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We consider a class of particular Kirchhoff type problems with a right-hand side nonlinearity which exhibits an asymmetric
growth at +∞ and −∞ in R𝑁(𝑁 = 2, 3). Namely, it is 4-linear at −∞ and 4-superlinear at +∞. However, it need not satisfy
the Ambrosetti-Rabinowitz condition on the positive semiaxis. Some existence results for nontrivial solution are established by
combining Mountain Pass Theorem and a variant version of Mountain Pass Theorem with Moser-Trudinger inequality.

1. Introduction

We consider the following nonlocal Kirchhoff type problem:

−(1 + ∫

Ω

|∇𝑢|
2
)Δ𝑢 (𝑥) = 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = 0, on 𝜕Ω,

(1)

where Ω is a smooth bounded domain in 𝑅
𝑁
(𝑁 = 2, 3) and

𝑓 : Ω × 𝑅 → 𝑅 is continuous.
It is pointed out in [1] that the problem (1) models several

physical and biological systems where 𝑢 describes a process
which depends on the average of itself (e.g., population
density). Moreover, this problem is related to the stationary
analogue of the Kirchhoff equation

𝑢
𝑡𝑡
− (1 + ∫

Ω

|∇𝑢|
2
)Δ𝑢 = 𝑔 (𝑥, 𝑡) , (2)

which was proposed by Kirchhoff [2] as an extension of
the classical D’Alembert wave equation for free vibration
of elastic strings. Kirchhoff ’s model takes into account the
changes in length of the string produced by transverse
vibrations. Some early studies of the Kirchhoff equation
may be seen [3–5]. More recently, by variational methods,
Alves et al. [1] and Ma and Rivera [6] studied the existence
of one positive solution, and He and Zou [7] studied the
existence of infinitelymany positive solutions for the problem
(1), respectively; Perera and Zhang [8] studied the existence

of nontrivial solutions for the problem (1) via the Yang
index theory; Zhang and Perera [9] and Mao and Zhang
[10] studied the existence of sign-changing solutions for the
problem (1) via invariant sets of descent flow. In particular,
the asymptotically 4-linear case,

lim
𝑡→0

𝑓 (𝑥, 𝑡)

𝑡

= 𝜆, lim
𝑡→+∞

𝑓 (𝑥, 𝑡)

𝑡
3

= 𝜇 uniformly in 𝑥,

(3)

was considered in [8]. In [9], the authors considered the 4-
superlinear case:

(AR) ∃] > 4 : ]𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡) , |𝑡| large, (4)

where 𝐹(𝑥, 𝑡) = ∫

𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠, which implies that there exists a

constant 𝑐 > 0 such that

𝐹 (𝑥, 𝑡) ≥ 𝑐 (|𝑡|
]
− 1) . (5)

Note that (AR) condition plays an important role for
showing the boundedness of Palais-Smale sequences. Fur-
thermore, by a simple calculation, it is easy to see that (AR)
condition implies that

lim
𝑡→+∞

𝐹 (𝑥, 𝑡)

𝑡
4

= +∞. (6)

Hence 𝐹(𝑥, 𝑢) grows in a 4-superlinear rate as |𝑢| → +∞.
In the present paper, motivated by [11–14], our main

purpose is to establish existence results of nontrivial solution
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for the problem (1) with𝑁 = 2, 3 when the nonlinearity term
𝑓(𝑥, ⋅) exhibits an asymmetric behavior as 𝑡 ∈ R approaches
+∞ and −∞. More precisely, we assume that, for a.e. 𝑥 ∈

Ω, 𝑓(𝑥, ⋅) grows 4-superlinear at +∞, while at −∞ it has a 4-
linear growth. To our knowledge, this asymmetric nonlocal
Kirchhoff problem is rarely considered by other people.

