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The exact solution for any physical model is of great importance in the applied science. Such exact solution leads to the correct
physical interpretation and it is also useful in validating the approximate analytical or numerical methods. The exact solution
for the peristaltic transport of a Jeffrey fluid with variable viscosity through a porous medium in an asymmetric channel has been
achieved.Themain advantage of such exact solution is the avoidance of any kind of restrictions on the viscosity parameter 𝛼, unlike
the previous study in which the restriction 𝛼 ≪ 1 has been put to achieve the requirements of the regular perturbation method.
Hence, various plots have been introduced for the exact effects of the viscosity parameter, Daray’s number, porosity, amplitude ratio,
Jeffrey fluid parameter, and the amplitudes of the waves on the pressure rise and the axial velocity. These exact effects have been
discussed and further compared with those approximately obtained in the literature by using the regular perturbation method.
The comparisons reveal that remarkable differences have been detected between the current exact results and those approximately
obtained in the literature for the axial velocity profile and the pressure rise.

1. Introduction

Thesubject of peristaltic flow, first introduced and formulated
by Latham [1], has been a field of very active research during
the last few decades due to its important applications inmany
scientific fields such as engineering, medicine, and biology.
Such applications for peristaltic flow appear in the transport
of bile in the bile duct, vasomotion of the small blood
vessels, the transport of urine from kidney to the bladder, the
movement of eggs in the fallopian tube, the transport of the
spermatozoa in cervical canal, the chyme movement in the
intestine, and the transport of intrauterine fluid within the
cavity of the uterus. In addition, the mechanism of peristaltic
transport has been exploited for industrial applications like
sanitary fluid transport, transport of corrosive fluids where
the contact of the fluidwith themachinery parts is prohibited,
and transport of a toxic liquid which is used in nuclear

industry to avoid contamination from the outside environ-
ment. Since Latham [1], many authors investigated too many
problems for the peristaltic flow of Newtonian and non-
Newtonian fluids under different boundary conditions. In
this regard, several models have been investigated by Shapiro
et al. [2], Zien and Ostrach [3], Lee and Fung [4], Srivastava
et al. [5], Takabatake et al. [6], L. M. Srivastava and V. P.
Srivastava [7], Tang and Shen [8], Misra and Pandey [9, 10],
V. P. Srivastava and L. M. Srivastava [11], Eytan et al. [12],
Vajravelu et al. [13], and Mekheimer and Abd elmaboud [14,
15] to describe peristaltic flow in symmetric and asymmetric
channels or axisymmetric tubs.

Recently, the peristaltic flow in asymmetric channel has
attracted much attention due to the physiological observa-
tions that the intrauterine fluid flow induced by myometrial
contractions is peristaltic-type motion. These contractions
occur in asymmetric directions during the secretory phase,
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when the embryo enters the uterus for implantation, de
Vries et al. [16]. The main notice on these aforementioned
studies is that the fluid viscosity is assumed to be constant.
However, such assumption is not valid everywhere, where the
coefficients of viscosity for real fluids are functions of space
coordinate, temperature, and pressure. For many liquids,
such as water, oils, and blood, the variation of viscosity due to
space coordinate and temperature change is more dominant
than other effects. Accordingly, El Hakeem et al. [17] studied
the hydromagnetic peristaltic flow of fluid with variable
viscosity in a uniform tube under zero Reynolds number with
longwavelength approximation.They considered that the vis-
cosity of the fluid varies across the thickness of the duct. Later,
many authors [18–22] have analyzed the peristaltic transport
of various types of fluids taking into account the variation
of viscosity. Very recently, Afsar Khan et al. [22] discussed
the peristaltic flow of a Jeffrey fluid with variable viscosity
through a porous medium in an asymmetric channel.

