= (−𝛼

2
𝑄
2

1
𝑃
1
𝑃
0
𝛼
9
− 2𝛼
2
𝑄
2

1
𝑃
3
𝑃
0
+ 𝛼
2
𝑄
2

1
𝑃
2

1
𝛼
8

+ 2𝑃
0
𝑃
2
𝑄
1
𝛼
2
𝑄
2
− 𝑃
1
𝑃
0
𝛼
4
𝑄
2

1
− 2𝑃
1
𝑃
0
𝑄
1
𝑄
3
𝛼
8

− 2𝑃
1
𝑃
0
𝛼
2
𝑄
2

2
+ 𝑃
1
𝑃
0
𝑄
2

2
𝛼
8
+ 2𝑃
1
𝑃
0
𝛼
2
𝑄
1
𝑄
3

+ 𝑄
2

1
𝑃
2

0
𝛼
5
+ 2𝑄
1
𝑃
2

0
𝑄
3
𝛼
9
+ 2𝑄
5
𝑃
2

0
𝑄
1

−𝑄
2

2
𝑃
2

0
𝛼
9
− 2𝑄
4
𝑃
2

0
𝑄
2
+ 𝑄
2

3
𝑃
2

0
) × (𝑄

2

1
𝑃
6

0
)

−1

,

(19)

𝛿
8
=

𝛼
8
𝑄
1

𝑃
3

0

, (20)

𝛿
9
=

(−𝑄
2

1
𝑃
1
𝛼
8
+ 𝑄
2

1
𝑃
0
𝛼
9
+ 2𝑃
0
𝑄
3
𝑄
1
+ 2𝑄
2

1
𝑃
1
𝛼
2
− 𝑃
0
𝑄
2

2
)

𝑃
3

0
𝑄
2

1

.

(21)