In case of𝑁 = 3, all the above-mentioned works involve
the nonlinear term 𝑓(𝑥, 𝑢) of a subcritical (polynomial)
growth; say,

(SCP): there exist positive constants 𝑐
1
and 𝑐
2
and 𝑞

0
∈

(3, 5) such that
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑐
1
+ 𝑐
2|𝑡|
𝑞0
, ∀𝑡 ∈ R, 𝑥 ∈ Ω. (7)

One of the main reasons to assume this condition (SCP) is
that they can use the Sobolev compact embedding𝐻1

0
(Ω) 󳨅→

𝐿
𝑞
(Ω), 1 ≤ 𝑞 < 6.
Over the years, many researchers studied the problem (1)

by trying to drop the condition (AR); see, for instance, [8, 15].
In this paper, our first main results will be to study the

problem (1) in the improved subcritical polynomial growth
as follows:

(SCPI) : lim
𝑡→∞

𝑓 (𝑥, 𝑡)

𝑡
5

= 0 (8)

which is much weaker than (SCP). Note that, in this case,
we do not have the Sobolev compact embedding anymore.
Our work is studying the asymmetric problem (1) without the
(AR) condition in the positive semiaxis. In fact, this condition
was studied by Liu and Wang in [16] in the case of Laplacian
(i.e., 𝑝 = 2) by the Nehari manifold approach. However, we
will use the Mountain Pass Theorem and a suitable version
of the Mountain Pass Theorem to get the nontrivial solution
to the problem (1) in the case that 𝑁 = 3. Our results are
different from those in [8–10, 15].

Let us now state our results. Suppose that 𝑓(𝑥, 𝑡) ∈ 𝐶(Ω×

R) and satisfies

(𝐻
1
) lim
𝑡→0

(𝑓(𝑥, 𝑡)/𝑡) = 𝑓
0
uniformly, for a.e. 𝑥 ∈ Ω,

where 𝑓
0
∈ [0, +∞);

(𝐻
2
) lim
𝑡→−∞

(𝑓(𝑥, 𝑡)/𝑡
3
) = 𝑙 uniformly, for a.e. 𝑥 ∈ Ω,

where 𝑙 ∈ [0, +∞];
(𝐻
3
) lim
𝑡→+∞

(𝑓(𝑥, 𝑡)/𝑡
3
) = +∞ uniformly, for a.e. 𝑥 ∈ Ω;

(𝐻
4
) (𝑓(𝑥, 𝑡)/𝑡3) is nonincreasing with respect to 𝑡 ≤ 0, for
a.e. 𝑥 ∈ Ω.

We need the following preliminaries.
Let 𝐸 := 𝐻

1

0
(Ω) be the Sobolev space equipped with the

inner product and the norm

⟨𝑢, V⟩ = ∫

Ω

∇𝑢∇V 𝑑𝑥, ‖𝑢‖ = ⟨𝑢, 𝑢⟩
1/2

. (9)

We denote by | ⋅ |
𝑝
the usual 𝐿𝑝-norm. Since Ω is a bounded

domain, 𝐸 󳨅→ 𝐿
𝑝
(Ω) continuously for 𝑝 ∈ [1, 6], compactly

for 𝑝 ∈ [1, 6), and there exists 𝛾
𝑝
> 0 such that

|𝑢|𝑝 ≤ 𝛾
𝑝 ‖𝑢‖ , ∀𝑢 ∈ 𝐸. (10)

Recall that function 𝑢 ∈ 𝐸 is called a weak solution of (1)
if

(1 + ‖𝑢‖
2
)∫

Ω

∇𝑢∇V 𝑑𝑥 = ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥, ∀V ∈ 𝐸. (11)

Seeking a weak solution of the problem (1) is equivalent
to finding a critical point 𝑢∗ of 𝐶1 functional as follows:

𝐼 (𝑢) :=

1

2

‖𝑢‖
2
+

1

4

‖𝑢‖
4
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥, ∀𝑢 ∈ 𝐸, (12)

where 𝐹(𝑥, 𝑢) = ∫

𝑢

0
𝑓(𝑥, 𝑠)𝑑𝑠. Then

⟨𝐼
󸀠
(𝑢
∗
) , V⟩ = (1 +

󵄩
󵄩
󵄩
󵄩
𝑢
∗󵄩󵄩
󵄩
󵄩

2
)∫

Ω

∇𝑢
∗
∇V − ∫

Ω

𝑓 (𝑥, 𝑢
∗
) V 𝑑𝑥

= 0, ∀V ∈ 𝐸.

