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The relationship between water resources supply and demand is very complex and exhibits nonlinear characteristics, which leads
to fewer models that can adequately manage the dynamic evolution process of the water resources supply-demand system. In this
paper, we propose a new four-dimensional dynamical model to simulate the internal dynamic evolution process and predict future
trends of water supply and demand. At the beginning, a new four-dimensional dynamical model with uncertain parameters is
established. Then, the gray code hybrid accelerating genetic algorithm (GHAGA) is adopted to identify the unknown parameters
of the system based on the statistic data (1998-2009). Finally, the dynamical analysis of the system is further studied by Lyapunov-
exponent, phase portraits, and Lyapunov exponent theory. Numerical simulation results demonstrate that the proposed water
resources supply-demand system is in a steady state and is suitable for simulating the dynamical characteristics of a complex water
supply and demand system. According to the trends of the water supply and demand of several nonlinear simulation cases, the
corresponding measures can be proposed to improve the steady development of the water resources supply-demand system.

1. Introduction

Water is indispensable to human survival, agriculture, and
industry. Recently, there is an increasing shortage of water in
most river basins mainly due to human activity and climate
change [1, 2]. With the population growth, degradation of
water quality, and loss of potential sources of freshwater,
water demand is becoming increasing greater and water
supply has been increasing scarce in many developing coun-
tries [3]. The internal dynamic evolution process and the
relationship between water resources supply and demand
are very complex and exhibiting nonlinear characteristics
[4]. Water management is rapidly becoming more and more
difficult due to the complex water resources system. Senge [5]
discussed two types of complexity: (1) detail and (2) dynamic.
Detail complexity is associated with systems with many
components. Dynamic complexity, however, is in contact
with effects that are separated by time or space. It is the
dynamic complexity found in the water resources system that
presents great difficulties for water management. Thus, how
to analyse the internal dynamic evolved mechanism of the

water resources supply-demand system and solve the issue
of imbalanced water resources supply-demand has an impor-
tant practical significance to the achievement of sustainable
development and management of water resources.

The problem of water resources supply and demand
has attracted much attention and a considerable amount of
researches. Rayan [6] studied the water supply and demand
of Sinai, Egypt, and introduced desalination options. Some
previous works applied artificial neural networks (ANNs)
to predict and forecast water resource system [7-9]. George
et al. [10] proposed a city water balance model to analyse
alternative strategies to manage the supply of water in order
to come to terms with the water scarcity problems facing
policy makers in Hyderabad. Qi and Chang [4] used system
dynamics model to estimate domestic water demand under
uncertain economic impacts from 2003 to 2009 for Manatee
Country. Based on the data for meteorology, hydrology,
soil, planting, vegetation, and socioeconomic development
of the irrigation region in the middle reaches of the Heihe
River basin, Ji et al. [11] established the model of balance
of water supply and demand and assessed the security of
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water resources development. A probabilistic forecast model
of future water demand for the city of Mecca in Saudi Arabia
was proposed in [12]. Liu et al. [13] adopted WDF-ANN
model to forecast water demand in Weinan city. Yurdusev
et al. [14] predicted monthly water consumption by using
feed-forward and radial-basis neural networks. However, the
nonlinear dynamic behavior of the water resources supply-
demand system is seldom considered by these methods.

Any very complicated dynamical system can be solved
by a simple mathematical model [15]. The dynamical system
method is one approach to nonlinear modeling. It has
been applied increasingly in water environments and water
resources system, such as hydrological time series prediction
[16-18] and the dynamical analysis of runoff flows [19, 20].
In this paper, according to the current situation of the water
resources supply and demand, we establish a new dynamical
model to express the complex relationship between water
resources supply and demand by using dynamical system
theory. This model can be used to analyse the internal
dynamic evolved mechanism of the water resources supply-
demand system of a river basin or a city.

The outline of this paper is organized as follows: Section 2
introduces the study area and data. In Section 3, the water
resources supply demand model is established and the
method of parameter identification of the proposed model
is introduced. Section 4 provides the results and discussions
on the real water resources supply-demand system in Haihe
River Basin. The conclusions of the paper are summarized in
Section 5.