Selecting 𝑄
5
and 𝑄

3
appropriately the subfamilies of laws

result in 𝜇
𝑗
(𝛿
2
, 𝛿
3
, 𝛿
4
, 0, 𝛿
8
, 0). From (16), (17), and (20) the

invariance of the nullities of𝛼
2
, 𝛼
3
, and𝛼

8
is clear.The nullity

of 4𝛼
2
− 𝛼
8
is also invariant. It can be proved by substituting

(16) and (20) in the expression 4𝛿
2
−𝛿
8
considering the change

restrictions. If 𝛼
11

̸= 0, 𝛼
1
= 0, 𝛼

2
̸=𝛼
8
, 𝛼
2
̸= 0, 𝛼
3
̸= 0, 𝛼
8
̸= 0,

and 𝛼
8
̸= 4𝛼
2
, selecting 𝑄

1
= 𝑃
3

0
/𝛼
8
̸= 0, 𝑃
0
= 𝛼
3
/𝛼
8
̸= 0,

and 𝑃
1
= 𝛼
3
(−𝛼
8
𝛼
9
+ 𝛼
4
+ 𝛼
2
𝛼
9
)/(𝛼
2

8
(−𝛼
8
+ 4𝛼
2
)), the

subfamily is 𝜇𝜆
4
(0,𝜆, 1, 0, 0, 0, 1, 0), with 𝛿

2
= 𝛼
2
/𝛼
8
=

𝜆 ∈ C − {0, 1, 1/4}. If 𝛼
11

̸= 0, 𝛼
1
= 0, 𝛼

2
̸=𝛼
8
, 𝛼
2
̸= 0,

𝛼
3
̸= 0, 𝛼
8
̸= 0, and 𝛼

8
= 4𝛼

2
, then 𝛿

4
is invariant, and

the subfamily is 𝜇𝜆
5
(0, 1/4, 1,𝜆, 0, 0, 1, 0), 𝜆 ∈ C. If 𝛼

11
̸= 0,

𝛼
1
= 0, 𝛼

2
̸=𝛼
8
, 𝛼
2
̸= 0, 𝛼
3
̸= 0, and 𝛼

8
= 0, selecting

𝑄
1
= 𝑃
4

0
/𝛼
3
̸= 0 and 𝑃

0
= 𝛼
3
/𝛼
2
̸= 0, the subfamily is

𝜇
𝜆

6
(0, 1, 1,𝜆, 0, 0, 0, 0), 𝜆 ∈ C. If 𝛼

11
̸= 0, 𝛼
1
= 0, 𝛼

2
̸=𝛼
8
,

𝛼
2
̸= 0, 𝛼
3
= 0, 𝛼

8
̸= 0, and 𝛼

8
̸= 4𝛼
2
, selecting 𝑄

1
= 𝑃
3

0
/𝛼
8
̸= 0

and 𝑃
1
= 𝑃
0
(−𝛼
9
𝛼
8
+ 𝛼
2
𝛼
9
+ 𝛼
4
− 𝑃
2

0
𝛼
8
)/(𝛼
8
(−𝛼
8
+ 4𝛼
2
)),

the subfamily is 𝜇𝜆
7
(0,𝜆, 0, 1, 0, 0, 1, 0), 𝜆 ∈ C − {0, 1, 1/4}.

If 𝛼
11

̸= 0, 𝛼
1
= 0, 𝛼

2
̸=𝛼
8
, 𝛼
2
̸= 0, 𝛼
3
= 0, 𝛼

8
̸= 0, and 𝛼

8
=

4𝛼
2
, selecting 𝑄

1
= 𝑃
3

0
/𝛼
2
, the nullity of −𝛼

4
+ 3𝛼
2
𝛼
9
is

invariant. If 𝛼
4
̸= 3𝛼
2
𝛼
9
, selecting 𝑃2

0
= −𝛼
2
(−𝛼
4
+ 3𝛼
2
𝛼
9
)/𝛼
2

2
,

the subfamily is 𝜇
8
(0, 1, 0, 1, 0, 0, 4, 0), else the subfamily is

𝜇
9
(0, 1, 0, 0, 0, 0, 4, 0). If 𝛼

11
̸= 0, 𝛼
1
= 0, 𝛼

2
̸=𝛼
8
, 𝛼
2
̸= 0, 𝛼
3
=

0, and 𝛼
8
= 0, selecting𝑄

1
= 𝑃
3

0
/𝛼
2
, the nullity of 𝛼

2
𝛼
9
+𝛼
4
is

invariant. If 𝛼
4
̸= −𝛼
2
𝛼
9
, selecting 𝑃2

0
= 𝛼
2
(𝛼
2
𝛼
9
+𝛼
4
)/𝛼
2

2
̸= 0,

the subfamily is 𝜇
10
(0, 1, 0, 1, 0, 0, 0, 0); else with 𝑄

1
= 𝑃
3

0
/𝛼
2

the subfamily is 𝜇
11
(0, 1, 0, 0, 0, 0, 0, 0). If 𝛼

11
̸= 0, 𝛼
1
= 0,

𝛼
2
̸=𝛼
8
, 𝛼
2
= 0, and 𝛼

3
̸= 0, selecting 𝑄

1
= 𝑃
4

0
/𝛼
3
̸= 0, 𝑃
0
=

𝛼
3
/𝛼
8
̸= 0, and 𝑃

1
= −𝛼

3
(𝛼
4
− 𝛼
9
𝛼
8
)/𝛼
3

8
, the subfamily is

𝜇
12
(0, 0, 1, 0, 0, 0, 1, 0). If 𝛼

11
̸= 0, 𝛼
1
= 0, 𝛼

2
̸=𝛼
8
, 𝛼
2
= 0, and

𝛼
3
= 0, selecting 𝑄

1
= 𝑃
3

0
/𝛼
8
̸= 0 and 𝑃

1
= 𝑃
0
(−𝛼
4
+ 𝛼
9
𝛼
8
+

𝑃
2

0
𝛼
8
)/𝛼
2

8
̸= 0, the subfamily is 𝜇

13
(0, 0, 0, 1, 0, 0, 1, 0).

Proposition 7. The nilpotent QFLA of dimension 9 with
𝛼
11

̸= 0, 𝛼
1
= 0, and 𝛼

2
= 𝛼
8
can be classified in six

nonisomorphic subfamilies 𝜇
𝑘
with 𝑘 from 14 to 19, described

in Figure 1, according to the conditions described in Figure 2.