(13)

Definition 1. Let (𝐸, ‖ ⋅ ‖
𝐸
) be a real Banach space with its dual

space (𝐸∗, ‖ ⋅ ‖
𝐸
∗) and 𝐼 ∈ 𝐶

1
(𝐸,R). For 𝑐 ∈ R, one says that

𝐼 satisfies the (PS)
𝑐
condition if, for any sequence {𝑥

𝑛
} ⊂ 𝐸

with

𝐼 (𝑥
𝑛
) 󳨀→ 𝑐, 𝐷𝐼 (𝑥

𝑛
) 󳨀→ 0 in 𝐸

∗
, (14)

there is a subsequence {𝑥
𝑛𝑘
} such that {𝑥

𝑛𝑘
} converges strongly

in 𝐸. Also, one says that 𝐼 satisfy the (𝐶)
𝑐
condition if, for any

sequence {𝑥
𝑛
} ⊂ 𝐸 with

𝐼 (𝑥
𝑛
) 󳨀→ 𝑐,

󵄩
󵄩
󵄩
󵄩
𝐷𝐼(𝑥
𝑛
)
󵄩
󵄩
󵄩
󵄩𝐸∗

(1 +
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩𝐸
) 󳨀→ 0, (15)

there is subsequence {𝑥
𝑛𝑘
} such that {𝑥

𝑛𝑘
} converges strongly

in 𝐸.

We have the following version of the Mountain Pass
Theorem (see [17, 18]).

Proposition 2. Let 𝐸 be a real Banach space and suppose that
𝐼 ∈ 𝐶
1
(𝐸, 𝑅) satisfies the condition

max {𝐼 (0) , 𝐼 (𝑢1)} ≤ 𝛼 < 𝛽 ≤ inf
‖𝑢‖=𝜌

𝐼 (𝑢) , (16)

for some 𝛼 < 𝛽, 𝜌 > 0, and 𝑢
1
∈ 𝐸 with ‖𝑢

1
‖ > 𝜌. Let 𝑐 ≥ 𝛽 be

characterized by

𝑐 = inf
𝛾∈Γ

max
0≤𝑡≤1

𝐼 (𝛾 (𝑡)) , (17)

where Γ = {𝛾 ∈ 𝐶([0, 1], 𝐸), 𝛾(0) = 0, 𝛾(1) = 𝑢
1
} is the set of

continuous paths joining 0 and 𝑢
1
.Then, there exists a sequence

{𝑢
𝑛
} ⊂ 𝐸 such that

𝐼 (𝑢
𝑛
) 󳨀→ 𝑐 ≥ 𝛽, (1 +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
󸀠
(𝑢
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩𝐸∗

󳨀→ 0

as 𝑛 󳨀→ ∞.

(18)

Lastly, we also need the following preparations.
Our assumptions lead us to the eigenvalue problem

−‖𝑢‖
2
Δ𝑢 = 𝜇𝑢

3
, in Ω,

𝑢 = 0, on 𝜕Ω,

(19)
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where 𝜇 is an eigenvalue of the problem (19) meaning that
there is a nonzero 𝑢 ∈ 𝐸 such that

‖𝑢‖
2
∫

Ω

∇𝑢∇V 𝑑𝑥 = 𝜇∫

Ω

𝑢
3V 𝑑𝑥, ∀V ∈ 𝐸. (20)

This 𝑢 is called an eigenvector corresponding to eigenvalue 𝜇.
Set

𝐼 (𝑢) = ‖𝑢‖
4
, 𝑢 ∈ 𝑆 := {𝑢 ∈ 𝐸 : ∫

Ω

𝑢
4
= 1} . (21)

Denote by 0 < 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ all distinct eigenvalues of the

nonlinear problem (19). Then

𝜇
1
:= inf
𝑢∈𝑆

𝐼 (𝑢) , (22)

where 𝜇
1
> 0 is simple and isolated and 𝜇

1
can be achieved at

some 𝜓
1
∈ 𝑆 and 𝜓

1
> 0 inΩ (see [9]).