2. Study Area and Data

The HRB is the political, economic, and cultural center of
China. However, water resources shortage in the HRB has
become a serious problem in recent years due to the rapid
economic development and climate change [21]. The location
of the HRB is shown in Figure 1. The basin covers an area
of 318200 km?, with 60% being mountains in the western
and northern part and 40% being plains in the eastern and
southern parts. It belongs to continental monsoon climate
zone and locates in a semihumid and semiarid region. The
average annual precipitation is 524.69 mm, and the total
amount of water resources is 374.39x 10 m® (1956-2008), the
water volume per capita is 272 m’, merely 1/7 of the national
average and 1/24 of the world average [22].

The water resources demand and supply data from 1998 to
2009 are obtained from the water resources bulletin of HRB.
Table 1 is the water resources statistic data (1998-2009) of
HRB, where X is water demand, Y is surface water supply, Z
is groundwater supply, and W is other kinds of water supply.

3. Modeling and Methods

3.1. Establishment of the Water Resources Supply-Demand
Model. Let X(t) be the demand for water resources, Y (t)
the surface water supply (including diversion water supply),
Z(t) the groundwater supply, and W (t) other kinds of water
supply (mainly including wastewater reuse, direct seawater
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utilization, and collection of rainwater). The model for the
water resource system is established as follows:

%:@X(l—%)—azY—%Z—a‘lW

’%: Y —bZ+bX[N - (X—-Z-W)],

i )
E:ch—QY—c3Z—c4W,
il—v;/:dlw(X—dz)—dﬂ,

where a;, b, ¢;,d;, M, N, K are constants, and M > 0, N > 0.

Additionally, a, is the elastic coefficient of the water
resources demand; a,, a;, and a, are, respectively, the influ-
ence coeflicients of the surface water supply, the groundwater
supply, and other kinds of water supply on the water resources
demand; b, is the influence coeflicient of the surface water
supply on the change rate of the surface water supply; b, is the
influence coefficient of the groundwater supply on the surface
water supply; b; is the influence coefficient of water resources
demand on the surface water supply; ¢;,¢,, ¢, and ¢, are,
respectively, the influence coeflicients of the water resources
demand, the surface water supply, the groundwater supply,
and other kinds of water supply on the groundwater supply;
d, is the velocity constant of the recycled water supply;
d, is the cost of recycled water supply; d; is the influence
coeflicient of the surface water supply on the other kinds of
water supply; M is the maximum value of water resources
demand; N is the valve value of diversion water supply.

In system (1), g, X(1 — (X/M)) denotes that the rate of
water resources demand dX/dt is in direct ratio to water
resources demand when the current water resources demand
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TABLE 1: Water resources statistic data in Haihe River Basin (Unit: billion m?).