Proof. Let us apply the change of base (8). The subfamilies
of laws are 𝜇

𝑘
(𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
5
, 𝛿
8
, 𝛿
9
) and the restrictions 𝑃

0
̸= 0

and𝑄
1
̸= 0. Thus, with the coefficient identifications, the new

parameters are

𝛿
2
=

𝑄
1
𝛼
2

𝑃
3

0

, (22)

𝛿
3
=

𝑄
1
𝛼
3

𝑃
4

0

, (23)

𝛿
4
=

𝑄
1
(−3𝛼
2

2
𝑃
1
+ 𝑃
0
𝛼
4
)

𝑃
6

0

, (24)

𝛿
5
= (−𝛼

2
𝑄
2

1
𝑃
1
𝑃
0
𝛼
9
− 2𝛼
2
𝑄
2

1
𝑃
3
𝑃
0
+ 𝛼
2

2
𝑄
2

1
𝑃
2

1

+ 2𝑃
2
𝑃
0
𝑄
1
𝛼
2
𝑄
2
− 𝑃
0
𝑄
2

1
𝑃
1
𝛼
4
+ 𝑄
2

1
𝑃
2

0
𝛼
5

+ 2𝑄
1
𝑃
2

0
𝑄
3
𝛼
9
+ 2𝑄
5
𝑃
2

0
𝑄
1
− 𝑄
2

2
𝑃
2

0
𝛼
9

−2𝑄
4
𝑃
2

0
𝑄
2
− 𝑃
0
𝑃
1
𝑄
2

2
𝛼
2
+ 𝑄
2

3
𝑃
2

0
) × (𝑄

2

1
𝑃
6

0
)

−1

,

(25)

𝛿
9
=

(𝑃
1
𝑄
2

1
𝛼
2
+ 𝑄
2

1
𝑃
0
𝛼
9
+ 2𝑃
0
𝑄
3
𝑄
1
− 𝑃
0
𝑄
2

2
)

(𝑃
3

0
𝑄
2

1
)

. (26)

Let us select 𝑄
5
and 𝑄

3
appropriately and the subfamilies of

laws result in 𝜇
𝑘
(𝛿
2
, 𝛿
3
, 𝛿
4
, 0, 0). From (22), (23), and (24) the

invariance of the nullities of 𝛼
2
, 𝛼
3
, and 𝛼

4
is clear. If 𝛼

11
̸= 0,

𝛼
1
= 0, 𝛼

2
= 𝛼
8
, 𝛼
2
̸= 0, and 𝛼

3
̸= 0, selecting 𝑄

1
= 𝑃
3

0
/𝛼
2
̸= 0,

𝑃
0
= 𝛼
3
/𝛼
2
̸= 0, and 𝑃

1
= 𝛼
3
𝛼
4
/(3𝛼
3

2
), the subfamily is

𝜇
14
(0, 1, 1, 0, 0, 0, 1, 0). If 𝛼

11
̸= 0, 𝛼
1
= 0, 𝛼

2
= 𝛼
8
, 𝛼
2
̸= 0,

and 𝛼
3
= 0, selecting 𝑄

1
= 𝑃
3

0
/𝛼
2
̸= 0 and 𝑃

1
= 𝑃
0
𝛼
4
/(3𝛼
2

2
),

the subfamily is 𝜇
15
(0, 1, 0, 0, 0, 0, 1, 0). If 𝛼

11
̸= 0 ∧ 𝛼

1
= 0,

𝛼
2
= 𝛼
8
, 𝛼
2
= 0, and 𝛼

3
̸= 0, selecting 𝑄

1
= 𝑃
4

0
/𝛼
3
̸= 0, the

nullity of 𝛼
4
is invariant. If 𝛼

4
̸= 0 and 𝑃

0
= 𝛼
4
/𝛼
3
̸= 0, the

subfamily is 𝜇
16
(0, 0, 1, 1, 0, 0, 0, 0). If 𝛼

4
= 0 the subfamily

is 𝜇
17
(0, 0, 1, 0, 0, 0, 0, 0). If 𝛼

11
̸= 0, 𝛼
1
= 0, 𝛼

2
= 𝛼
8
, 𝛼
2
= 0,

and 𝛼
3
= 0, selecting 𝑄

1
= 𝑃
5

0
/𝛼
4
̸= 0, the subfamilies are

𝜇
18
(0, 0, 0, 1, 0, 0, 0, 0)with 𝛼

4
̸= 0, and 𝜇

19
(0, 0, 0, 0, 0, 0, 0, 0)

with 𝛼
4
= 0.