Theorem 3. Let 𝑁 = 3 and assume that 𝑓 has the improved
subcritical polynomial growth on Ω (condition (SCPI)) and
satisfies (𝐻

1
)–(𝐻
3
). If 𝑓
0
< 𝜆
1
(𝜆
1
> 0 is the first eigenvalue of

(−Δ, 𝐸)) and 𝜇
1
< 𝑙 < ∞, then the problem (1) has at least one

nontrivial solution when 𝑙 ̸= 𝜇
𝑖
, for all 𝑖 ∈ N.

Theorem 4. Let 𝑁 = 3 and assume that 𝑓 has the improved
subcritical polynomial growth on Ω (condition (SCPI)) and
satisfies (𝐻

1
)–(𝐻
3
). If 𝑓
0
< 𝜆
1
(𝜆
1
> 0 is the first eigenvalue

of (−Δ, 𝐸)), 𝑙 = 𝜇
1
, and lim

𝑡→−∞
[𝑓(𝑥, 𝑡)𝑡 − 4𝐹(𝑥, 𝑡)] = +∞

uniformly, for a.e. 𝑥 ∈ Ω, then the problem (1) has at least one
nontrivial solution.

Here, we also give an example for 𝑓(𝑥, 𝑡). It satisfies our
conditions (𝐻

1
)–(𝐻
3
) and (SCPI).

Example A. Define

𝑓 (𝑥, 𝑡) = {

𝑔 (𝑡) |𝑡|
2
𝑡 + 𝑄 (𝑡) , 𝑡 ≤ 0,

𝑔 (𝑡) |𝑡|
2
𝑡 + ℎ (𝑡) , 𝑡 > 0,

(23)

where 𝑔(𝑡) ∈ 𝐶(𝑅), 𝑔(0) = 0; 𝑔(𝑡) ≥ 0, 𝑡 ∈ R;
ℎ(𝑡) ∈ 𝐶[0, +∞); lim

𝑡→+0
(ℎ(𝑡)/𝑡

3
) = 0; lim

𝑡→+∞
(ℎ(𝑡)/𝑡

5
) =

0; lim
𝑡→+∞

(ℎ(𝑡)/𝑡
3
) = +∞; 𝑄(𝑡) ∈ 𝐶(−∞, 0];

lim
𝑡→−0

(𝑄(𝑡)/𝑡
3
) = 0; lim

𝑡→−∞
(𝑄(𝑡)/𝑡

2
) = −1. Moreover,

there exists 𝑡
0
> 0 such that 𝑔(𝑡) ≡ 𝜇

1
for all |𝑡| ≥ 𝑡

0
.

Theorem 5. Let 𝑁 = 3 and assume that 𝑓 has the improved
subcritical polynomial growth on Ω (condition (SCPI)) and
satisfies (𝐻

1
)–(𝐻
4
). If 𝑓
0
< 𝜆
1
(𝜆
1
> 0 is the first eigenvalue

of (−Δ, 𝐸)) and 𝑙 = +∞, then the problem (1) has at least one
nontrivial solution.

In case of 𝑁 = 2, we have 2∗ = +∞. In this case, every
polynomial growth is admitted, but one knows easy examples
that𝐸 ̸⊆ 𝐿

∞
(Ω). Hence, one is led to look for a function 𝑔(𝑠) :

R → 𝑅
+ with maximal growth such that

sup
𝑢∈𝐸,‖𝑢‖≤1

∫

Ω

𝑔 (𝑢) 𝑑𝑥 < ∞. (24)

It was shown by Trudinger [19] and Moser [20] that the
maximal growth is of exponential type. So we must redefine
the subcritical (exponential) growth in this case as follows.

