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We study a Lotka-Volterra type predator-prey model with a transmissible disease in the predator population. We concentrate on
the effect of diffusion and cross-diffusion on the emergence of stationary patterns. We first show that both self-diffusion and cross-
diffusion can not cause Turing instability from the disease-free equilibria. Then we find that the endemic equilibrium remains
linearly stable for the reaction diffusion systemwithout cross-diffusion, while it becomes linearly unstable when cross-diffusion also
plays a role in the reaction-diffusion system; hence, the instability is driven solely from the effect of cross-diffusion. Furthermore,
we derive some results for the existence and nonexistence of nonconstant stationary solutions when the diffusion rate of a certain
species is small or large.

1. Introduction

The study of the dynamic relationship between predator and
prey has long been one of the most important themes in
population dynamics because of its universal existence in
nature and many different phenomena have been observed
(see [1–13] and references therein). At the same time, since
species need to interact with the environment, they are always
subject to diseases in the natural world. So it is necessary
and interesting to combine demographic as well as epidemic
aspects in the standard classical populationmodels.This type
of systems is now known as ecoepidemic model.

In fact, the importance of disease influence on the dynam-
ics of plant as well as animal populations has been recognized
and several such studies are reviewed in a number of recent
publications. However, most of the previous researches on
ecoepidemic models assume that the distribution of the
predators and prey is homogeneous, which leads to the ODE
system (see [14–23] and references therein). Aswe know, both
predators and prey have the natural tendency to diffuse to
areas of smaller population concentration. At the same time,
some prey species always congregate and form a huge group
to protect themselves from the attack of infected predator.
So it is important to take into account the inhomogeneous

distribution of the predators and prey within a fixed bounded
domain Ω and consider the effect of diffusion and cross-
diffusion.

In order to construct the corresponding reaction-
diffusion type model, we first propose the following assump-
tions, which are proper in biological background.

(H1) The disease spreads among the predator species only
by contact and the disease incidence follows the
simple law of mass action.

(H2) In the absence of predators, the prey population 𝑢
1

grows logistically with the intrinsic growth rate 𝑟 >

0 and carrying capacity 𝑟/𝐵, in which 𝐵 measures
intraspecific competition of the prey.

(H3) The sound predator population 𝑢
2
has no other food

sources, and 𝜇 > 0 represents natural mortality. The
infected predator population 𝑢

3
cannot recover and

their total death rate 𝑑 > 0 encompasses natural and
disease-related mortality. The conversion factor of a
consumed prey into a sound or infected predator is
0 < 𝑒 < 1.

(H4) The sound and infected predators hunt the prey with
different searching efficiencies, denoted, respectively,
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by 𝑚 and 𝑝𝑚, with 0 < 𝑝 < 1. This is due to the
fact that sound predators are more efficient to catch
the prey than the infected ones, weakened by the
infection.

(H5) Both predators and prey have the natural tendency to
diffuse to areas of smaller population concentration
and the natural dispersive forces of movements of the
prey, sound predators, and infected predators are 𝑑

1
,

𝑑
2
, and 𝑑

3
, respectively.

(H6) The prey species congregate and form a huge group
to protect themselves from the attack of infected
predator.

With the above assumptions, our model takes the follow-
ing form, in which all parameters are assumed to be positive:

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑟𝑢
1
− 𝐵𝑢
2

1
− 𝑚𝑢
1
𝑢
2
− 𝑝𝑚𝑢

1
𝑢
3

in Ω × (0,∞) ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2
= 𝑒𝑚𝑢

1
𝑢
2
− 𝑎𝑢
2
𝑢
3
− 𝜇𝑢
2

in Ω × (0,∞) ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ (𝑢
3
+ 𝑑
4
𝑢
1
𝑢
3
) = 𝑎𝑢

2
𝑢
3
+ 𝑒𝑚𝑝𝑢

1
𝑢
3
− 𝛿𝑢
3

in Ω × (0,∞) ,

𝜕]𝑢1 = 𝜕]𝑢2 = 𝜕]𝑢3 = 0

on 𝜕Ω × (0,∞) ,

(𝑢
1
(0, 𝑥) , 𝑢

2
(0, 𝑥) , 𝑢

3
(0, 𝑥)) ≥ (0, 0, 0)

on Ω,

(1)

where Ω is a bounded domain in 𝑅
𝑁 (𝑁 ≥ 1 is an

integer) with a smooth boundary 𝜕Ω and ] is the outward
unit rector on 𝜕Ω. The homogeneous Neumann boundary
condition indicates that there is zero population flux across
the boundary. In the diffusion terms, the constant 𝑑

𝑖
(𝑖 =

1, 2, 3), which is usually termed self-diffusion coefficient,
represents the natural dispersive force of movement of an
individual. The constant 𝑑

3
𝑑
4
could be referred to as cross-

diffusion pressure, which describes a mutual interference
between individuals.

In fact, it is easy to see that the infected predator 𝑢
3

diffuses with flux:

J = −∇ (𝑑
3
𝑢
3
+ 𝑑
3
𝑑
4
𝑢
1
𝑢
3
)

= −𝑑
3
𝑑
4
𝑢
3
∇𝑢
1
− (𝑑
3
+ 𝑑
3
𝑑
4
𝑢
1
) ∇𝑢
3
.

(2)

As 𝑑
3
𝑑
4
𝑢
3
< 0, the part −𝑑

3
𝑑
4
𝑢
3
∇𝑢
1
of the flux is directed

toward the decreasing population density of the prey 𝑢
1
,

which means that the prey species congregate and form a
huge group to protect themselves from the attack of infected
predator.We remark that this kind of nonlinear diffusion was

first introduced by Shigesada et al. [24] and has been used in
different type of population models [25–28]. We also point
out that the corresponding ODE system of (1) with delay has
been studied by [29], and they mainly investigate the stability
and bifurcations related to the two most important equilibria
of the ecoepidemic system, namely, the endemic equilibrium
and the disease-free one.

Since the first example of stationary patterns in a
predator-prey system arising solely from the effect of cross-
diffusion is introduced by Pang andWang [30], recently,more
attention has been given to investigate the effect of cross-
diffusion in reaction-diffusion systems; see, for example, [31–
36] and references therein. Here we point out that, to our
knowledge, there is little work about ecoepidemic models
with diffusion and cross-diffusion was discussed.

In our work here, one of the main purposes is to study
the existence of positive stationary solutions of (1) by using
degree theory, which are the positive solutions of

−𝑑
1
Δ𝑢
1
= 𝑟𝑢
1
− 𝐵𝑢
2

1
− 𝑚𝑢
1
𝑢
2
− 𝑝𝑚𝑢

1
𝑢
3

in Ω,

−𝑑
2
Δ𝑢
2
= 𝑒𝑚𝑢

1
𝑢
2
− 𝑎𝑢
2
𝑢
3
− 𝜇𝑢
2

in Ω,

− 𝑑
3
Δ (𝑢
3
+ 𝑑
4
𝑢
1
𝑢
3
) = 𝑎𝑢

2
𝑢
3
+ 𝑒𝑚𝑝𝑢

1
𝑢
3
− 𝛿𝑢
3

in Ω,

𝜕]𝑢1 = 𝜕]𝑢2 = 𝜕]𝑢3 = 0 on 𝜕Ω.

(3)

Hence we are interested in nonconstant positive solutions of
(3), which correspond to coexistence states of prey and preda-
tors. For convenience, we denoteΛ = (𝑟, 𝐵,𝑚, 𝑝, 𝑒, 𝑎, 𝜇, 𝛿). By
a direct computation, we can show that (3) has a semitrivial
constant steady state u∗

0
= (𝑢
∗

01
, 𝑢
∗

02
, 𝑢
∗

03
) = (𝜇/𝑒𝑚, (𝑒𝑟𝑚 −

𝜇𝐵)/𝑒𝑚
2
, 0) if 𝑒𝑟𝑚 > 𝜇𝐵 and has a positive constant steady

state u∗ = (𝑢∗
1
, 𝑢
∗

2
, 𝑢
∗

3
), where

𝑢
∗

1
=
𝑟𝑎 − 𝑚 (𝛿 − 𝜇𝑝)

𝑎𝐵
, 𝑢

∗

2
=
𝛿 − 𝑒𝑚𝑝𝑢

∗

𝑎
,

𝑢
∗

3
=
𝑒𝑚𝑢
∗
− 𝜇

𝑎
,

(4)

provided that

𝑎𝑟 > 𝑚 (𝛿 − 𝜇𝑝) ,

𝛿

𝑒𝑚𝑝
>
𝑟𝑎 − 𝑚 (𝛿 − 𝜇𝑝)

𝑎𝐵
>

𝜇

𝑒𝑚
.

(5)

Here we remark that the semitrivial constant steady state
u∗
0
and the positive constant steady state u∗ are also called

disease-free equilibrium and endemic equilibrium, respec-
tively, in endemic models.