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

X 424.00 431.50 400.60 392.00 399.83 377.05 368.01 380.46 392.85 384.52 373.39 370.02

Y 160.70 162.68 136.60 122.70 127.94 113.64 118.23 123.35 134.15 128.64 123.10 125.50

Z 261.90 267.50 262.79 267.74 270.29 261.38 246.97 252.94 251.85 250.01 240.60 235.88

w 1.40 1.29 1.21 1.56 1.60 2.03 2.83 4.17 6.85 5.83 9.69 8.64

of the study area is less than M, and dX/dt is inversely
proportional to water resources demand when the water
resources demand of the study area is larger than M; —a,Y,
-a;Z, and —a,W denote that the increase in surface water
supply, groundwater supply, and other kinds of water supply
will reduce the demand of the water resources, respectively;
-bY — b,Z denotes that the rate of surface water supply
will decrease with the surface water supply and groundwater
supply; b; X[N — (X —-Z—-W)] denotes that when the diversion
water supply is less than the threshold value (i.e., X(f) —
Z(t) — W(t) < N), the rate of diversion water supply will
increase with the increase of X(t), and when diversion water
supply is large enough (or X(¢) — Z(t) — W(t) > N), with
economic development, the people and enterprises around
the Yellow River and Yangtze River Basin will need a lot of
water, which results in the rate of diversion water supply
decreasing with the increase rate of X(¢); ¢, X denotes that
the increase in water resources demand will increase the
groundwater supply; —¢,Y — Z — ¢, W denotes that the
decrease in surface water supply, the groundwater supply,
and other kinds of water supply will decrease the rate of
groundwater supply; d, W(X — d,) denotes that the rate of
reused water is in direct ratio to the amount of recycled water,
which increases with the increase of water resources demand
and decrease with the increase of the cost for reused water.
System (1) is an uncertainty system with unknown
parameters, and it has different characteristics with different
parameters. When a set of parameters are set as follows: a; =
0.06,a, = 0.2, a5 = 0.09,a, = 0.15,b, = 022, b, = 0.2,
by = 02,¢ = 013, ¢, = 014, ¢, = 012, ¢, = 0.2,
d, =0.16,d, = 0.2,d; = 0.001, M = 1.1,and N = 0.6, and
the initial condition is set as [0.6,0.3,0.2,0.1], the Lyapunov
exponents of the system (1) are L, = —0.0156, L, = —0.0371,
L; = —0.0853, and L, = —0.1801. Because these Lyapunov
exponents are all less than 0, the orbit of the system (1) is a
limit cycle as shown in Figure 2. When g, = 0.06, a, = 0.08,
a; = 0.3,a, = 0.2,b, = 0.05,b, = 0.04, b, = 0.04, ¢, = 0.1,
6 =026 =005c¢ =004,d, =02,d, = 03,d; = 0.001,
M = 1.1,and N = 0.5, and the initial conditions are set
as [0.7,0.2,0.1,0.1], the Lyapunov exponents of the system
(1) are L, = —0.0020, L, = —0.0134, L, = —0.0169, and
L, = —0.0592. The system has a stable focus point and its orbit
is shown in Figure 3. When a;, = 0.08, a, = 0.13, a; = 0.06,
a, = 008, b = 0.15 b, = 015, b, = 0.14,¢ = 0.13,
¢, = 0.15¢ = 019 ¢, = 0.18,d, = 0.16,d, = 0.12,
d; = 0.002, M = 2.5, andN = 0.8, and initial condition is set
as [0.8,0.1,0.3,0.2], the Lyapunov exponents of the system
(1) are L, = 0.0421, L, = —0.0104, L, = —0.1144, and
L, = —0.2631. Since there are two Lyapunov exponents that

are larger than zero, therefore, the system is hyperchaotic in
this situation. System (1) has a chaotic attractor as shown in
Figure 4.

3.2. Parameter Identification. To illustrate the behavior of
water resources supply-demand system in a specified area,
the unknown parameters should be identified first. Parameter
identification can be seen as a global optimization problem.
Many methods for the global optimization problem have
been proposed, which can be roughly divided into two cat-
egories: deterministic optimization methods and stochastic
optimization methods. The deterministic approaches take
advantage of the analytical properties of the problem to
generate a sequence of points that converge to a global opti-
mal solution and sometimes can give a guaranteed solution
[23, 24]. However, the deterministic optimization may be
trapped in the local extreme point when the dimension
is high and there are numerous local optima. Sometimes,
traditional deterministic methods cannot obtain the global
optimization efficiently due to its complex computation
and strict application conditions [25]. Additionally, other
research results suggest that the deterministic global algo-
rithms have lower efficiency for the optimization problems
with a large number of parameters [26]. Therefore, the tradi-
tional deterministic global algorithms are not considered to
solve our problem which not only contains many parameters,
but also shows high nonlinearity and complex dynamic
characteristics.

Genetic algorithm (GA) is a type of stochastic optimiza-
tion method based on the mechanics of natural selection and
natural genetics. It can provide a robust procedure not only
to explore broad and promising regions of solutions, but also
to avoid being trapped in the local optimization [27]. Many
researchers have applied the GA techniques to identify linear
and nonlinear systems. Based on many improved genetic
algorithms, Yang et al. [28] proposed a gray-encoded hybrid
accelerating genetic algorithm (GHAGA) with Nelder-Mead
simplex searching operator and simplex algorithm for the
global optimization of dynamical systems. The GHAGA
method is an improved genetic algorithm. Compared with
traditional genetic algorithm and pure random search algo-
rithm, the GHAGA method has the advantage of higher cal-
culation precision and efficiency, rapider convergent speed,
and wider scope of application. It has been proved as
an effective method to be used in various complex water
environment optimization problems [28, 29]. Therefore, the
GHAGA method is chosen to identify the parameters of the
water resources supply-demand system (1).
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FIGURE 2: A limit cycle of system (1): (a) a 3D view (X-Y-Z), (b) a 3D view (X-Y-W), and (c) the time series of X(¢), Y (t), Z(t), W(t).