2.4. Case B. One has 𝛼
11
= 0.

Proposition 8. The nilpotent QFLA of dimension 9 and 𝛼
11
=

0 and 𝛼
9
̸= 0 are nonisomorphic to the algebras with 𝛼

11
= 0

and 𝛼
9
= 0.

Proof. For the family described by (3a)–(3o) and (4a)–(4q),
C3g = ⟨𝑥

4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝛼
9
𝑥
8
⟩; therefore its dimension is

Dim[C3g] = 5, if 𝛼
9
̸= 0 or Dim[C3g] = 4, if 𝛼

9
= 0, and

the nullity of 𝛼
9
constitutes a new classification criterion.
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2.4.1. Case B.1. One has 𝛼
11
= 0 and 𝛼

9
̸= 0.

Proposition 9. Thenilpotent QFLA of dimension 9 with 𝛼
11
=

0, 𝛼
9
̸= 0, and 𝛼

6
̸= 0 are nonisomorphic to the algebras with

𝛼
11
= 0, 𝛼

9
̸= 0, and 𝛼

6
= 0.

Proof. If𝛼
9
̸= 0, it can be deduced that𝛼

12
= 𝛼
13
= 𝛼
14
= 0. By

computing the Jacobi equations, the family of laws is reduced
to

[𝑥
0
, 𝑥
𝑖
] = 𝑥
𝑖+1
, 1 ⩽ 𝑖 ⩽ 6, (27)

[𝑥
1
, 𝑥
2
] = 𝛼
1
𝑥
4
+ 𝛼
2
𝑥
5
+ 𝛼
3
𝑥
6
+ 𝛼
4
𝑥
7
+ 𝛼
5
𝑥
8
, (28)

[𝑥
1
, 𝑥
3
] = 𝛼
1
𝑥
5
+ 𝛼
2
𝑥
6
+ 𝛼
3
𝑥
7
, (29)

[𝑥
1
, 𝑥
4
] = 𝛼
6
𝑥
5
+ 𝛼
7
𝑥
6
+ 𝛼
8
𝑥
7
+ 𝛼
9
𝑥
8
, (30)

[𝑥
1
, 𝑥
5
] = 2𝛼

6
𝑥
6
+ (2𝛼
7
− 𝛼
1
) 𝑥
7
, (31)

[𝑥
1
, 𝑥
6
] = 𝛼
10
𝑥
7
, (32)

[𝑥
1
, 𝑥
8
] = 𝛼
15
𝑥
6
+ 𝛼
16
𝑥
7
, (33)

[𝑥
2
, 𝑥
3
] = −𝛼

6
𝑥
5
+ (𝛼
1
− 𝛼
7
) 𝑥
6
+ (𝛼
2
− 𝛼
8
) 𝑥
7
− 𝛼
9
𝑥
8
,

(34)

[𝑥
2
, 𝑥
4
] = −𝛼

6
𝑥
6
+ (𝛼
1
− 𝛼
7
) 𝑥
7
, (35)

[𝑥
2
, 𝑥
5
] = (2𝛼

6
− 𝛼
10
) 𝑥
7
, (36)

[𝑥
2
, 𝑥
8
] = 𝛼
15
𝑥
7
, (37)

[𝑥
3
, 𝑥
4
] = (−3𝛼

6
+ 𝛼
10
) 𝑥
7 (38)

with two restrictions

−2𝛼
2

6
− 𝛼
9
𝛼
15
= 0,

−4𝛼
1
𝛼
6
+ 3𝛼
1
𝛼
10
− 2𝛼
6
𝛼
7
− 𝛼
7
𝛼
10
− 𝛼
9
𝛼
16
= 0.