In such kind of problems, the authors usually expand the
viscosity function in terms of a small viscosity parameter
and hence consider the first two or three terms of Maclaurin
series. This procedure helped them to use the regular pertur-
bation method to solve the differential equations governing
the flow. Consequently, the perturbation series solutions up
to first order [17] or second order [22] were obtained in
terms of such small viscosity parameter. These approximate
solutions have been used to derive some numerical results
for the effects of various physical parameters on the fluid
velocity and the pressure gradient. In this regard, we believe
that such approximate solutions do not always lead to the
correct physical interpretations, especially when the issue of
convergence is not addressed. Moreover, when we use the
regular perturbation method as a method of solution we do
not know the order that we can stop at to achieve numerical
results with good accuracy. In general, the accuracy of
the approximate solutions derived from any approximate
analytical method cannot be checked without addressing
the issue of convergence. When it is difficult to study such
convergence, one other way to check accuracy, especially in
the absence of the exact solutions, is to compare the obtained
results with highly trust numerical methods that applied to
solve the same problems. In order to indicate our point of
view we will reinvestigate the problem solved very recently
by Afsar Khan et al. [22] by using the regular perturbation
method. Therefore, the objective of the present study is to
confirm our belief that the approximate solutions deduced
from the regular perturbation method do not always lead to
correct physical solutions. This goal will be achieved via the
following three steps:

(1) obtaining the exact solution for the differential equa-
tion governing the axial velocity;

(2) obtaining the exact expressions for the pressure gra-
dient and the pressure rise;

(3) comparing the present exact results for the fluid veloc-
ity and the pressure rise with those approximately
obtained by using the regular perturbation method
[22], at the same values of physical parameters.

2. The Physical Problem

Afsar Khan et al. [22] considered the peristaltic flow of an
incompressible Jeffrey fluid in an asymmetric channel of
width 𝑎

1
+ 𝑎
2
. Sinusoidal wave propagating with constant

speed 𝑐 on the channel walls induces the flow. The wall
surfaces are chosen in the following forms:
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where 𝑏
1
, 𝑏
2
are amplitude of the upper and lower waves, 𝜆 is

the wavelength, and 𝜙 is the phase difference which varies in
the range 0 ≤ 𝜙 ≤ 𝜋. In addition, 𝑎
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satisfy the following condition [22]:
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. (2)

The flow is assumed to be steady in the wave frame (𝑥, 𝑦)

moving with velocity 𝑐 away from the fixed frame (𝑋, 𝑌). The
transformation between these two frames is given by

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑢 = 𝑈 − 𝑐,

𝑝 (𝑥) = 𝑃 (𝑋, 𝑡) ,

(3)

where 𝑢 and V are the velocity components in the wave frame
(𝑥, 𝑦) and 𝑝 and 𝑃 are pressure in wave and fixed frame
of reference, respectively. Afsar Khan et al. [22] found that
under the assumptions of long wavelength and low Reynolds
number approximation the flow is governed by the following
system of partial differential equations in nondimensional
form:

𝜕𝑝

𝜕𝑦

= 0, (4)

𝜕𝑝

𝜕𝑥

=

1

𝜖

𝜕

𝜕𝑦

[

𝜇 (𝑦)

(1 + 𝜆
1
)

𝜕𝑢

𝜕𝑦

] −

𝜇 (𝑦)

Da
(𝑢 + 1) , (5)

where 𝜖 is the porosity of the porous medium, 𝜆
1
is the ratio

of relaxation to retardation times, and Da is Darcy’s number.
Equation (4) shows that 𝑝 is independent of 𝑦. Accordingly,
(5) can be written as

𝑑𝑝

𝑑𝑥

=

1

𝜖

𝜕

𝜕𝑦

[

𝜇 (𝑦)

(1 + 𝜆
1
)

𝜕𝑢
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] −

𝜇 (𝑦)

Da
(𝑢 + 1) . (6)

The flow is governed by the following boundary conditions:

𝑢 = −1, at 𝑦 = ℎ
1
(𝑥) ,

𝑢 = −1, at 𝑦 = ℎ
2
(𝑥) ,

(7)

where

ℎ
1
(𝑥) = 1 + 𝑎 cos (2𝜋𝑥) ,

ℎ
1
(𝑥) = −𝑑 − 𝑏 cos (2𝜋𝑥 + 𝜙) .