(SCE): 𝑓 has subcritical (exponential) growth on Ω; that
is, lim

𝑡→∞
(|𝑓(𝑥, 𝑡)|/ exp(𝛼|𝑡|2)) = 0 uniformly on 𝑥 ∈ Ω for

all 𝛼 > 0.
When 𝑁 = 2 and 𝑓 has the subcritical (exponential)

growth (SCE), our work is again studying the asymmetric
problem (1) without the (AR) condition in the positive
semiaxis. Our results are as follows.

Theorem 6. Let𝑁 = 2 and assume that 𝑓 has the subcritical
exponential growth on Ω (condition (SCE)) and satisfies
(𝐻
1
)–(𝐻
3
). If𝑓
0
< 𝜆
1
(𝜆
1
> 0 is the first eigenvalue of (−Δ, 𝐸))

and𝜇
1
< 𝑙 < ∞, then the problem (1) has at least one nontrivial

solution when 𝑙 ̸= 𝜇
𝑖
, for all 𝑖 ∈ N.

Theorem 7. Let 𝑁 = 2 and assume that 𝑓 has the subcritical
exponential growth on Ω (condition (SCE)) and satisfies
(𝐻
1
)–(𝐻
3
). If 𝑓

0
< 𝜆
1
(𝜆
1

> 0 is the first eigenvalue of
(−Δ, 𝐸)), 𝑙 = 𝜇

1
, and lim

𝑡→−∞
[𝑓(𝑥, 𝑡)𝑡 − 4𝐹(𝑥, 𝑡)] = +∞

uniformly, for a.e. 𝑥 ∈ Ω, then the problem (1) has at least one
nontrivial solution.

Theorem 8. Let 𝑁 = 2 and assume that 𝑓 has the subcritical
exponential growth on Ω (condition (SCE)) and satisfies
(𝐻
1
)–(𝐻
4
). If 𝑓

0
< 𝜆
1
(𝜆
1

> 0 is the first eigenvalue
of (−Δ, 𝐸)) and 𝑙 = +∞, then the problem (1) has at least one
nontrivial solution.

2. Some Lemmas

Lemma 9. Let 𝑁 = 3 and let 𝜓
1
> 0 be a 𝜇

1
eigenfunction

with ‖𝜓
1
‖ = 1 and assume that (𝐻

1
)–(𝐻
3
) and (SCPI) hold. If

𝑓
0
< 𝜆
1
(𝜆
1
> 0 is the first eigenvalue of (−Δ, 𝐸)) and 𝜇

1
< 𝑙 <

∞, then

(i) there exist 𝜌, 𝛼 > 0 such that 𝐼(𝑢) ≥ 𝛼, for all 𝑢 ∈ 𝐸

with ‖𝑢‖ = 𝜌;
(ii) 𝐼(𝑡𝜓

1
) → −∞ as 𝑡 → +∞.

Proof. By (SCPI) and (𝐻
1
)–(𝐻
3
), if 𝑙 ∈ (𝜇

1
, +∞), for any 𝜀 >

0, there exist 𝐴
1
= 𝐴
1
(𝜀) and 𝐵

1
= 𝐵
1
(𝜀) such that, for all

(𝑥, 𝑠) ∈ Ω ×R,

𝐹 (𝑥, 𝑠) ≤

1

2

(𝑓
0
+ 𝜀) |𝑠|

2
+ 𝐴
1|𝑠|
6
, (25)

𝐹 (𝑥, 𝑠) ≥

1

4

(𝑙 − 𝜀) |𝑠|
4
− 𝐵
1

if 𝑙 ∈ (𝜇
1
, +∞) . (26)

Choose 𝜀 > 0 such that (𝑓
0
+ 𝜀) < 𝜆

1
. By (25), the Poincaré

inequality, and the Sobolev inequality, |𝑢|6
6
≤ 𝐾‖𝑢‖

6, we get

𝐼 (𝑢) ≥

1

2

‖𝑢‖
2
+

1

4

‖𝑢‖
4
−

𝑓
0
+ 𝜀

2

|𝑢|
2

2
− 𝐴
1|𝑢|
6

6

≥

1

2

(1 −

𝑓
0
+ 𝜀

𝜆
1

) ‖𝑢‖
2
− 𝐴
1
𝐾‖𝑢‖
6
.