(39)

Since 𝛼
9
̸= 0, the application of the elementary change of base

CB

𝑦
0
= 𝑦
1

𝑦
𝑖
=

𝑥
𝑖

𝛼
9

, 1 ⩽ 𝑖 ⩽ 𝑛 − 1

with |CB| = 1

𝛼
8

9

̸= 0

(40)

permits us to suppose that 𝛼
9
= 1. Then from (39), 𝛼

15
=

−2𝛼
2

6
and 𝛼

16
= −4𝛼

1
𝛼
6
+ 3𝛼
1
𝛼
10
− 2𝛼
6
𝛼
7
− 𝛼
7
𝛼
10
. This

implies that (33) and (37) are changed to [𝑥
1
, 𝑥
8
] = −2𝛼

2

6
𝑥
6
+

(𝛼
1
(−4𝛼
6
+ 3𝛼
10
) − 𝛼

7
(2𝛼
6
+ 𝛼
10
))𝑥
7
and [𝑥

2
, 𝑥
8
] =

−2𝛼
2

6
𝑥
7
, respectively, and the subfamily of laws 𝜇

𝑙
(𝛼
1
, 𝛼
2
, 𝛼
3
,

𝛼
4
, 𝛼
5
, 𝛼
6
, 𝛼
7
, 𝛼
8
, 1, 𝛼
10
, 0, 0, 0, 0, 0, 0), with 𝑙 from 20 to 63,

has no restrictions (4a)–(4q). Its derived series is D1g =

⟨𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
⟩,D2g = ⟨−𝛼

6
𝑥
5
+(𝛼
1
−𝛼
7
)𝑥
6
+(𝛼
2
−

𝛼
8
)𝑥
7
, 𝑥
8
, −𝛼
6
𝑥
6
+ (𝛼
1
−𝛼
7
)𝑥
7
, (2𝛼
6
−𝛼
10
)𝑥
7
, −2𝛼
2

6
𝑥
7
, (−3𝛼

6
+

𝛼
10
)𝑥
7
⟩, and so forth. Thus Dim[D2g] = 4 if 𝛼

6
̸= 0 and

Dim[D2g] ⩽ 3 if 𝛼
6
= 0. Therefore the nullity of 𝛼

6

constitutes a new classification criterion.

Case B.1.1: 𝛼
11
= 0, 𝛼

9
̸= 0 and 𝛼

6
̸= 0. Figure 3 provides the

classification in 18 subfamilies in this case.

Case B.1.2: 𝛼
11
= 0, 𝛼

9
̸= 0, and 𝛼

6
= 0. Figure 4 provides the

classification in 26 subfamilies in this case.

2.4.2. Case B.2. One has 𝛼
11
= 0 and 𝛼

9
= 0.

The restrictions in the family (4a)–(4q) are reduced to

𝛼
5
𝛼
12
= 0, (41)

𝛼
6
𝛼
12
= 0, (42)

𝛼
6
𝛼
13
= 0, (43)

𝛼
10
𝛼
12
= 0, (44)

𝛼
12
(𝛼
1
− 𝛼
7
) = 0, (45)

𝛼
5
𝛼
13
− 2𝛼
2

6
= 0, (46)

2 (𝛼
2
− 𝛼
8
) 𝛼
12
+ 3 (𝛼

1
− 𝛼
7
) 𝛼
13
+ 2 (𝛼

6
− 𝛼
10
) 𝛼
14
= 0,

(47)

𝛼
5
𝛼
14
− 2 (2𝛼

1
+ 𝛼
7
) 𝛼
6
− 𝛼
9
𝛼
16
+ (3𝛼
1
− 𝛼
7
) 𝛼
10
= 0.

(48)

Proposition 10. The nilpotent QFLA of dimension 9 with
𝛼
11
= 0, 𝛼

9
= 0, and 𝛼

5
̸= 0 are nonisomorphic to the algebras

with 𝛼
11
= 0, 𝛼

9
= 0, and 𝛼

5
= 0.

Proof. Equations (43) and (46) imply that 𝛼
6
= 0. By

computing the Jacobi equations, the subfamily of laws is
𝜇
𝑚
(𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
, 𝛼
5
, 0, 𝛼
7
, 𝛼
8
, 0, 𝛼
10
, 0, 𝛼
12
, 𝛼
13
, 𝛼
14
, 𝛼
15
, 𝛼
16
),

with 𝑚 from 64 to 263, and the restrictions are
reduced to 6. Its descending central series is C1g =

⟨𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝛼
5
𝑥
8
⟩, and so forth. Thus the nullity of

𝛼
5
constitutes a new classification criterion.