The rest of this paper is organized as follows. In Section 2,
we will investigate the stability of disease-free equilibrium
u∗
0

and the endemic equilibrium u∗ and show that the
cross-diffusion destabilizes a uniform equilibrium which is
stable for the kinetic and self-diffusion reaction systems. In
Section 3, a priori upper bounds and lower bounds for the
nonconstant positive solutions of (3) are given. In Section 4,
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we study nonexistence of nonconstant positive solutions of
model (3) when considering only the self-diffusion. Finally,
in Section 5, we investigate the existence of the nonconstant
positive solutions of (3) by using the Leray-Schauder degree
theory, which explains why shrub ecosystem generates pat-
terns.

2. Stability Analysis of the Constant
Solutions u∗

0
and u∗

In order to study the stability of the constant steady states u∗
0

and u∗ of (1), we first set up the following notation.

Notation 1. Consider the following.

(i) 0 = 𝜇
0
< 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ are the eigenvalues of −Δ inΩ

under homogeneous Neumann boundary condition.

(ii) 𝑆(𝜇
𝑖
) is the set of eigenfunctions corresponding to 𝜇

𝑖
.

(iii) X
𝑖𝑗
:= c𝜑
𝑖𝑗
: c ∈ R3, where 𝜑

𝑖𝑗
are orthonormal basis

of 𝑆(𝜇
𝑖
) for 𝑗 = 1, . . . , dim[𝑆(𝜇

𝑖
)].

(iv) X := {(𝑢
1
, 𝑢
2
, 𝑢
3
) ∈ [𝐶

1
(Ω)]
3
: 𝜕𝑢
1
/𝜕] = 𝜕𝑢

2
/𝜕] =

𝜕𝑢
3
/𝜕] = 0 on 𝜕Ω}, and so X = ⊕

∞

𝑖=1
⊕
dim[𝑆(𝜇𝑖)]
𝑗=1

X
𝑖𝑗
.

Now, we first consider system (1) without cross-diffusion
and introduce the following system:

𝜕𝑢
1

𝜕𝑡
− 𝑑
1
Δ𝑢
1
= 𝑟𝑢
1
− 𝐵𝑢
2

1
− 𝑚𝑢
1
𝑢
2
− 𝑝𝑚𝑢

1
𝑢
3

in Ω × (0,∞) ,

𝜕𝑢
2

𝜕𝑡
− 𝑑
2
Δ𝑢
2
= 𝑒𝑚𝑢

1
𝑢
2
− 𝑎𝑢
2
𝑢
3
− 𝜇𝑢
2

in Ω × (0,∞) ,

𝜕𝑢
3

𝜕𝑡
− 𝑑
3
Δ𝑢
3
= 𝑎𝑢
2
𝑢
3
+ 𝑒𝑚𝑝𝑢

1
𝑢
3
− 𝛿𝑢
3

in Ω × (0,∞) ,

𝜕]𝑢1 = 𝜕]𝑢2 = 𝜕]𝑢3 = 0

on 𝜕Ω × (0,∞) ,

(𝑢
1
(0, 𝑥) , 𝑢

2
(0, 𝑥) , 𝑢

3
(0, 𝑥)) ≥ (0, 0, 0)

on Ω.

(6)

Obviously, system (6) has the same disease-free equilibrium
u∗
0
and endemic equilibrium u∗ with system (1). From (6), we

can get the following theorem.

Theorem 1. (i) If 𝑒𝑟𝑚 > 𝜇𝐵 and (𝑒𝑟𝑚 + 𝜇𝐵)/𝑒𝑚
2

<

𝛿/𝑎, the disease-free equilibrium u∗
0
of system (6) is locally

asymptotically stable.
(ii) Assume that (5) holds. The endemic equilibrium u∗ of

system (6) is locally asymptotically stable.

Proof. (i) For simplicity, throughout this paper, we denote

G (u) = (
𝐺
1
(u)

𝐺
2
(u)

𝐺
3
(u)

)

= (

𝑟𝑢
1
− 𝐵𝑢
2

1
− 𝑚𝑢
1
𝑢
2
− 𝑝𝑚𝑢

1
𝑢
3

𝑒𝑚𝑢
1
𝑢
2
− 𝑎𝑢
2
𝑢
3
+ 𝜇𝑢
2

𝑎𝑢
2
𝑢
3
+ 𝑒𝑚𝑝𝑢

1
𝑢
3
− 𝛿𝑢
3

) .

(7)

By a direct calculation, we obtain

Gu (u
∗

0
) = (

−𝐵𝑢
∗

1
−𝑚𝑢
∗

01
−𝑝𝑚𝑢

∗

01

𝑒𝑚𝑢
∗

02
0 −𝑎𝑢

∗

02

0 0 𝑎𝑢
∗

02
− 𝛿

) . (8)

The linearization of (6) at u∗
0
can be expressed by

u
𝑡
= (DΔ + Gu (u

∗

0
)) u, (9)

where

D = (

𝑑
1

0 0

0 𝑑
2

0

0 0 𝑑
3

) . (10)

According to Notation 1, X
𝑖
is invariant under the operator

DΔ +Gu(u∗0 ), and 𝜆 is an eigenvalue of this operator on X
𝑖
if

and only if it is an eigenvalue of the matrix −𝜇
𝑖
D + Gu(u∗0 ).

A direct calculation shows that the characteristic polyno-
mial of −𝜇

𝑖
D + Gu(u∗0 ) can be given by

𝜙
0𝑖
(𝜆) = (𝜆 + 𝛿 − 𝑎𝑢

∗

02
+ 𝑑
3
𝜇
𝑖
)

× [𝜆
2
+ (𝐵𝑢

∗

01
+ 𝑑
1
𝜇
𝑖
+ 𝑑
2
𝜇
𝑖
) 𝜆 + 𝑒𝑚

2
𝑢
∗

01
𝑢
∗

02
] .

(11)

It follows from (11) that, if (𝑒𝑟𝑚 + 𝜇𝐵)/𝑒𝑚
2
< 𝛿/𝑎, the

corresponding eigenvalues have negative real parts for all 𝑖 ≥
1, so we know that 𝑢∗

0
is locally asymptotically stable.

(ii) Since G(u∗) = 0, it follows from (7) that

Gu (u
∗
) = (

−𝐵𝑢
∗

1
−𝑚𝑢
∗

1
−𝑝𝑚𝑢

∗

1

𝑒𝑚𝑢
∗

2
0 −𝑎𝑢

∗

2

𝑒𝑚𝑝𝑢
∗

3
𝑎𝑢
∗

3
0

) . (12)

The linearization of (6) at u∗ can be expressed by

u
𝑡
= (DΔ + Gu (u

∗
)) u, (13)

where the matrix D is defined in (10). Direct calculation
shows that the characteristic polynomial of −𝜇

𝑖
D + Gu(u∗)

is given by

𝜙
𝑖
(𝜆) = 𝜆

3
+ 𝑐
1
𝜆
2
+ 𝑐
2
𝜆 + 𝑐
3
, (14)
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where
𝑐
1
= 𝑐
1
(𝜇
𝑖
) = (𝑑

1
+ 𝑑
2
+ 𝑑
3
) 𝜇
𝑖
+ 𝐵𝑢
∗

1
,

𝑐
2
= 𝑐
2
(𝜇
𝑖
) = (𝑑

1
𝑑
2
+ 𝑑
1
𝑑
3
+ 𝑑
2
𝑑
3
) 𝜇
2

𝑖
+ (𝑑
2
+ 𝑑
3
) 𝐵𝑢
∗

1
𝜇
𝑖

+ (𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3
+ 𝑎
2
𝑢
∗

2
𝑢
∗

3
) ,

𝑐
3
= 𝑐
3
(𝜇
𝑖
) = 𝑑
1
𝑑
2
𝑑
3
𝜇
3

𝑖
+ 𝑑
2
𝑑
3
𝐵𝑢
∗

1
𝜇
2

𝑖

+ (𝑑
1
𝑎
2
𝑢
∗

2
𝑢
∗

3
+ 𝑑
2
𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3
+ 𝑑
3
𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
) 𝜇
𝑖

+ 𝐵𝑎
2
𝑢
∗

1
𝑢
∗

2
𝑢
∗

3
.

(15)

It is easy to see that 𝑐
1
, 𝑐
2
, and 𝑐

3
are positive.

Notice that

𝑐
1
𝑐
2
− 𝑐
3
= (𝑑
2
+ 𝑑
3
) (𝑑
2

1
+ 𝑑
1
𝑑
2
+ 𝑑
1
𝑑
3
+ 𝑑
2
𝑑
3
) 𝜇
3

𝑖

+ 𝐵𝑢
∗

1
(𝑑
2
+ 𝑑
3
) (2𝑑
1
+ 𝑑
2
+ 𝑑
3
) 𝜇
2

𝑖

+ [(𝐵𝑢
∗

1
)
2

(𝑑
2
+ 𝑑
3
)

+ 𝑑
1
(𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3
)

+ 𝑑
2
(𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑎
2
𝑢
∗

2
𝑢
∗

3
)

+𝑑
3
(𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3
+ 𝑎
2
𝑢
∗

2
𝑢
∗

3
)] 𝜇
𝑖

+ 𝐵𝑢
∗

1
(𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3
) > 0.