3.2.1. Discretization. Before determining the parameters, sys-
tem (1) needs to be discretized. Using the discrete transform,
the water resources system (1) is discretized into system (2):

X(k+1)

=meu{ﬁxw%1—%%»—%ym)

-a;Z (k) — a,W (k) ] )
Y (k+1)
=Y (k) +t[-bY (k) - bZ (k)
+b, X (k) [N = (X (k) = Z (k) =W (k))]],
Z(k+1)
= Z(0) +t[a X (k) - oY () - 6Z (k) - oW (0],

Wk+1)=W (k) +t[d,W (k) (X (k) - dy) - dsY (k)] .
(2)

3.2.2. The Algorithm of GHAGA. The GHAGA with Nelder-
Mead simplex searching operator and simplex algorithm is
used for the parameter identification. A flowchart for the
identification of the system parameters by GHAGA is given
in Figure 5, and the detailed steps of the algorithm are given
in the following.

Consider the parameter optimization of the water
resources model as

min f (x;, %5, X,)
(€)
st. a<x;<b, fori=12,...,n,
where x = {x;,i = 1,2,...,n}, x; is a parameter to be

optimized, f is an objective function, and f > 0, for system
(1),n = 16.

Step 1 (gray encoding). Suppose gray encoding length is e
in every parameter, the ith parameter range is the interval
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FIGURE 3: A stable focus point of system (1): (a) a 3D view (X-Y-Z), (b) a 3D view (X-Z-W), and (c) the time series of X(¢), Y(t), Z(t), W(t).

[a;,b], and then each interval is divided into 2 — 1 subin-
tervals:

(4)

x;=a;+1 ¢,

where the length of subinterval of the ith parameter ¢; =
(b — a;)/(2° - 1) is constant. The searching location I; is a
nonnegative integer, and 0 < I, < 2° fori = 1,2,...,n. The
gray code array of the ith parameter is denoted by the grid
points of {d(i, k) | k = 1,2,..., e} for every individual:

L:Z( d@@)aﬂ,
AN\ k=

where €P denotes the operator of addition modulo 2 on {0, 1}
[29]. The GHAGA uses a code of parameters instead of the
parameters and works on a population of points and not on
one single point.

()

Step 2 (randomly generating the initial population). Initially,
the chromosomes are generated at random in gray-encoded
genetic algorithm, and p-chromosomes in father population
are

I;(j) = int (u (i, j) - 2°),
i=1,2,... i=1,2...,p

where u(i, j) is uniform random numbers, u(i, j) € [0,1],
I;(j) is a searching location, and int(-) is an integer function.
From (3), the p-corresponding chromosomes are d(i, k, j),
fori = 1,2,...,mk = 1,2,...,6 j = 1,2,..., p. To cover
homogeneously the whole solution space and to avoid the risk
of having too much individuals in the same region, a large
uniformity random population is selected in this algorithm.

(6)

>N,

Step 3 (decoding and fitness evaluation). Decoding of d(i, k, j)
for ( = 1,2,...,mk = 1,2,...,esj = 1,2,..., p) works
through (4) and (5) and then corresponding parameter
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x;(j) is obtained. Substitution of x;(j) into (1) produces the
objective function f(j). The smaller the value f(j) is, the
higher the fitness of its corresponding ith chromosome will
be. Then, the fitness function of ith chromosome is de-
fined:

1

PO o or

7)

Step 4 (selection). The chromosomes in the initial father
population are selected by a known probability P(j)
P.(j) = F(j)/ Z:’:l FE(i). Such two groups of p-chromosomes
are selected by the above probabilities.

Step 5 (two-point crossover). Perform crossover on each
chromosome pair according to probability P, to generate two
offsprings. For two-point crossover, two crossing points I; =
int(U; - (e + 1)) and I, = int(U, - (e + 1)) are randomly
chosen, where U,, U, are uniformity random numbers, where

{U,,U,} € [0, 1]. The two-point crossover between two indi-
viduals is performed through the crossing probability P.:

P d, (i.k, j), € [I,, L],
Aekd={ii) ketnns  ©
/. 2\ d] (i)k)j)’ € [ 1)12 >
(RN s N N

In order to enhance the diversity of population, the crossing
probability is set as P, > 0.5.