An exhaustive and extensive process of analysis with the
same methodology shown in the previous subsections leads
to the final subclassification, which is summarized in the
following Figures.

Case B.2.1: 𝛼
11
= 0, 𝛼

9
= 0, and 𝛼

5
̸= 0. Figure 5 provides the

classification in 55 subfamilies in this case.

Case B.2.2: 𝛼
11
= 0, 𝛼

9
= 0, and 𝛼

5
= 0. Figures 6 and 7

provide the classification in 145 subfamilies in this case.

3. Concluding Remarks

Computational aid has been indispensable in this piece of
research. A PC Pentium 4 of 2.4GHz and the programming
language Maple 6 have been used in the process. The
library modules developed represent approximately 12,000
lines of code. In some cases, in this massive application of
computational resources and looking for the simplification
of some laws, procedures that perhaps can be considered of
“inverse engineering” have been used in order to find some
very complex changes of base, which have allowed us to
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20 1 0 0 0 1 0 1 1 0 0 0 0
21 1 0 0 0 0 1 0 1 3 0 0 0 0
22 1 0 0 0 1 0 0 1 3 0 0 0 0 5
23 1 0 0 0 1 0 1 3 0 0 0 0
24 0 0 0 0 1 1 0 1 0 0 0 0
25 0 0 0 0 1 1 1 0 1 3 0 0 0 0
26 0 0 0 0 1 1 0 0 1 3 0 0 0 0 0
27 0 0 0 0 0 1 1 0 1 1 0 0 0 0
28 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
29 0 0 0 0 0 1 1 0 1 3 0 0 0 0
30 0 0 0 0 0 1 0 0 1 3 0 0 0 0 0
31 1 0 0 0 0 1 0 1 0 0 0 0 0
32 1 0 0 0 1 0 0 1 0 0 0 0 0
33 1 0 0 0 1 0 1 0 0 0 0 0
34 0 0 0 0 1 1 1 0 1 0 0 0 0 0
35 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
36 0 0 0 0 0 1 1 0 1 0 0 0 0 0
37 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Aa Classifcation criterion 
Aa Classifcation criterion from previous cases
Aa Additional result from previous cases
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𝜇 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16

Figure 3: Case B.1.1: 𝛼
11
= 0, 𝛼

9
̸= 0, and 𝛼

6
̸= 0; classification of the QFLA of dimension 9.

38 1 0 0 0 1 0 1 1 0 0 0 0 0 2
39 1 1 0 0 0 3 0 1 1 0 0 0 0 0 0
40 1 1 0 0 0 3 0 1 1 0 0 0 0 0 0
41 1 5 0 0 0 3 0 1 1 0 0 0 0 0 0
42 0 1 1 0 0 0 0 1 1 0 0 0 0 0
43 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0
44 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
45 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0
46 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
47 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
48 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
49 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
50 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
51 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0
52 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0
53 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
54 0 1 1 0 0 0 l 0 1 0 0 0 0 0 0 0
55 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
56 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
57 0 1 0 0

0
0 0 0 0 1 0 0 0 0 0 0 0

58 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0
59 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
60 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
61 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
62 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