(27)

So part (i) is proved if we choose ‖𝑢‖ = 𝜌 > 0 small enough.
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On the other hand, if 𝑙 ∈ (𝜇
1
, +∞), taking 𝜀 > 0 such that

𝑙 − 𝜀 > 𝜇
1
and using (26), we have

𝐼 (𝑡𝜓
1
) ≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

2
+

1

4

(1 −

𝑙 − 𝜀

𝜇
1

) 𝑡
4󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

4

+ 𝐵
1 |Ω| 󳨀→ −∞ as 𝑡 󳨀→ −∞.

(28)

Thus part (ii) is proved. By exactly slight modification to the
proof above, we can prove (ii) if 𝑙 = +∞.

Lemma 10 (see [19, 20]). Let 𝑢 ∈ 𝑊
1,2

0
(Ω); then exp(|𝑢|2) ∈

𝐿
𝑞
(Ω), for all 1 ≤ 𝑞 < ∞. Moreover,

lim
𝑢∈𝐸,‖𝑢‖≤1

∫

Ω

exp (𝛼|𝑢|2) 𝑑𝑥 ≤ 𝐶 (Ω) for 𝛼 ≤ 𝛼
2
= 4𝜋
2
.

(29)

The inequality is optimal; for any growth exp(𝛼|𝑢|2) with 𝛼 >

𝛼
2
the corresponding supremum is +∞.

Lemma 11. Let 𝑁 = 2 and let 𝜓
1
> 0 be a 𝜇

1
eigenfunction

with ‖𝜓
1
‖ = 1 and assume that (𝐻

1
)–(𝐻
3
) and (SCE) hold. If

𝑓
0
< 𝜆
1

(𝜆
1
> 0 is the first eigenvalue of (−Δ, 𝐸)) and 𝜇

1
<

𝑙 < ∞, then

(i) there exist 𝜌, 𝛼 > 0 such that 𝐼(𝑢) ≥ 𝛼, for all 𝑢 ∈ 𝐸

with ‖𝑢‖ = 𝜌;
(ii) 𝐼(𝑡𝜓

1
) → −∞ as 𝑡 → +∞.

Proof . By (SCE) and (𝐻
1
)–(𝐻
3
), if 𝑙 ∈ (𝜇

1
, +∞), for any 𝜀 >

0, there exist 𝐴
1
= 𝐴
1
(𝜀), 𝐵
1
= 𝐵
1
(𝜀), 𝜅 > 0, and 𝑞 > 4 such

that, for all (𝑥, 𝑠) ∈ Ω ×R,

𝐹 (𝑥, 𝑠) ≤

1

2

(𝑓
0
+ 𝜀) |𝑠|

2
+ 𝐴
1
exp (𝜅|𝑠|2) |𝑠|𝑞, (30)

𝐹 (𝑥, 𝑠) ≥

1

4

(𝑙 − 𝜀) |𝑠|
4
− 𝐵
1

if 𝑙 ∈ (𝜇
1
, +∞) . (31)

Choose 𝜀 > 0 such that (𝑓
0
+ 𝜀) < 𝜆

1
. By (30), the Holder

inequality, and the Moser-Trudinger embedding inequality,
we get

𝐼 (𝑢) ≥

1

2

‖𝑢‖
2
−

𝑓
0
+ 𝜀

2

|𝑢|
2

2
+

1

4

‖𝑢‖
4

− 𝐴
1
∫

Ω

exp (𝜅|𝑢|2) |𝑢|𝑞𝑑𝑥

≥

1

2

(1 −

𝑓
0
+ 𝜀

𝜆
1

) ‖𝑢‖
2
+

1

4

‖𝑢‖
4

− 𝐴
1
(∫

Ω

exp(𝜅𝑟‖𝑢‖2( |𝑢|

‖𝑢‖

)

2

)𝑑𝑥)

1/𝑟

× (∫

Ω

|𝑢|
𝑟
󸀠
𝑞
𝑑𝑥)

1/𝑟
󸀠

≥

1

2

(1 −

𝑓
0
+ 𝜀

𝜆
1

) ‖𝑢‖
2
+

1

4

‖𝑢‖
4
− 𝐶‖𝑢‖

𝑞
,

(32)

where 𝑟 > 1 is sufficiently close to 1, ‖𝑢‖ ≤ 𝜎, and 𝜅𝑟𝜎2 < 4𝜋
2.