(16)

Then by the Routh-Hurwitz criterion, we know that, for each
𝑖 ≥ 1, all the three roots 𝜆

𝑖,1
, 𝜆
𝑖,2
, and 𝜆

𝑖,3
of characteristic

equation𝜙
𝑖
(𝜆) = 0have negative real parts. Nowwe can prove

that there exists a positive constant 𝛿 such that

Re {𝜆
𝑖1
} , Re {𝜆

𝑖1
} , Re {𝜆

𝑖1
} ≤ −𝛿, 𝑖 ≥ 1. (17)

In fact, let 𝜆 = 𝜇
𝑖
𝜉; then we have

𝜙
𝑖
(𝜆) = 𝜇

3

𝑖
𝜉
3
+ 𝑐
1
𝜇
2

𝑖
𝜉
2
+ 𝑐
2
𝜇
𝑖
𝜉 + 𝑐
3
≜ 𝜙
𝑖
(𝜉) . (18)

Note that 𝜇
𝑖
󳨃→ ∞ as 𝑖 󳨃→ ∞. It follows that

lim
𝑖󳨃→∞

𝜙
𝑖
(𝜉)

𝜇
3

𝑖

= 𝜉
3
+ (𝑑
1
+ 𝑑
2
+ 𝑑
3
) 𝜉
2

+ (𝑑
1
𝑑
2
+ 𝑑
1
𝑑
3
+ 𝑑
2
𝑑
3
) 𝜉 + 𝑑

1
𝑑
2
𝑑
3
≜ 𝜙 (𝜉) .

(19)

Using the Routh-Hurwitz criterion again, we can see that
all the three roots 𝜉

1
, 𝜉
2
, and 𝜉

3
of equation 𝜙(𝜉) = 0 have

negative real parts.Thus, there exists a positive constant such
that

Re {𝜉
1
} , Re {𝜉

2
} , Re {𝜉

3
} ≤ −𝛿. (20)

By continuity, we know that there exists 𝑖
0
∈ 𝑁 such that

the three roots 𝜉
𝑖1
, 𝜉
𝑖2
, and 𝜉

𝑖3
of 𝜙
𝑖
(𝜉) = 0 satisfy

Re {𝜉
𝑖1
} , Re {𝜉

𝑖2
} , Re {𝜉

𝑖3
} ≤

−𝛿

2
, 𝑖 ≥ 𝑖

0
, (21)

which implies that

Re {𝜆
𝑖1
} , Re {𝜆

𝑖2
} , Re {𝜆

𝑖3
} ≤

−𝜇
𝑖
𝛿

2
≤
−𝛿

2
, 𝑖 ≥ 𝑖

0
.

(22)

Let

−𝛿 = max
1≤𝑖≤𝑖0

{Re {𝜆
𝑖1
} ,Re {𝜆

𝑖2
} ,Re {𝜆

𝑖3
}} ; (23)

then 𝛿 > 0, and (17) holds for 𝛿 = min{𝛿, 𝛿/2}.Thus the proof
is completed byTheorem 5.1.1 of Henry [37].

Remark 2. From Theorem 1, we can see that if only the free
diffusion is introduced to the corresponding ODE system of
(1), the uniform positive stationary solution is also locally
stable, which means that only self-diffusion cannot induce
Turing instability.

We now consider the effect of the cross-diffusion and
introduce the following theorem, which give the necessary
conditions for the existence of nonconstant positive solution
of system (3).

Theorem 3. Consider the following.

(i) If 𝑒𝑟𝑚 > 𝜇𝐵 and (𝑒𝑟𝑚 + 𝜇𝐵)/𝑒𝑚
2

< 𝛿/𝑎, the
disease-free equilibrium u∗

0
of system (1) is locally

asymptotically stable.
(ii) Assume that (5) holds and 𝑑

4
> 0 in (1). Suppose that

𝑏
2
< 0 and 𝑏2

2
− 4𝑏
1
𝑏
3
> 0, where 𝑏

𝑖
is given in (31). If

𝜇
∗

2
∈ (𝜇
𝑖
, 𝜇
𝑖+1
) and 𝜇∗

3
∈ (𝜇
𝑗
, 𝜇
𝑗+1
) for some 𝑗 > 𝑖 >

0, where 𝜇∗
2
and 𝜇∗

3
are defined in (34), there exists a

positive constant 𝑑∗
3
such that the uniform stationary

solution u∗ of (1) is unstable when 𝑑
3
≥ 𝑑
∗

3
.

Proof. (i) For simplicity, we denote that Φ(u) = (𝑑
1
𝑢
1
, 𝑑
2
𝑢
2
,

𝑑
3
(𝑢
3
+ 𝑑
4
𝑢
4
))
T. Then the linearized system of system (1) at

u∗
0
is

u
𝑡
= (Φu (u

∗

0
) Δ + Gu (u

∗

0
)) u, (24)

where

Φu (u
∗

0
) = (

𝑑
1

0 0

0 𝑑
2

0

0 0 𝑑
3
+ 𝑑
3
𝑑
4
𝑢
∗

01

) . (25)

By some calculations, the characteristic polynomial of
−𝜇
𝑖
Φu(u∗0 ) + Gu(u∗0 ) can be given by

𝜓
0𝑖
(𝜆) = (𝜆 + 𝛿 − 𝑎𝑢

∗

02
+ 𝑑
3
𝜇
𝑖
+ 𝑑
3
𝑑
4
𝑢
∗

01
𝜇
𝑖
)

× (𝜆
2
+ (𝐵𝑢

∗

01
+ 𝑑
1
𝜇
𝑖
+ 𝑑
2
𝜇
𝑖
) 𝜆 + 𝑒𝑚

2
𝑢
∗

01
𝑢
∗

02
) .

(26)

It is easy to see that, if (𝑒𝑟𝑚 + 𝜇𝐵)/𝑒𝑚
2
< 𝛿/𝑎, all the

corresponding eigenvalues of 𝜙
0𝑖
(𝜆) = 0 have negative

real parts for all 𝑖 ≥ 1, which implies that 𝑢∗
0
is locally

asymptotically stable.
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(ii) The linearized system of system (1) at u∗ is

u
𝑡
= (Φu (u

∗
) Δ + Gu (u

∗
)) u, (27)

where

Φu (u
∗
) = (

𝑑
1

0 0

0 𝑑
2

0

𝑑
3
𝑑
4
𝑢
∗

3
0 𝑑
3
+ 𝑑
3
𝑑
4
𝑢
∗

1

) . (28)

By some calculations, the characteristic polynomial of
−𝜇
𝑖
Φu(u∗) + Gu(u∗) can be given by

Ψ
𝑖
(𝜆) = 𝜆

3
+ 𝑐
1
𝜆
2
+ 𝑐
2
𝜆 + 𝑐
3
, (29)

where

𝑐
1
= (𝑑
1
+ 𝑑
2
+ 𝑑
3
+ 𝑑
3
𝑑
4
𝑢
∗

1
) 𝜇
𝑖
+ 𝐵𝑢
∗

1
,

𝑐
2
= [𝑑
1
𝑑
2
+ 𝑑
1
𝑑
3
+ 𝑑
2
𝑑
3
+ (𝑑
1
𝑑
3
𝑑
4
+ 𝑑
2
𝑑
3
𝑑
4
) 𝑢
∗

1
] 𝜇
2

𝑖

+ [𝐵 (𝑑
2
+ 𝑑
3
+ 𝑑
3
𝑑
4
) (𝑢
∗

1
)
2

− 𝑑
3
𝑑
4
𝑝𝑚𝑢
∗

1
𝑢
∗

2
] 𝜇
𝑖

+ 𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3
+ 𝑎
2
𝑢
∗

2
𝑢
∗

3
,

𝑐
3
= 𝑑
1
𝑑
2
𝑑
3
(1 + 𝑑

4
𝑢
∗

1
) 𝜇
3

𝑖

+ [𝐵𝑢
∗

1
(𝑑
2
𝑑
3
+ 𝑑
2
𝑑
3
𝑑
4
𝑢
∗

1
) − 𝑑
2
𝑑
3
𝑑
4
𝑝𝑚𝑢
∗

1
𝑢
∗

3
] 𝜇
2

𝑖

+ [(𝑑
1
𝑎
2
𝑢
∗

2
𝑢
∗

3
) + 𝑑
2
𝑒𝑚
2
𝑝
2
𝑢
∗

1
𝑢
∗

3

+ (𝑑
3
+ 𝑑
3
𝑑
4
𝑢
∗

1
) 𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑑
3
𝑑
4
𝑎𝑚𝑢
∗

1
𝑢
∗

2
𝑢
∗

3
] 𝜇
𝑖

+ 𝐵𝑎
2
𝑢
∗

1
𝑢
∗

2
𝑢
∗

3

≜ 𝑄
3
𝜇
3

𝑖
+ 𝑄
2
𝜇
2

𝑖
+ 𝑄
1
𝜇
𝑖
+ 𝑄
0
.

(30)

Let 𝜆
𝑖,1
, 𝜆
𝑖,2
, and 𝜆

𝑖,3
be the three roots of Ψ

𝑖
(𝜆) = 0; then

𝜆
𝑖,1
𝜆
𝑖,2
𝜆
𝑖,3
= −𝑐
3
. In order to have at least one Re 𝜆

𝑖,𝑗
> 0 (𝑗 =

1, 2, 3), it is sufficient to prove that 𝑐
3
< 0.