𝜆

𝜆

𝜆

𝜆

𝜆

𝜆1 𝜆2

−2

−2

−1

−1

−1

−𝜆

𝜇 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16

Aa Direct result

Aa Classification criterion 
Aa

Additional result
Aa
Aa

Classifcation criterion from previous cases

Additional result from previous cases

Figure 4: Case B.1.2: 𝛼
11
= 0; 𝛼

9
̸= 0, and 𝛼

6
= 0; classification of the QFLA of dimension 9.
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64 1 1 0 1 0 3 0 0 1 0 0 0 0
65 1 0 0 1 0 3 0 0 1 0 0 0 0 3
66 1 0 1 0 3 0 0 1 0 0 0 0 0
67 1 0 0 1 0 3 0 0 1 0 0 0 0
68 1 1 0 1 0 3 0 0 1 0 0 0 0 31/8
69 1 0 1 0 3 0 0 1 0 0 0 0
70 1 1 0 1 0 3 0 0 1 0 0 0 0 3 0
71 1 1 0 0 1 0 3 0 0 1 0 0 0 0 3
72 1 1 7 0 1 0 3 0 0 1 0 0 0 0 3
73 1 0 1 0 3 0 0 1 0 0 0 0 0 1
74 1 0 0 1 0 3 0 0 1 0 0 0 0 0 0
75 1 0 0 1 0 3 0 0 1 0 0 0 0 0 0
76 1 31 0 1 0 3 0 0 1 0 0 0 0 0 0
77 0 0 1 0 0 0 0 1 0 0 0 0 1 1
78 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0
79 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
80 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0
81 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
82 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
83 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
84 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
85 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
86 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
87 0 0 0 0 1 0 0 0

0

0 1 0 0 0 0 0 0
88 1 0 0 0 1 0 0 0 0 0 0 0 1
89 1 0 0 0 1 0 0 0 0 0 0 0 0
90 1 1 0 0 1 0 0 0 0 0 0 0 2
91 1 1 0 0 1 0 0 0 0 0 0 0 0 2
92 1 0 0 0 1 0 1 0 0 0 0 0 0 2 0

0

93 1 0 0 0 1 0 0 0 0 0 0 0 0 2 0
94 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1
95 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0
96 0 1 0 0 1 0 0 0 0 0 0 0 0
97 0 0 0 0 1 0 1

1
0 0 0 0 0 0 0 1

98 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
99 1 0 1 0 1 0 0 0 0 0 0 0 1

100 1 1 0 1 0 0 0 0 0 0 0 0 0
101 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
102 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
103 1 0 0 1 0 1/2 0 0 0 0 0 0 0 1
104 1 1 0 0 1 0 1/2 0 0 0 0 0 0 0 0
105 1 0 0

0
0

0 1 0 1/2 0 0 0 0 0 0 0 0
106 0 0 1 0 0 1 0 0 0 0 0 0 1
107 0 0 1 0 0 1 0 0 0 0 0 0 1 0
108 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0
109 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
110 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
111 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
112 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
113 0 1 0 0 0 0 0 0 0 0 0 0 0 11
114 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
115 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
116 0 0 0

0

0 1 0 0 0 0 0 0 0 0 0 0 1
117 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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= 0, 𝛼
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= 0, 𝛼
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̸= 0; classification of the QFLA of dimension 9.
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119 1 0 0 0 0 0 3 0 0 1 0 0 1 1
120 1 0 0 0 0 0 3 0 0 1 0 0 1 9/2 0
121 1 0 0 0 0 0 3 0 0 1 0 0 1 9/2 15/2
122 1 0 0 0 0 0 3 0 1 0 0 0 0 1
123 1 0 0 0 0 3 0 1 0 0 0 0 1 0
124 1 0 0 0 0 3 0 0 1 0 0 0 0 1
125 1 0 0 0 0 3 0 1 0 0 0 0 1
126 1 0 0 0 0 0 3 0 1 0 0 0 0 0 1
127 1 0 0 0 0 3 0 0 1 0 0 0 0 0 1
128 1 0 0 0 0 3 0 1 0 0 0 0 0 1
129 1 0 0 0 0 0 3 0 1 0 0 0 0 0 0
130 1 0 0 0 0 3 0 0 1 0 0 0 0 0 0
131 1 0 0 0 0 3 0 1 0 0 0 0 0 0
132 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
133 0 0 1 0 0 0 0 0 0 1 0 0 1 0 -1
134 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
135 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
136 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1
137 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1
138 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
139 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
140 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
141 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
142 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
143 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1
144 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
145 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
146 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
147 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
148 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
149 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
150 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
151 0 0 0 0 0 1 0 0 0 0 0 1
152 0 0 0 0 0 0 0 0 0 0 0 1 1
153 0 0 0 0 0 0 0 0 0 0 0 1 0 1
154 0 0 0 0 0 0 0 0 0 0 0 1 0 0
155 0 0 0 0 0 0 0 0 0 0 0 1 1
156 0 0 0 0 0 1 0 0 0 0 0 0 1 0
157 0 0 0 0 0 0 0 0 0 0 0 0 1 0
158 0 0 0 0 0 1 0 0 0 0 0 0 0 1
159 0 0 0 0 0 0 0 0 0 0 0 0 0 1
160 0 0 0 0 0 1 0 0 0 0 0 0 0 0
161 0 0 0 0 0 0 0 0 0 0 0 0 0 0
162 0 1 0 0 0 0 0 0 0 0 0 0 1
163 0 1 0 0 0 0 0 0 0 0 0 0 0 1
164 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
165 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
166 0 0 0 0 0 0 0 0 0 0 0 0 1 1
167 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
168 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
169 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
170 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
171 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
172 0 0 0