Step 6 (two-point mutation). The operator of two-point muta-
tion is for four random numbers {V;,V,,V;,V,} € [0,1].
If V; < 0.5, the offspring is computed by (8). Other-
wise, the offspring d' @, k, j) is computed by (9). Let the
mutating probability be p,, € [0,1], the two points
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be J; =int(V, - (e + 1)), J, = int(V; - (e + 1)), and then the
above offspring is mutated from

{ds (ks MY n )

k=T1 Vo< poo {d' (ks 1)} 5 =1
k=], Vo< P {d’ (i’k’j)}(i,k,j)zo
k=15 Vo< po {d (ik, j)}u,k,j):l
k=10, Vi< P {d' (ks )} =0

0
1
=40
1

I(. . .
.{d (i, k, ])} ) otherwise,

(10)

where a new offspring d;(i,k, j) can be computed by a
mutating probability p,,,.

Step 7 (simplex evolution and alternating). The Nelder-Mead
algorithm is a useful, local descent algorithm, which does not
make use of the objective function derivatives [30]. The best
point in the previous phase becomes a new initial solution
in the Nelder-Mead simplex algorithm, and then a new best
point is obtained by this Nelder-Mead simplex algorithm. The
new best point inside the offspring will be inserted to replace
the worst one in the previous phase. Repeat Step 3 to Step 7
until the evolution times Q is met.

Step 8 (accelerating cycle). The parameter ranges of ng-
excellent individuals obtained by Q-times of the Nelder-
Mead simplex evolution alternating become the new ranges
of the parameters and then the whole process back to
the Gray-encoding. The GHAGA computation is over until
the algorithm running times get to the design T times or
there exists a chromosome ¢, whose fitness satisfies a given
criterion. In the former case the ¢ is the fittest chromosome
or the most excellent chromosome in the population. The
chromosome ¢, represents the solution.

4. Results and Discussions

4.1. The Results of Parameters Identification. The GHAGA
is calculated by using Matlab. Table 2 presents the variable
initial intervals of the 16 unknown parameters in system (1)
which are given according to the meaning of the parameters
and the empirical research. The parameters of the GHAGA
are selected as follows: the length e = 10, the population size
n = 300, the number of excellent individuals n, = 10, the
times of simplex evolution alternating Q = 5, the crossover
probability p. = 1.0, the mutation probability p,, = 0.5, and
the times of simplex searching m = 600. The computational
results of parameter identification for system (1) are also listed
in Table 2.

4.2. The Dynamical Analysis of the Real System. When the
parameters values are taken as shown Table 2, system (1)
has four equilibrium points: O(0,0,0,0), S,(0.9093,0.7669,
0.8118,0.3969), S,(0.8856,0.4171,3.6269,-0.9523), and S,
(0.3586,—2.8007, 6.1825,0.0527). By calculation, the eigen-
values of the Jacobi matrix of the system (1) at O(0, 0, 0, 0) are
A, = 06921 > 0,1, = 0.0320 > 0, A,; = —0.1155 > 0,
and A, = —0.0876 > 0. Because four eigenvalues are not all
negative, therefore O(0,0,0,0) is an unstable point and the
system is unstable at the point O(0, 0, 0, 0).

The eigenvalues of the Jacobi matrix of the system (1)
at §,(0.9093,0.7669,0.8118,0.3969) are A, = —0.0022 < 0,
A, =-0.5721 < 0,and A;, = —0.0519 + 0.0677i. Obviously,
the real parts of all the four eigenvalues are negative, so
the water resources supply-demand system is stable when
the demand of water resources in Haihe River Basin, the
surface water supply, the groundwater supply, and the other
kinds of water supply are in the local area of the equilib-
rium point §; (0.9093, 0.7669, 0.8118, 0.3969). It indicates that
water resources supply-demand system has the capacity of
self-adjustment and demonstrates the status of steady devel-
opment in the local area of ;(0.9093, 0.7669, 0.8118, 0.3969).