In the following we will find out the conditions such that
𝑐
3
< 0. Let 𝑄(𝜇) = 𝑄

3
𝜇
3
+ 𝑄
2
𝜇
2
+ 𝑄
1
𝜇 + 𝑄

0
and let 𝜇

1
, 𝜇
2
,

and 𝜇
3
be the three roots of𝑄(𝜇) = 0with Re(𝜇

1
) ≤ Re(𝜇

2
) ≤

Re(𝜇
3
). Notice that 𝑄

0
> 0 and 𝑄

3
> 0. Then 𝜇

1
𝜇
2
𝜇
3
=

−𝑄
0
/𝑄
3
< 0. Thus, one of the three roots 𝜇

1
, 𝜇
2
, and 𝜇

3
is real

and negative, and the product of the other two is positive.
Consider the following limits:

lim
𝑑3 󳨃→∞

𝑄
0

𝑑
3

= 0,

lim
𝑑3 󳨃→∞

𝑄
1

𝑑
3

= (1 + 𝑑
4
𝑢
∗

1
) 𝑒𝑚
2
𝑢
∗

1
𝑢
∗

2
+ 𝑑
4
𝑎𝑚𝑢
∗

1
𝑢
∗

2
𝑢
∗

3
≜ 𝑏
1
,

lim
𝑑3 󳨃→∞

𝑄
2

𝑑
3

= 𝐵𝑢
∗

1
(𝑑
2
+ 𝑑
2
𝑑
4
𝑢
∗

1
) − 𝑑
2
𝑑
4
𝑝𝑚𝑢
∗

1
𝑢
∗

3
≜ 𝑏
2
,

lim
𝑑3 󳨃→∞

𝑄
3

𝑑
3

= 𝑑
1
𝑑
2
(1 + 𝑑

4
𝑢
∗

1
) ≜ 𝑏
3
.

(31)

It is easy to see that 𝑏
1
> 0 and 𝑏

3
> 0.

Note that

lim
𝑑3 󳨃→∞

𝑄 (𝜇)

𝑑
3

= 𝑏
3
𝜇
3
+ 𝑏
2
𝜇
2
+ 𝑏
1
𝜇 = 𝜇 (𝑏

3
𝜇
2
+ 𝑏
2
𝜇 + 𝑏
1
) .

(32)

It follows that equation 𝑏
3
𝜇
2
+ 𝑏
2
𝜇 + 𝑏
1
= 0 has two strictly

positive solutions when the following conditions hold:

𝑏
2
< 0, 𝑏

2

2
− 4𝑏
1
𝑏
3
> 0. (33)

By a continuity argument, we know that, when 𝑑
3
is large

enough, 𝜇
1
is real and negative, and 𝜇

2
and 𝜇

3
are real and

positive as 𝜇
2
𝜇
3
> 0. Furthermore, we have

lim
𝑑3 󳨃→∞

𝜇
1
= 0,

lim
𝑑3 󳨃→∞

𝜇
2
=

−𝑏
2
− √𝑏
2

2
− 4𝑏
1
𝑏
3

2𝑏
3

≜ 𝜇
∗

2
> 0,

lim
𝑑3 󳨃→∞

𝜇
3
=

−𝑏
2
+ √𝑏
2

2
− 4𝑏
1
𝑏
3

2𝑏
3

≜ 𝜇
∗

3
> 0.

(34)

So there exists a positive number 𝑑∗
3
such that, when 𝑑

3
> 𝑑
∗

3
,

the following hold:

−∞ < 𝜇
1
< 0 < 𝜇

2
< 𝜇
3
;

𝑄 (𝜇) < 0 if 𝜇 ∈ (−∞, 𝜇
1
) ∪ (𝜇

2
, 𝜇
3
) ;

𝑄 (𝜇) > 0 if 𝜇 ∈ (𝜇
1
, 𝜇
2
) ∪ (𝜇

3
,∞) .

(35)

Since 𝜇∗
2
∈ (𝜇
𝑖
, 𝜇
𝑖+1
) and 𝜇∗

3
∈ (𝜇
𝑗
, 𝜇
𝑗+1
) for some 𝑗 > 𝑖 > 0,

we have𝑄(𝜇
𝑘
) < 0 when 𝑖 + 1 < 𝑘 < 𝑗 + 1. Thus we know that

𝑐
3
< 0, and the proof is completed.

3. A Priori Estimates to
the Positive Solution of (3)

In this section, we will give a priori estimates to the positive
solution of (3). Let us first introduce two lemmas and we
remark that the first lemma is due to Lou and Ni [38].

Lemma 4 (maximum principle). Suppose that 𝑔 ∈ 𝐶(Ω×R).

(i) Assume that 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0 𝑖𝑛 Ω,

𝜕]𝑤 ≤ 0 𝑜𝑛 𝜕Ω.

(36)

If 𝑤(𝑥
0
) = max

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≥ 0.

(ii) Assume that 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≤ 0 𝑖𝑛 Ω,

𝜕]𝑤 ≥ 0 𝑜𝑛 𝜕Ω.

(37)

If 𝑤(𝑥
0
) = min

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≤ 0.
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Next, we state the second lemma which is due to Lin et al.
[39].

Lemma 5 (Harnack inequality). Assume that 𝑐(𝑥) ∈ 𝐶(Ω).
Let 𝑤 ∈ 𝐶

2
(Ω) ∩ 𝐶

1
(Ω) and satisfy

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) = 0 𝑖𝑛 Ω,

𝜕]𝑤 = 0 𝑜𝑛 𝜕Ω.

(38)

Then there exists a positive constant 𝐶, depending only on
‖𝑐(𝑥)‖

𝐶(Ω)
such that

max
Ω

𝑤 (𝑥) ≤ 𝐶min
Ω

𝑤 (𝑥) . (39)

Our results are the following theorems.

Theorem 6 (upper bounds). Any positive solution u(𝑥) =

(𝑢
1
(𝑥), 𝑢
2
(𝑥), 𝑢
3
(𝑥))
𝑇 of (3) satisfies

max
Ω

𝑢
1
(𝑥) ≤ 𝑀

1
, max

Ω

𝑢
2
(𝑥) ≤ 𝑀

2
,

max
Ω

𝑢
3
(𝑥) ≤ 𝑀

3
,

(40)

where

𝑀
1
=
𝑟

𝐵
, 𝑀

2
=
𝑒𝑟𝑑
1

𝐵𝑑
2

+
𝑒𝑟
2

𝜇𝐵
,

𝑀
3
=

𝑒𝑟

𝑑
3
𝐵
[𝑑
1
+ 𝑒 +

𝑑
2
𝑟

4𝜇
+
𝑑
3
𝑟

4𝛿
(1 +

𝑑
4
𝑟

𝐵
)] .

(41)

Proof. Let 𝑥
0
∈ Ω such that 𝑢

1
(𝑥
0
) = max

Ω
𝑢
1
(𝑥). Then by

Lemma 4, it is clear that

𝑟𝑢
1
(𝑥
0
) − 𝐵𝑢

2

1
(𝑥
0
) − 𝑚𝑢

1
(𝑥
0
) 𝑢
2
(𝑥
0
)

− 𝑝𝑚𝑢
1
(𝑥
0
) 𝑢
3
(𝑥
0
) ≥ 0,

(42)

and so

𝑢
1
(𝑥
0
) = max
Ω

𝑢
1
(𝑥) ≤

𝑟

𝐵
≜ 𝑀
1
. (43)

Define 𝑦(𝑥) = 𝑒𝑑
1
𝑢
1
(𝑥) + 𝑑

2
𝑢
2
(𝑥); then 𝑦(𝑥) satisfies

− Δ𝑦 = 𝑒𝑟𝑢
1
− 𝑒𝐵𝑢

2

1
− 𝑒𝑝𝑚𝑢

1
𝑢
3
− 𝑎𝑢
2
𝑢
3
− 𝜇𝑢
2

in Ω,

𝜕]𝑦 = 0 on 𝜕Ω.

(44)

Let 𝑥
1
∈ Ω such that 𝑦(𝑥

1
) = max

Ω
𝑦(𝑥). Then, by Lemma 4,

we can get

𝑒𝑟𝑢
1
(𝑥
1
) − 𝑒𝐵𝑢

2

1
(𝑥
1
) − 𝑒𝑝𝑚𝑢

1
(𝑥
1
) 𝑢
3
(𝑥
1
)

− 𝑎𝑢
2
(𝑥
1
) 𝑢
3
(𝑥
1
) − 𝜇𝑢

2
(𝑥
1
) ≥ 0,

(45)

which implies

𝑢
2
(𝑥
1
) ≤

1

𝜇
(𝑒𝑟𝑢
1
(𝑥
1
) − 𝑒𝐵𝑢

2

1
(𝑥
1
)) ≤

𝑒𝑟
2

4𝜇𝐵
. (46)

So, by the definition of 𝑦(𝑥), we have

max
Ω

𝑢
2
(𝑥) ≤

1

𝑑
2

max
Ω

𝑦 (𝑥) =
1

𝑑
2

𝑦 (𝑥
1
)

=
𝑒𝑑
1

𝑑
2

𝑢
1
(𝑥
1
) + 𝑢
2
(𝑥
1
) ≤

𝑒𝑟𝑑
1

𝐵𝑑
2

+
𝑒𝑟
2

4𝜇𝐵
≜ 𝑀
2
.