(8)



Abstract and Applied Analysis 3

Moreover, 𝜇(𝑦) is the viscosity function. In [22], the authors
considered the following viscosity variation in the dimen-
sionless form:

𝜇 (𝑦) = 𝑒
−𝛼𝑦

. (9)

This expression for the viscosity function has been also
considered bymany authors [17–21].This assumptionmay be
reasonable for physiological systems as reported in [19] that
the viscosity of the gastric mucus (near the wall) varies as 1–
102 cP while the viscosity of the chyme varies as 103–106 cP.
In order to use the regular perturbation method to solve
(6), Afsar Khan et al. [22] have implemented the following
approximate expression for the viscosity function 𝜇(𝑦):

𝜇 (𝑦) ≈ 1 − 𝛼𝑦 +

𝛼
2

2

𝑦
2
, for 𝛼 ≪ 1, (10)

where 𝛼 has been used as a perturbation parameter.

3. Notes on the Previous Results

In [22], the authors mentioned that (6) is a nonlinear
differential equation so that it is not possible to obtain a closed
form solution; hence, a perturbation solution for 𝑢 has been
obtained by expanding 𝑢 in the form

𝑢 (𝑥, 𝑦) = 𝑢
0
(𝑥, 𝑦) + 𝛼𝑢

1
(𝑥, 𝑦) + 𝛼

2
𝑢
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ . (11)

Unfortunately, the statement just mentioned above about the
nonlinearity of the differential equation (6) is not correct,
where (6) contains no nonlinear terms in the unknown
function 𝑢(𝑥, 𝑦) or even any products for 𝑢(𝑥, 𝑦) with its
derivatives. Accordingly, (6) is a linear differential equation
and its exact solution is available; this is the subject of the
next section. Such exact solution will be used to validate
the accuracy of the numerical results obtained by Afsar
Khan et al. [22] for the physical problem describing the
peristaltic transport of a Jeffrey fluid with variable viscosity
through a porous medium in an asymmetric channel. It is
also important to refer to the fact that the exact solution is
valid for any real value for the viscosity parameter 𝛼. This
means that the restriction 𝛼 ≪ 1 made by the authors
[22] can be avoided in the current analysis. Therefore, the
present analytical solution may be considered as optimal for
the current physical model.

4. The Exact Solution

On using the complete definition for 𝜇(𝑦) in (9), we can
rewrite (6) in the following form, without any restriction on
𝛼:

𝑑𝑝
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Equation (12) can be further simplified as

𝜕
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Assuming that
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we have
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which is a second-order linear partial differential equation.
The exact solution of (15) is given as

𝑢 (𝑥, 𝑦) = −1 − Da(
𝑑𝑝
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(16)

where 𝑓
1
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(𝑥) are unknown functions. Further, 𝜎

1

and 𝜎
2
are given by

𝜎
1
=

1

2

(𝛼 − √𝛼
2
+ 4Ω) , 𝜎

2
=

1

2

(𝛼 + √𝛼
2
+ 4Ω) .

(17)

Applying the boundary conditions (7), we obtain 𝑓
1
(𝑥) and
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In view of (16) and (18), we obtain the exact solution of (6)
under the boundary conditions (7) as

𝑢 (𝑥, 𝑦) = −1 + Da(
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This exact solution can easily be verified by direct substitu-
tions in (6) and the boundary conditions (7). Following Afsar
Khan et al. [22], the volume flow rate in the wave frame is
given by

𝑞 = ∫

ℎ
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ℎ
2

𝑢 𝑑𝑦. (20)

On using (16), we obtain from (20) that
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Figure 1:The pressure rise versus flow rate when a = 0.2; b = 0.6; d =
0.8; 𝜖 = 0.3; 𝜆

1
= 0.8; Da = 0.6; 𝜙 = 𝜋/4.
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Figure 2: The pressure rise versus flow rate when 𝛼 = 0.01; a = 0.2;
b = 0.6; d = 0.8; 𝜖 = 0.3; 𝜆

1
= 0.4; 𝜙 = 𝜋/4.
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(22)

Therefore, the exact expression for the pressure gradient is
given as

𝑑𝑝
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(23)

where𝑄 is the average flux over one period and given by [22]

𝑄 = 𝑞 + 1 + 𝑑. (24)
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Figure 3: The pressure rise versus flow rate when 𝛼 = 0.01; a = 0.2;
b = 0.6; d = 0.8; 𝜆

1
= 0.4; Da = 0.5; 𝜙 = 𝜋/4.