Similarly, we can prove that the water resources supply-
demand system is unstable when the demand of water
resources in Haihe River Basin, the surface water supply, the
groundwater supply, and the other kinds of water supply are
in the local area of the equilibrium points S, and S;.

4.3. Numerical Simulations. In this section, based on the
results of parameter identification by GHAGA, the numerical
simulation results for the real water resources supply-demand
system are obtained, and corresponding measures are given
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TABLE 2: The parameters’ initial intervals and identified values. P stands for parameters, II stands for initial intervals, and IP stands for

identified parameters.

P a, a, a, a, b, b, b, q I G G d, d, d, M N
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FIGURE 6: The time series of X(t), Y (t), Z(t), W (t).

to ensure the steady development of the water resources sup-
ply-demand system.

Case 1. The result of parameter identification is used as the
system parameters (Table 2) and the initial condition is set
as [0.7,0.3,0.1,0.5], and the water resources supply-demand
system is stable as shown in Figure 6. Under the current
initial situation and reasonable water resources demand, the
relationship between water resources” supply and demand of
the HRB will be in a stable state. From Figure 6, we can see
that the trend of the water resources demand will increase
firstly and then decrease; the surface water supply will be in a
growth trend until steady state; the groundwater supply will
increase firstly and then decrease until a steady state; other
kinds of water supply will be in a growth state. According
to the above analysis of the trend of the three kinds of water
supply sources, we can obtain that, in order to maintain the
balance between water resources supply and demand, we
need to save water and improve water use efficiency, give
priority to use of south-to-north water, and improve the use
of recycled water.

FIGURE 7: The time series of X(t), Y(t), Z(t), W(t) when M > 1.5.

Case 2. Maintain other parameters constant and initial con-
ditions are set as [0.7,0.3, 0.1, 0.5], when the maximum value
M > 1.5, the time series X(t), Y(t), Z(t), and W (t) are shown
in Figure 7. From Figure 7, we can obtain that the values
of Y(t), Z(t), and W(t) are too large and beyond the scope
of practical significance. It indicates that if the maximum
demand of water resources is set to be very large; that is to say,
if the water resources demand is not controlled, the system
will be in an unstable state. Therefore, we must save water and
control water demand.

Case 3. Set d, = 1.4 and maintain other parameters constant
and the initial conditions are set as [0.9,0.5,0.7,0.3], the
simulation result is shown in Figure 8. The figure shows that
the trend of the other kinds of water resources supply will
decrease until zero; the groundwater supply will increase
until larger than 1, and this will lead to overexploitation of
the groundwater supply. Therefore, with the cost of recycled
water supply growing, the other kinds of water supply will
decrease. That is to say, other types of water supply are
dependent on the cost of the recycled water supply.
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FIGURE 8: The time series of X (), Y(¢), Z(t), W(t) when d, = 1.4.

Case 4. Maintain other parameters constant and vary valve
value N, the water resources supply-demand system still
maintains a stable state. It indicates that the valve value N has
no influence on the system. However, if the valve value N is
set to be very large, it will cause water resources shortage in
other regions and further affect the economic development of
the other regions. Therefore, an appropriate valve value needs
to be selected.

5. Conclusions

In this paper, a novel model is proposed to analyse the
relationship between water resources supply and demand.
The main conclusions are as follows.

(1) Using dynamical system theory, we establish a new
four-dimensional water resources supply-demand system
with unknown parameters. This model can be used to an-
alyse the complex nonlinear characteristics among the water
resources demand, surface water supply, groundwater supply,
and other kinds of water supply of a river basin or a city.

(2) Selecting the Haihe River Basin as a study area,
based on its statistic data (1998-2009), we identify the
unknown parameters of the system with the gray code hybrid
accelerating genetic algorithm (GHAGA). Therefore, a real
water resources supply-demand system of the Haihe River
Basin is determined.

(3) Numerical simulation results provide the trend of the
water resources demand and supply. The results show that
the obtained water resources supply-demand system has the
capacity of self-regulatory and demonstrates a steady state.
Several cases are analysed and contribute to the formulation

of policy and the management of water resources. Finally, the
corresponding measures are proposed to ensure the steady
development of the water resources supply-demand system.
Our research provides a new method for water resources
system analysis based on dynamical system theory. This
method can also be used to discuss the balance between water
resources supply and demand in other regions or cities.
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