(47)

Let 𝜔(𝑥) = 𝑢
3
(𝑥) + 𝑑

4
𝑢
1
(𝑥)𝑢
3
(𝑥); then 𝑢

3
(𝑥) = 𝜔(𝑥)/(1 +

𝑑
4
𝑢
1
(𝑥)). Define 𝑧(𝑥) = 𝑒𝑑

1
𝑢
1
(𝑥) + 𝑑

2
𝑢
2
(𝑥) + 𝑑

3
𝜔(𝑥); then

𝑧(𝑥) satisfies

− Δ𝑧 = 𝑒𝑟𝑢
1
(𝑥) − 𝑒𝐵𝑢

2

1
(𝑥) − 𝜇𝑢

2
(𝑥) −

𝛿𝜔 (𝑥)

1 + 𝑑
4
𝑢
1
(𝑥)

in Ω,

𝜕]𝑧 = 0 on 𝜕Ω.

(48)

Let 𝑥
2
∈ Ω such that 𝑧(𝑥

2
) = max

Ω
𝑧(𝑥). Then, by using

Lemma 4 again, we can obtain

𝑒𝑟𝑢
1
(𝑥
2
) − 𝑒𝐵𝑢

2

1
(𝑥
2
) − 𝜇𝑢

2
(𝑥
2
) −

𝛿𝜔 (𝑥
2
)

1 + 𝑑
4
𝑢
1
(𝑥
2
)
≥ 0,

(49)

which implies

𝜔 (𝑥
2
) ≤

1

𝛿
(1 + 𝑑

4
𝑢
1
(𝑥
2
)) (𝑒𝑟𝑢

1
(𝑥
2
) − 𝑒𝐵𝑢

2

1
(𝑥
2
))

≤
𝑒𝑟
2

4𝛿𝐵
(1 +

𝑑
4
𝑟

𝐵
) .

(50)

It follows that

max
Ω

𝑢
3
(𝑥) ≤ max

Ω

𝜔 (𝑥) ≤
1

𝑑
3

max
Ω

𝑧 (𝑥) =
1

𝑑
3

𝑧 (𝑥
2
)

=
1

𝑑
3

(𝑒𝑑
1
𝑢
1
(𝑥
2
) + 𝑑
2
𝑢
2
(𝑥
2
) + 𝑑
3
𝜔 (𝑥
2
))

≤
𝑒𝑟

𝑑
3
𝐵
[𝑑
1
+ 𝑒 +

𝑑
2
𝑟

4𝜇
+
𝑑
3
𝑟

4𝛿
(1 +

𝑑
4
𝑟

𝐵
)] ≜ 𝑀

3
.

(51)

Then we obtain the three upper bounds in (40).

Theorem 7. There exist three positive constants𝐶
1
(depending

on 𝑟/𝑑
1
,Ω), 𝐶

2
(depending on 𝑒𝑚𝑟/𝑑

2
𝐵,Ω), and 𝐶

3
(depend-

ing on Λ, 𝑑
𝑖
, Ω) such that any positive solution u(𝑥) =

(𝑢
1
(𝑥), 𝑢
2
(𝑥), 𝑢
3
(𝑥)) of (3) satisfies

max
Ω
𝑢
1
(𝑥)

min
Ω
𝑢
1
(𝑥)

≤ 𝐶
1
,

max
Ω
𝑢
2
(𝑥)

min
Ω
𝑢
2
(𝑥)

≤ 𝐶
2
,

max
Ω
𝑢
3
(𝑥)

min
Ω
𝑢
3
(𝑥)

≤ 𝐶
3
, (𝑖 = 1, 2, 3) .

(52)
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Proof. It is easy to see that 𝑢
𝑖
(𝑥) (𝑖 = 1, 2) satisfies

Δ𝑢
𝑖
(𝑥) +

𝑐
𝑖
(𝑥)

𝑑
𝑖

𝑢
𝑖
(𝑥) = 0 in Ω,

𝜕]𝑢𝑖 (𝑥) = 0 on 𝜕Ω,

(53)

where 𝑐
1
(𝑥) = 𝑟−𝐵𝑢

1
−𝑚𝑢
1
𝑢
2
−𝑝𝑚𝑢

1
𝑢
3
and 𝑐
2
(𝑥) = 𝑒𝑚𝑢

1
−

𝑎𝑢
3
− 𝜇. By (40), we know that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑐
1
(𝑥)

𝑑
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(Ω)

≤
𝑟

𝑑
1

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑐
2
(𝑥)

𝑑
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(Ω)

≤
𝑒𝑚𝑟

𝑑
2
𝐵
. (54)

So by Lemma 5, we know that the first two inequalities of (52)
hold. Define 𝜑(𝑥) = 𝑑

3
𝑢
3
(𝑥) + 𝑑

3
𝑑
4
𝑢
1
(𝑥)𝑢
3
(𝑥); we have

Δ𝜑 (𝑥) + 𝑐
3
(𝑥) 𝜑 (𝑥) = 0 in Ω,

𝜕]𝜑 (𝑥) = 0 on 𝜕Ω,

(55)

where 𝑐
3
(𝑥) = (𝑒𝑚𝑝𝑢

1
+ 𝑎𝑢
2
− 𝛿)/𝑑

3
(1 + 𝑑

4
𝑢
1
). By (40), we

know that

󵄩󵄩󵄩󵄩𝑐3(𝑥)
󵄩󵄩󵄩󵄩𝐶(Ω)

≤
𝑒𝑚𝑝𝑟

𝑑
3
𝐵

+
𝑒𝑟𝑑
1

𝐵𝑑
2
𝑑
3

+
𝑒𝑟
2

4𝜇𝐵𝑑
3

. (56)

Then Lemma 5 yields max
Ω
𝜑(𝑥)/min

Ω
𝜑(𝑥) ≤ 𝐶

∗

3
for some

positive constant 𝐶∗
3
(Λ, 𝑑
1
, 𝑑
2
, 𝑑
3
, Ω), and

max
Ω
𝑢
3

min
Ω
𝑢
3

≤
max
Ω
𝜑max

Ω
(1 + 𝑑

4
𝑢
1
)

min
Ω
𝜑min

Ω
(1 + 𝑑

4
𝑢
1
)

≤ 𝐶
∗

3

max
Ω
𝑢
1

min
Ω
𝑢
1

≤ 𝐶
∗

3
𝐶
1
≜ 𝐶
3
.

(57)

The proof is completed.

Theorem 8 (lower bounds). Let Λ, 𝐷
1
, 𝐷
2
, 𝐷
3
, and 𝐷

4
be

fixed positive constants. Assume that

min {
𝑒𝑚𝑝

𝐵
(𝑟 − 𝑚𝑀

2
) ,
𝑒𝑚𝑝

𝐵
(𝑟 − 𝑝𝑚𝑀

3
)} > 𝛿, (58)

where 𝑀
2
and 𝑀

2
are given in (47) and (51). Then there

exists a positive constant 𝐶 = 𝐶(Λ,𝐷
1
, 𝐷
2
, 𝐷
3
, 𝐷
4
) such that,

when (𝑑
1
, 𝑑
2
, 𝑑
3
) ∈ [𝐷

1
,∞) × [𝐷

2
,∞) × [𝐷

3
,∞) and 𝑑

4
∈

[0, 𝐷
4
], any positive solution u(𝑥) = (𝑢

1
(𝑥), 𝑢
2
(𝑥), 𝑢
3
(𝑥)) of

(3) satisfies

min
Ω

𝑢
𝑖
(𝑥) ≥ 𝐶, 𝑖 = 1, 2, 3. (59)

Proof. Suppose that (59) fails. Then there exist sequences
{𝑑
1,𝑖
, 𝑑
2,𝑖
, 𝑑
3,𝑖
, 𝑑
4,𝑖
}
∞

𝑖=1
with (𝑑

1,𝑖
, 𝑑
2,𝑖
, 𝑑
3,𝑖
) ∈ [𝐷

1
,∞) ×

[𝐷
2
,∞) × [𝐷

3
,∞) and 𝑑

4,𝑖
∈ [0, 𝐷

4
] such that the

corresponding positive solutions (𝑢
1,𝑖
, 𝑢
2,𝑖
, 𝑢
3,𝑖
) of (3) satisfy

max
Ω

𝑢
1𝑖
󳨃󳨀→ 0, or max

Ω

𝑢
2𝑖
󳨃󳨀→ 0, or max

Ω

𝑢
3𝑖
󳨃󳨀→ 0.