The pressure gradient can be written in terms of the average
flux as

𝑑𝑝
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(26)

The dimensionless pressure rise is given exactly by

Δ𝑃 = ∫

1

0

(

𝑑𝑝

𝑑𝑥

)𝑑𝑥. (27)

On inserting (25) into (27) we get

Δ𝑃 = 𝑄∫

1

0

𝐼
1
(𝑥) 𝑑𝑥 + ∫

1

0

𝐼
2
(𝑥) 𝑑𝑥. (28)

5. Numerical Results

In the previous section, the exact solution for the axial
velocity has been obtained. Consequently, exact analytical
expressions have been obtained for the pressure gradient and
the pressure rise. The availability of such exact solutions is of
great importance, especially in validating other approximate
results, and they certainly would lead to better understanding
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Figure 4: The pressure rise versus flow rate when 𝛼 = 0.01; a = 0.2;
b = 0.6; d = 0.8; 𝜖 = 0.3; Da = 0.8; 𝜙 = 𝜋/4.
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Figure 5: The pressure rise versus flow rate when 𝛼 = 0.01; a = 0.2;
b = 0.6; d = 0.8; 𝜖 = 0.3; Da = 0.8; 𝜆

1
= 0.5.

of the physical aspects of the model. Here, the obtained exact
expressions are invested not only to explore the actual effects
of various parameters on the velocity profiles and the pressure
rise but also to validate the approximate results obtained in
[22] by using the regular perturbation method. The relation
between pressure rise and flow rate given by (28) is plotted
in Figures 1–7 at the same numerical values taken by Afsar
Khan et al. [22]. Figures 1–7 exhibit a linear relation between
the variation of time-mean flow rate 𝑄 and the pressure rise
Δ𝑃. Figure 1 shows the variation of Δ𝑃 with flow rate 𝑄

for different values of 𝛼. The figure shows that the relation
between pressure rise and flow rate is not greatly affected by
the variation of the viscosity parameter at 𝛼 = 0, 0.03, 0.06.
However, the situation was completely different regarding the
results depicted in Figure 1 by Afsar Khan et al. [22]. Further,
it is observed from the current Figure 1 that −25 ≤ Δ𝑃 ≤ 5,
while it was observed from Figure 1 in [22] that −10 ≤ Δ𝑃 ≤

55.
Figure 2 represents the variation of Δ𝑃 with the flow rate

𝑄 for different values of Da. The current results in Figure 2
reveal that slight decrease in Δ𝑃 occurs with increasing Da
when −3.5 ≤ 𝑄 ≤ 0; however, Figure 2 in [22] showed
that Δ𝑃 increases with increasing Da when 𝑄 ≤ 2.55.
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Figure 6: The pressure rise versus flow rate when 𝛼 = 0.01; b = 0.6;
d = 0.8; 𝜖 = 0.3; 𝜆

1
= 0.4; Da = 0.5; 𝜙 = 𝜋/4.
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Figure 7: The pressure rise versus flow rate when 𝛼 = 0.01; a = 0.2;
d = 0.8; 𝜖 = 0.3; 𝜆

1
= 0.4; Da = 0.5; 𝜙 = 𝜋/4.

This comparison shows different behaviour for the relation
between pressure rise and flow rate when studying the effect
of Da. Figures 3 and 4 represent the graphs of pressure rise
Δ𝑃 with the flow rate 𝑄 for different values of 𝜖 and 𝜆

1
. It

is observed that the pumping rate decreases with increase of
𝜖 and 𝜆

1
. Although the same behaviour has been obtained

by Afsar Khan et al. [22] in Figures 3 and 4 for the relation
between pressure rise and flow rate when studying the effects
of 𝜖 and 𝜆