0
0

0 0 0 0 0 0 0 0 0 2 0 0
173 1 0 0 0 0 1 0 0 0 0 1 0
174 1 0 0 0 0 1 0 0 0 0 0 1
175 1 0 0 0 0 1 0 0 0 0 0 0 1
176 1 0 0 0 0 1 0 0 0 0 0 0 0 1
177 1 0 0 0 0 1 0 0 0 0 0 0 0 0
178 0 0 0 0 0 0 0 0 0 0 1 1 0 0
179 0 0 2/3 0 0 0 0 0 0 0 0 1 1 0
180 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
181 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
182 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
183 0 0 0 0 0 0 0 0 0 0 0 1 1
184 0 1/2 0 0 0 0 0 0 0 0 0 0 1 1
185 0 0 0 0 0 0 0 0 0 0 0 1 0
186 0 1/2 0 0 0 0 0 0 0 0 0 0 1 0 1
187 0 1/2 0 0 0 0 0 0 0 0 0 0 1 0 0
188 0 0 0 0 0 0 0 0 0 0 0 1 1
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Figure 6: Case B.2.2. First part: 𝛼
11
= 0, 𝛼

9
= 0, and 𝛼

5
= 0. Classification of the QFLA of dimension 9.
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191 0 1 0 0 0 0 0 0 0 0 0 0 0 1
192 0 0 0 0 0 0 0 0 0 0 0 0 0 1
193 0 1 0 0 0 0 0 0 0 0 0 0 0 0
194 0 0 0 0 0 0 0 0 0 0 0 0 0 0
195 0 1 1 0 0 0 1 0 0 0 1 0 0
196 0 1 0 1 0 0 0 1 0 0 0 1 0 0
197 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
198 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1
199 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
200 0 0 1 1 0 0 0 0 0 0 0 1 0 0
201 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
202 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
203 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
204 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
205 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
206 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
207 0 0 0 0 0 0 0 0 0 0 0 1 0 1
208 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
209 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
210 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
211 1 0 1 0 0 1 0 0 0 0 0 1 0 0
212 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0
213 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
214 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

1
0

215 0 0 1 0 0 0 0 0 0 0 0 1 1 0
216 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
217 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
218 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
219 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
220 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
221 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
222 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
223 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
224 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1
225 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
226 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
227 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
228 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
229 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
230 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1
231 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
232 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1
233 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
234 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
235 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
236 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1
237 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
238 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
239 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1
240 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
241 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
242 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
243 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
244 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
245 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
246 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
248 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0
249 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
250 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
252 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1
253 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
254 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
255 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
256 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
258 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
259 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
260 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
261 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
262 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 7: Case B.2.2. Second part: 𝛼
11
= 0, 𝛼
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= 0, and 𝛼

5
= 0. Classification of the QFLA of dimension 9.
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eliminate some parameters in the laws involved. In any case,
the massive application of changes of base and characteristic
vector has allowed us to obtain the complete classification in
263 subfamilies of the QFLA laws of dimension 9.

The 263 families have been represented in the paper,
consisting of 157 simple algebras, 77 families depending on
1 parameter, 24 families depending on 2 parameters, and
5 families depending on 3 parameters. The classification is
complete since any couple of the obtained 263 families is
nonisomorphic and any quasifiliform Lie algebra of dimen-
sion 9 is isomorphic to one of them. The nonisomorphism
of the 263 Lie algebra families has been proved in the
10 propositions of the paper, and the completeness of the
classification is proved by the “exhaustive” analysis of all the
possible cases, depending on the combination of the values of
the 16 parameters (𝑎1 ⋅ ⋅ ⋅ 𝑎16).
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