(60)

By a direct application of the maximum principle to the first
equation of (3), we can obtain 𝑢

1𝑖
≤ 𝑟/𝐵. Integrating by parts,

we obtain that

∫
Ω

(𝑟𝑢
1𝑖
− 𝐵𝑢
2

1𝑖
− 𝑚𝑢
1𝑖
𝑢
2𝑖
− 𝑝𝑚𝑢

1𝑖
𝑢
3𝑖
) 𝑑𝑥 = 0,

∫
Ω

(𝑒𝑚𝑢
1
𝑢
2𝑖
− 𝑎𝑢
2𝑖
𝑢
3𝑖
− 𝜇𝑢
2𝑖
) 𝑑𝑥 = 0,

∫
Ω

(𝑎𝑢
2𝑖
𝑢
3𝑖
+ 𝑒𝑚𝑝𝑢

1𝑖
𝑢
3𝑖
− 𝛿𝑢
3𝑖
) 𝑑𝑥 = 0,

(61)

for 𝑖 = 1, 2, . . .. By the standard regularity theorem for
the elliptic equations, we know that there exists a subse-
quence of {𝑢

1,𝑖
, 𝑢
2,𝑖
, 𝑢
3,𝑖
}
∞

𝑖=1
, which we will still denote by

{𝑢
1,𝑖
, 𝑢
2,𝑖
, 𝑢
3,𝑖
}
∞

𝑖=1
, and three nonnegative functions 𝑢

1
, 𝑢
2
, 𝑢
3
∈

𝐶
2
(Ω) such that

(𝑢
1,𝑖
, 𝑢
2,𝑖
, 𝑢
3,𝑖
) 󳨃󳨀→ (𝑢

1
, 𝑢
2
, 𝑢
3
)

in [𝐶
2
(Ω)]
3

as 𝑖 󳨃󳨀→ ∞.

(62)

By (60), we know that

𝑢
1
≡ 0, or 𝑢

2
≡ 0, or 𝑢

3
≡ 0. (63)

Furthermore, we assume that (𝑑
1,𝑖
, 𝑑
2,𝑖
, 𝑑
3,𝑖
, 𝑑
4,𝑖
) 󳨃→ (𝑑

1
,

𝑑
2
, 𝑑
3
, 𝑑
4
) ∈ [𝐷

1
,∞)×[𝐷

2
,∞)×[𝐷

3
,∞)×[0, 𝐷

4
]. Let 𝑖 󳨃→ ∞

in (61); we obtain

∫
Ω

(𝑟𝑢
1
− 𝐵𝑢
2

1
− 𝑚𝑢
1
𝑢
2
− 𝑝𝑚𝑢

1
𝑢
3
) 𝑑𝑥 = 0,

∫
Ω

(𝑒𝑚𝑢
1
𝑢
2
− 𝑎𝑢
2
𝑢
3
− 𝜇𝑢
2
) 𝑑𝑥 = 0,

∫
Ω

(𝑎𝑢
2
𝑢
3
+ 𝑒𝑚𝑝𝑢

1
𝑢
3
− 𝛿𝑢
3
) 𝑑𝑥 = 0.

(64)

Now, we consider the following three cases, respectively.

Case 1 (𝑢
1
≡ 0). Note that 𝑢

1𝑖
󳨃→ 𝑢
1
, as 𝑖 󳨃→ ∞.Then we know

that

𝑒𝑚𝑢
1𝑖
− 𝑎𝑢
3𝑖
− 𝜇 < 0 on Ω, ∀𝑖 ≫ 1. (65)

Integrating the differential equation for 𝑢
2𝑖
over Ω by parts,

we have

0 = − 𝑑
2𝑖
∫
𝜕Ω

𝜕]𝑢2𝑖𝑑𝑥 = −𝑑2𝑖 ∫
Ω

Δ𝑢
2𝑖
𝑑𝑥

= ∫
Ω

𝑢
2𝑖
(𝑒𝑚𝑢
1𝑖
− 𝑎𝑢
3𝑖
− 𝜇) 𝑑𝑥 < 0, ∀𝑖 ≫ 1,

(66)

which is a contradiction.

Case 2 (𝑢
2
≡ 0, 𝑢

1
̸= 0 onΩ). By usingHopf boundary lemma,

we know 𝑢
1
> 0 on Ω. Then 𝑢

1
and 𝑢

3
satisfy the following

equation:

−𝑑
1
Δ𝑢
1
= 𝑢
1
(𝑟 − 𝐵𝑢

1
− 𝑝𝑚𝑢

3
) in Ω,

𝜕]𝑢1 = 0 on 𝜕Ω.

(67)
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Let 𝑢
1
(𝑥
0
) = min

Ω
𝑢
1
(𝑥). It follows from Lemma 4 and (67)

that

𝑟 − 𝐵𝑢
1
(𝑥
0
) − 𝑝𝑚𝑢

3
(𝑥
0
) ≤ 0; (68)

that is,

𝑢
1
(𝑥
0
) ≥

𝑟

𝐵
−
𝑝𝑚

𝐵
𝑢
3
(𝑥
0
) ≥

𝑟

𝐵
−
𝑝𝑚𝑀

3

𝐵
. (69)

By using the assumption (𝑒𝑚𝑝/𝐵)(𝑟 − 𝑝𝑚𝑀
3
) > 𝛿, we know

that

𝑒𝑚𝑝𝑢
1𝑖
− 𝛿 > 0 on Ω, ∀𝑖 ≫ 1. (70)

Integrating the differential equation for 𝑢
3𝑖
over Ω by parts,

we have

0 = −𝑑
3𝑖
∫
𝜕Ω

[(1 + 𝑑
4
𝑢
1𝑖
) 𝜕]𝑢3𝑖 + 𝑑4𝑢3𝑖𝜕]𝑢1𝑖] 𝑑𝑥

= −𝑑
3𝑖
∫
Ω

Δ (𝑢
3𝑖
+ 𝑑
4
𝑢
1𝑖
𝑢
3𝑖
) 𝑑𝑥

= ∫
Ω

𝑢
3𝑖
(𝑒𝑚𝑝𝑢

1𝑖
+ 𝑎𝑢
2𝑖
− 𝛿) 𝑑𝑥 > 0, ∀𝑖 ≫ 1,

(71)

which is a contradiction.

Case 3 (𝑢
3
≡ 0, 𝑢

1
̸= 0, and 𝑢

2
̸= 0 on Ω). By using Hopf

boundary lemma, we know 𝑢
1
> 0 and 𝑢

2
> 0 onΩ.

Then 𝑢
1
and 𝑢

2
satisfy the following equation:

−𝑑
1
Δ𝑢
1
= 𝑢
1
(𝑟 − 𝐵𝑢

1
− 𝑚𝑢
2
) in Ω,

𝜕]𝑢1 = 0 on 𝜕Ω.

(72)

Let 𝑢
1
(𝑥
1
) = min

Ω
𝑢
1
(𝑥). It follows from Lemma 4 and (72)

that

𝑟 − 𝐵𝑢
1
(𝑥
1
) − 𝑚𝑢

2
(𝑥
1
) ≤ 0; (73)

that is,

𝑢
1
(𝑥
1
) ≥

𝑟

𝐵
−
𝑚

𝐵
𝑢
2
(𝑥
1
) ≥

𝑟

𝐵
−
𝑚𝑀
2

𝐵
. (74)

By using the assumption (𝑒𝑚𝑝/𝐵)(𝑟 − 𝑚𝑀
2
) > 𝛿, we know

that

𝑒𝑚𝑝𝑢
1𝑖
− 𝛿 > 0 on Ω, ∀𝑖 ≫ 1. (75)

Integrating the differential equation for 𝑢
3𝑖
over Ω by parts,

we have

0 = −𝑑
3𝑖
∫
𝜕Ω

[(1 + 𝑑
4
𝑢
1𝑖
) 𝜕]𝑢3𝑖 + 𝑑4𝑢3𝑖𝜕]𝑢1𝑖] 𝑑𝑥

= −𝑑
3𝑖
∫
Ω

Δ (𝑢
3𝑖
+ 𝑑
4
𝑢
1𝑖
𝑢
3𝑖
) 𝑑𝑥

= ∫
Ω

𝑢
3𝑖
(𝑒𝑚𝑝𝑢

1𝑖
+ 𝑎𝑢
2𝑖
− 𝛿) 𝑑𝑥 > 0, ∀𝑖 ≫ 1,

(76)

which is a contradiction. The proof is completed.

4. Nonexistence of Nonconstant
Positive Solution of System (3) without
Cross-Diffusion

In order to discuss the effect of cross-diffusion on the
existence of nonconstant positive solution of system (3), we
first give a nonexistence result when the cross-diffusion term
is absent, which shows that the cross-diffusion coefficients
do play important roles. The mathematical technique to be
employed here is the energy method.

Theorem 9. Suppose that 𝑑
4
= 0 and 𝑑

1
≥ 𝑟/𝜇

2
≜ 𝐷
∗

1
, where

𝜇
2
is given in Notation 1. There exist positive constants𝐷∗

2
and

𝐷
∗

3
, depending on Λ, 𝜀, Ω such that (3) has no nonconstant

positive solution provided that 𝑑
2

≥ 𝐷
∗

2
and 𝑑

3
≥ 𝐷
∗

3
.