1
, the ranges of 𝑄 at which the pumping rate

decreases with increase of 𝜖 and 𝜆
1
differ from those observed

in Figures 3 and 4 in [22]. Figure 5 indicates the variation
of Δ𝑃 versus 𝑄 for different values of phase difference 𝜙.
It is clarified in Figure 5 that the pumping rate decreases
with the increase of 𝜙 and this behaviour agrees with the
corresponding results introduced by Figure 5 in [22] but at
different range for the flow rate𝑄. The exact influences of the
waves amplitudes 𝑎 and 𝑏 on the variation of Δ𝑃 versus𝑄 are
plotted in Figures 6 and 7, respectively. Although the current
exact influences for 𝑎 and 𝑏 are similar to the approximate
results depicted by Figures 6 and 7 in [22], they also occur at
different range for 𝑄.

Regarding the exact effects of 𝛼, 𝑞, 𝜙, and Da on the axial
velocity profiles, we have plotted such effects in Figures 8, 9,
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Figure 8: Axial velocity versus y at a = 0.2; b = 0.6; d = 0.8; 𝜖 = 0.2;
𝜆
1
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Figure 9: Axial velocity versus y at 𝛼 = 0.05; a = 0.2; b = 0.6; d = 0.8;
𝜖 = 0.2; 𝜆

1
= 1; Da = 1; x = 0; 𝜙 = 𝜋/2.

10, 11, and 12. Figures 8 and 11 declare that the axial velocity
is not affected by the variations of the viscosity parameter
when 𝛼 = 0, 0.04, 0.06 and Darcy’s number at Da = 0.5, 1,
1.2. Indeed, these exact effects of 𝛼 and Da on 𝑢(𝑦) differ
from those approximately obtained and depicted in Figures 8
and 11 in [22]. Here, it may be important tomention that 𝑢(𝑦)
should be affected by the variations of 𝛼 and Da, but in other
ranges than those taken in [22]; note that the very small values
of 𝛼 considered by Afsar Khan et al. [22] were chosen in such
way to meet the requirements of the perturbation method.
However, there are not any restrictions on 𝛼 in the current
analysis. The most important notice here is that the velocity
curves presented in Figure 8 by Afsar Khan et al. [22] do
not satisfy the boundary conditions. Such drawbacks in the
results can be also observed in Figures 10, 11, and 12 in [22].
Figure 12 of the current study shows that the axial velocity
is influenced by the variation in Da at smaller values for Da
than those considered by Afsar Khan et al. [22]. Besides, the
current exact curves for the axial velocity satisfy the boundary
conditions as shown in Figures 8–12.
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Figure 10: Axial velocity versus y at 𝛼 = 0.05; a = 0.2; b = 0.6; d =
0.8; 𝜖 = 0.2; 𝜆
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Figure 11: Axial velocity versus y at 𝛼 = 0.05; a = 0.2; b = 0.6; d = 0.8;
𝜖 = 0.2; 𝜆

1
= 1; q = −1; x = 𝜋/6; 𝜙 = 𝜋/2.

6. Conclusion

In this paper the physical model describing the influence
of viscosity variation on peristaltic flow in an asymmetric
channel has been reanalyzed in view of new exact solutions.
The main advantage of these exact solutions is the avoidance
of any kind of restrictions on the viscosity parameter, unlike
the study [22] in which a restriction has been put on 𝛼, 𝛼 ≪

1, to achieve the requirements of the regular perturbation
method. The obtained exact solutions have been used to
study the effects of the viscosity parameter, Daray’s number,
porosity, amplitude ratio, Jeffrey fluid parameter, and the
amplitudes of the waves on the pressure rise and the axial
velocity. The obtained exact results have been compared
with other approximate analytical results obtained in the
literatures by using the regular perturbationmethod [22].The
comparisons clarified that there are remarkable differences
between the current exact results and those approximately
obtained in the literatures. The inaccurate numerical results
derived in [22] come back to the convergence issue which
was not addressed by the authors. A final note on the current
comparative study is that when it is difficult to achieve the
exact solutions of the considered physical problemwe instead
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search for the approximate solutions taking into account the
convergence of such solutions as pointed out in [23, 24].
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