Furthermore, one has

𝑢
𝑖
≡ 𝑢
𝑖
, where 𝑢

𝑖
=

1

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

∫
Ω

𝑢
𝑖
𝑑𝑥, 𝑖 = 1, 2, 3. (77)

Proof. Assume that u = (𝑢
1
, 𝑢
2
, 𝑢
3
) is a positive solution of

(3) with 𝑑
4
= 0. Multiplying the 𝑖th equation of (3) by 𝑢

𝑖
− 𝑢
𝑖

and integrating the results overΩ by parts, we have

𝑑
1
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
Ω

(𝑢
1
− 𝑢
1
)

× (𝑟𝑢
1
− 𝐵𝑢
2

1
− 𝑚𝑢
1
𝑢
2
− 𝑝𝑚𝑢

1
𝑢
3

− 𝑟𝑢
1
+ 𝐵𝑢
2

1
+ 𝑚𝑢
1
𝑢
2

+𝑝𝑚𝑢
1
𝑢
3
) 𝑑𝑥

= ∫
Ω

(𝑢
1
− 𝑢
1
)
2

× (𝑟 − 𝐵𝑢
1
− 𝐵𝑢
1
− 𝑚𝑢
2
− 𝑝𝑚𝑢

3
) 𝑑𝑥

− ∫
Ω

𝑚𝑢
1
(𝑢
1
− 𝑢
1
) (𝑢
2
− 𝑢
2
) 𝑑𝑥

− ∫
Ω

𝑝𝑚𝑢
1
(𝑢
1
− 𝑢
1
) (𝑢
3
− 𝑢
3
) 𝑑𝑥;

𝑑
2
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
Ω

(𝑢
2
− 𝑢
2
)

× (𝑒𝑚𝑢
1
𝑢
2
− 𝑎𝑢
2
𝑢
3
− 𝜇𝑢
2

−𝑒𝑚𝑢
1
𝑢
2
+ 𝑎𝑢
2
𝑢
3
+ 𝜇𝑢
2
) 𝑑𝑥

= ∫
Ω

(𝑢
2
− 𝑢
2
)
2

(𝑒𝑚𝑢
1
− 𝑎𝑢
3
− 𝜇) 𝑑𝑥

+ ∫
Ω

𝑒𝑚𝑢
2
(𝑢
1
− 𝑢
1
) (𝑢
2
− 𝑢
2
) 𝑑𝑥

− ∫
Ω

𝑎𝑢
2
(𝑢
2
− 𝑢
2
) (𝑢
3
− 𝑢
3
) 𝑑𝑥;
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𝑑
3
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
Ω

(𝑢
3
− 𝑢
3
)

× (𝑒𝑚𝑝𝑢
1
𝑢
3
+ 𝑎𝑢
2
𝑢
3
− 𝛿𝑢
3

−𝑒𝑚𝑝𝑢
1
𝑢
3
− 𝑎𝑢
2
𝑢
3
+ 𝛿𝑢
2
) 𝑑𝑥

= ∫
Ω

(𝑢
3
− 𝑢
3
)
2

(𝑒𝑚𝑝𝑢
1
− 𝑎𝑢
2
− 𝛿) 𝑑𝑥

+ ∫
Ω

𝑒𝑚𝑝𝑢
3
(𝑢
1
− 𝑢
1
) (𝑢
3
− 𝑢
3
) 𝑑𝑥

+ ∫
Ω

𝑎𝑢
2
(𝑢
2
− 𝑢
2
) (𝑢
3
− 𝑢
3
) 𝑑𝑥.

(78)

Then it follows from (78) that

𝑑
1
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑑
2
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑑
3
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨

2

𝑑𝑥

= ∫
Ω

(𝑢
1
− 𝑢
1
)
2

× (𝑟 − 𝐵𝑢
1
− 𝐵𝑢
1
− 𝑚𝑢
2
− 𝑝𝑚𝑢

3
) 𝑑𝑥

+ ∫
Ω

(𝑢
2
− 𝑢
2
)
2

(𝑒𝑚𝑢
1
− 𝑎𝑢
3
− 𝜇) 𝑑𝑥

+ ∫
Ω

(𝑢
3
− 𝑢
3
)
2

(𝑒𝑚𝑝𝑢
1
− 𝑎𝑢
2
− 𝛿) 𝑑𝑥

+ ∫
Ω

(𝑒𝑚𝑢
2
− 𝑚𝑢
1
) (𝑢
1
− 𝑢
1
) (𝑢
2
− 𝑢
2
) 𝑑𝑥

+ ∫
Ω

(𝑒𝑚𝑝𝑢
3
− 𝑝𝑚𝑢

1
) (𝑢
1
− 𝑢
1
) (𝑢
3
− 𝑢
3
) 𝑑𝑥

+ ∫
Ω

(𝑎𝑢
3
− 𝑎𝑢
2
) (𝑢
2
− 𝑢
2
) (𝑢
3
− 𝑢
3
) 𝑑𝑥.

(79)

By Cauchy inequality with 𝜀, we can get from (79) that

𝑑
1
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑑
2
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑑
3
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ ∫
Ω

(𝑢
1
− 𝑢
1
)
2

× (𝑟 − 𝐵𝑢
1
− 𝐵𝑢
1
− 𝑚𝑢
2
− 𝑝𝑚𝑢

3
+ 2𝜀) 𝑑𝑥

+ ∫
Ω

(𝑢
2
− 𝑢
2
)
2

× (𝑒𝑚𝑢
1
− 𝑎𝑢
3
− 𝜇 +

(𝑒𝑚𝑢
2
− 𝑚𝑢
1
)
2

4𝜀

+
(𝑎𝑢
3
− 𝑎𝑢
2
)
2

4𝜀
)𝑑𝑥

+ ∫
Ω

(𝑢
3
− 𝑢
3
)
2

× (𝑒𝑚𝑝𝑢
1
− 𝑎𝑢
2
− 𝛿 +

(𝑒𝑚𝑝𝑢
3
− 𝑚𝑝𝑢

1
)
2

4𝜀

+
(𝑎𝑢
3
− 𝑎𝑢
2
)
2

4𝜀
)𝑑𝑥.

(80)

On the other hand, applying Poincaré inequality, we know
that

𝑑
1
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢1
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑑
2
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢2
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝑑
3
∫
Ω

󵄨󵄨󵄨󵄨∇𝑢3
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≥ ∫
Ω

𝑑
1
𝜇
2
(𝑢
1
− 𝑢
1
)
2

+ ∫
Ω

𝑑
2
𝜇
2
(𝑢
2
− 𝑢
2
)
2

+ ∫
Ω

𝑑
3
𝜇
2
(𝑢
3
− 𝑢
3
)
2

.

(81)

Then, by assumption, we can choose a sufficiently small
positive constant 𝜀

0
such that

𝑑
1
𝜇
2
> 𝑟 − 𝐵𝑢

1
− 𝐵𝑢
1
− 𝑚𝑢
2
− 𝑝𝑚𝑢

3
+ 2𝜀
0
. (82)

So by taking

𝐷
∗

2
>

1

𝜇
2

(𝑒𝑚𝑢
1
− 𝑎𝑢
3
− 𝜇

+
(𝑒𝑚𝑢
2
− 𝑚𝑢
1
)
2

4𝜀
0

+
(𝑎𝑢
3
− 𝑎𝑢
2
)
2

4𝜀
0

) ,

𝐷
∗

3
>

1

𝜇
2

(𝑒𝑚𝑝𝑢
1
− 𝑎𝑢
2
− 𝛿

+
(𝑒𝑚𝑝𝑢

3
− 𝑚𝑝𝑢

1
)
2

4𝜀
0

+
(𝑎𝑢
3
− 𝑎𝑢
2
)
2

4𝜀
0

) ,

(83)

we can conclude that, when 𝑑
4
= 0, (3) has only the positive

constant solution 𝑢
𝑖
≡ 𝑢
𝑖
for 𝑖 = 1, 2, 3. The proof is

completed.

5. Existence of Nonconstant Positive
Solution of System (3)

From Theorem 9 we know that, when the cross-diffusion
𝑑
3
𝑑
4
𝑢
1
𝑢
3
is absent, (3) has no nonconstant positive solution

under some conditions. In the following, we will discuss
the effect of cross-diffusion on the existence of nonconstant
positive solution of system (3) for certain values of diffusion
coefficient 𝑑

3
, while the other parameters are fixed.

Our main findings are the following theorem, which
shows that the presence of cross-diffusion creates nonhomo-
geneous solution.
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Theorem 10. Let 𝑑
1
, 𝑑
2
, and 𝑑

4
be fixed and satisfy (33) and

(58), and let 𝜇∗
2
and 𝜇∗
3
be defined in (34). If 𝜇∗

2
∈ (𝜇
𝑖
, 𝜇
𝑖+1
) and

𝜇
∗

3
∈ (𝜇
𝑗
, 𝜇
𝑗+1
) for some 𝑗 > 𝑖 ≥ 1 and the sum∑

𝑗

𝑛=𝑖+1
𝑚(𝜇
𝑛
) is

odd, then there exists a positive constant𝑑∗
3
such that, if𝑑 ≥ 𝑑∗

3
,

(3) admits at least one nonconstant positive solution.

In order to prove the above theorem by using Leray-
Schauder theory, we start with some preliminary results.
Throughout this section, Notation 1 and G(u) defined in
Section 2 will be used again. Define the set

X+ = {u = (𝑢
1
, 𝑢
1
, 𝑢
1
)
𝑇

∈ X : 𝑢
𝑖
> 0 on Ω, 𝑖 = 1, 2, 3} ,

B (C) = {u = (𝑢
1
, 𝑢
1
, 𝑢
1
)
𝑇

, 𝐶 ≤ 𝑢
𝑖
≤ 𝐶 on Ω, 𝑖 = 1, 2, 3} ,

(84)

where 𝐶 = max{𝑀
1
,𝑀
2
,𝑀
3
} and 𝐶 is given in Theorem 8.

Then we will look for nonconstant positive solutions of (3) in
the setB(C). LetΦ(u) = [𝑑

1
𝑢
1
, 𝑑
2
𝑢
2
, 𝑑
3
(𝑢
3
+𝑑
4
𝑢
1
𝑢
3
)]
𝑇.Then

(3) can be written as

−ΔΦ (u) = G (u) in Ω,

𝜕]u = 0 on 𝜕Ω.

(85)

Noting that the determinant of Φu(u) is positive for all u ∈

X+, we know that Φ−1u (u) exists and detΦ−1u (u) is positive.
Then, u is a positive solution to (85) if and only if

F (u) = u − (I − Δ)−1

× {Φ
−1

u (u) [G (u) + ∇uΦ
𝑢𝑢
(u) ∇u + u]} = 0

in X+,

(86)

where (I − Δ)
−1 is the inverse of I − Δ in X with the no-

flux boundary condition. As F(⋅) is a compact perturbation of
the identity operator, for any B = B(C), the Leray-Schauder
degree deg (F(⋅), 0,B) is well defined if F(u) ̸= 0 on 𝜕B. Note
that

DuF (u
∗
) = I − (I − Δ)−1 {Φ−1u (u∗) [Gu (u

∗
) + I]} . (87)

If DuF(u∗) is invertible, the index of F at u∗ is defined as
index(F(⋅), u∗) = (−1)𝛾, where 𝛾 is themultiplicity of negative
eigenvalues of DuF(u∗) [40, Theorem 2.8.1]. For the sake of
convenience, we denote

H (𝜇) = H (u∗, 𝜇) ≜ det [𝜇I − Φ−1u (u∗)Gu (u
∗
)]

= det [Φ−1u (u∗)] det [𝜇Φu (u
∗
) − Gu (u

∗
)] .

(88)

By arguments similar to those in [41], we can conclude that
the following proposition holds.

Proposition 11. Suppose that, for all 𝑛 ≥ 1, the matrix 𝜇
𝑛
I −

Φ
−1

u (u
∗
)Gu(u∗) is nonsingular. Then 𝑖𝑛𝑑𝑒𝑥(F(⋅), u∗) = (−1)

𝜎,
where 𝜎 = ∑

𝑛≥1,H(𝜇𝑛)<0 dim 𝑆(𝜇
𝑛
).

From Proposition 11, we can see that, in order to compute
index(F(⋅), u∗), it is necessary to consider carefully the sign
of H(𝜇

𝑖
). Noting that detΦ−1u (u

∗
) is positive, then we only

need to consider the sign of det[𝜇Φu∗(u∗) − Gu(u∗)]. In
fact, the direct calculation gives that the value of 𝑐

3
, which

is given in (30), is equal to det[𝜇Φu∗(u∗) −Gu(u∗)]. To study
the existence of the positive solution of (3) with respect to
the cross-diffusion constant 𝑑

3
𝑑
4
, we will concentrate on the

dependence of H(𝜇
𝑖
) on 𝑑

3
, and let 𝑑

1
, 𝑑
2
, and 𝑑

4
be fixed.

Hence, from Theorem 3, we first introduce the following
proposition.

Proposition 12. Assume that 𝑑
4
> 0 and that (33) holds.Then

there exists a positive number 𝑑∗
3
such that, for all 𝑑

3
≥ 𝑑
∗

3
, all

the three roots 𝜇
1
, 𝜇
2
, and 𝜇

3
of det[𝜇Φ(u∗) −Gu(u∗)] = 0 are

real and satisfy

−∞ < 𝜇
1
< 0 < 𝜇

2
< 𝜇
3
;

det [𝜇Φu (u
∗
) − Gu (u

∗
)] < 0,

if 𝜇 ∈ (−∞, 𝜇
1
) ∪ (𝜇

2
, 𝜇
3
) ;

det [𝜇Φu (u
∗
) − Gu (u

∗
)] > 0,

if 𝜇 ∈ (𝜇
1
, 𝜇
2
) ∪ (𝜇

3
,∞) .

(89)

Proof of Theorem 10. By Proposition 12 and our assumptions,
there exists a positive constant 𝑑∗

3
such that, when 𝑑

3
≥ 𝑑
∗

3
,

(89) holds and

𝜇
𝑖
< 𝜇
2
< 𝜇
𝑖+1
, 𝜇

𝑗
< 𝜇
3
< 𝜇
𝑗+1
. (90)

Now, we show that, for any 𝑑
3
≥ 𝑑
∗

3
, (3) has at least

one nonconstant positive solution. The proof, which will
be accomplished by a contradict argument, is based on the
homotopy invariance of the topological degree.

Suppose, on the contrary, that the assertion is not true. Let
𝑑
𝑖
= 𝐷
∗

𝑖
(𝑖 = 1, 2, 3, 4), where𝐷∗

𝑖
is defined inTheorem 9. For

𝑡 ∈ [0, 1], define

Φ (𝑡; u) = [𝑑
1
𝑢
1
+ 𝑡 (𝑑

1
− 𝑑
1
) 𝑢
1
, 𝑑
2
𝑢
2
+ 𝑡 (𝑑

2
− 𝑑
2
) 𝑢
2
,

𝑑
3
+ 𝑡(𝑑
3
− 𝑑
3
)(𝑢
3
+ 𝑡𝑑
4
𝑢
1
𝑢
3
)]
𝑇

.

(91)

Now we consider the following problem:

−ΔΦ (𝑡; u) = G (u) in Ω, 0 ≤ 𝑡 ≤ 1,

𝜕]u = 0 on 𝜕Ω.

(92)

Then u is a positive solution of (3) if and only if it is a positive
solution of (92) for 𝑡 = 1. For 0 ≤ 𝑡 ≤ 1, it is obvious that
u∗ is the unique positive constant solution of (92) and u is a
positive solution of (92) if and only if

F (𝑡; u) = u − (I − Δ)−1

× {Φ
−1

u (𝑡; u) [G (u) + ∇uΦ
𝑢𝑢
(𝑡; u) ∇u] + u} = 0

in X+.
(93)
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Clearly, F(1; u) = F(u). Theorem 9 shows that the only
positive solution of F(0; u) is u∗ in B(C). By a direct
computation, we have

DuF (t; u
∗
) = I − (I − Δ)−1 {Φ−1u (𝑡; u∗)Gu (u

∗
) + I} .

(94)

In particular,

DuF (0; u
∗
) = I − (I − Δ)−1 {D−1Gu (u

∗
) + I} ,

DuF (1; u
∗
) = I − (I − Δ)−1 {Φ−1u (u∗)Gu (u

∗
) + I} ,

(95)

where D = diag(𝑑
1
, 𝑑
2
, 𝑑
3
). In view of Proposition 12 and

(90), it follows that

H (𝜇
1
) = H (0) > 0,

H (𝜇
𝑛
) < 0, 𝑖 + 1 ≤ 𝑛 ≤ 𝑗,

H (𝜇
𝑛
) > 0, 1 < 𝑛 ≤ 𝑖 or 𝑛 ≥ 𝑗 + 1.

(96)

Therefore, zero is not an eigenvalue of the matrix 𝜇
𝑛
𝐼 −

Φ
−1

u (u
∗
)Gu(u∗) for all 𝑛 ≥ 1, and

∑

𝑛≥1,𝐻(𝜇𝑛)<0

𝑚(𝜇
𝑛
) =

𝑗

∑

𝑛=𝑖+1

𝑚(𝜇
𝑛
) = an odd number. (97)

Then Proposition 11 yields

index (I − F (1; ⋅) , u∗) = (−1)𝛾 = −1. (98)

Similarly we can get that

index (I − F (0; ⋅) , u∗) = (−1)0 = 1. (99)

According to Theorems 9 and (40) and (59), there exist
positive constants 𝐶 and 𝐶 such that, for all 0 ≤ 𝑡 ≤ 1, the
positive solutions of (3) satisfy 𝐶 ≤ 𝑢

1
, 𝑢
2
, 𝑢
3
≤ 𝐶. Therefore,

F(𝑡; u) ̸= 0 on 𝜕B(C) for all 0 ≤ 𝑡 ≤ 1. By the homotopy
invariance of the topological degree, we have

deg (I − F (1; ⋅) , 0,B (C)) = deg (I − F (0; ⋅) , 0,B (C)) .
(100)

On the other hand, under our assumptions, the only positive
solution of both F(1; u) = 0 and F(0; u) = 0 inB(C) is u∗, and
hence, by (98) and (99),

deg (I − F (0; ⋅) , 0,B (C)) = index (I − F (0; ⋅) , u∗) = 1,

deg (I − F (1; ⋅) , 0,B (C)) = index (I − F (1; ⋅) , u∗) = −1,
(101)

which contradicts (100). The proof is completed.
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