So part (i) is proved if we choose ‖𝑢‖ = 𝜌 > 0 small enough.
On the other hand, if 𝑙 ∈ (𝜇

1
, +∞), taking 𝜀 > 0 such that

𝑙 − 𝜀 > 𝜇
1
and using (31), we have

𝐼 (𝑡𝜓
1
) ≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

2
+

1

4

(1 −

𝑙 − 𝜀

𝜇
1

) 𝑡
4󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

4

+ 𝐵
1 |Ω| 󳨀→ −∞ as 𝑡 󳨀→ −∞.

(33)

Thus part (ii) is proved. By exactly slight modification to the
proof above, we can prove (ii) if 𝑙 = +∞. By exactly slight
modification to the proof above, we can prove (ii) if 𝑙 = +∞.

Lemma 12. For the functional 𝐼 defined by (19), if 𝑢
𝑛
(𝑥) ≤ 0,

a.e. 𝑥 ∈ Ω, 𝑛 ∈ N, and

⟨𝐼
󸀠
(𝑢
𝑛
) , 𝑢
𝑛
⟩ 󳨀→ 0 as 𝑛 󳨀→ ∞, (34)

then there exists a subsequence, still denoted by {𝑢
𝑛
}, such that

𝐼 (𝑡𝑢
𝑛
) ≤

𝑡
2

2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1 + 𝑡
4

4𝑛

+ 𝐼 (𝑢
𝑛
) , ∀𝑡 ≥ 0, 𝑛 ∈ N. (35)

Proof . Since ⟨𝐼
󸀠
(𝑢
𝑛
), 𝑢
𝑛
⟩ → 0 as 𝑛 → ∞, for a suitable

subsequence, we may assume that

−

1

𝑛

< ⟨𝐼
󸀠
(𝑢
𝑛
) , 𝑢
𝑛
⟩ = (1 +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2

− ∫

Ω

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛𝑑𝑥 <

1

𝑛

, ∀𝑛.

(36)

We claim that, for any 𝑡 ≥ 0 and 𝑛 ∈ N,

𝐼 (𝑡𝑢
𝑛
) ≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

𝑡
4

4𝑛

+ ∫

Ω

{

1

4

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 − 𝐹 (𝑥, 𝑢

𝑛 (𝑥))} 𝑑𝑥.

(37)

Indeed, for any 𝑡 ≥ 0, at fixed 𝑥 ∈ Ω and 𝑛 ∈ N, if we set

ℎ (𝑡) =

1

4

𝑡
4
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛 (𝑥) − 𝐹 (𝑥, 𝑡𝑢

𝑛 (𝑥)) ,
(38)

then

𝑡
3
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛 (𝑥) − 𝑓 (𝑥, 𝑡𝑢

𝑛
) 𝑢
𝑛 (𝑥)

= 𝑡
3
𝑢
𝑛 (𝑥) {𝑓 (𝑥, 𝑢

𝑛
) −

𝑓 (𝑥, 𝑡𝑢
𝑛 (𝑥))

𝑡
3

}

ℎ
󸀠
(𝑡) = {

≥ 0 for 0 < 𝑡 ≤ 1

≤ 0 for 𝑡 ≥ 1

by (𝐻
4
) .

(39)

Hence

ℎ (𝑡) ≤ ℎ (1) , ∀𝑡 ≥ 0. (40)
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Therefore,

𝐼 (𝑡𝑢
𝑛
) =

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1

4

𝑡
4󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

4
− ∫

Ω

𝐹 (𝑥, 𝑡𝑢
𝑛 (𝑥)) 𝑑𝑥

<

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1

4

𝑡
4
{

1

𝑛

+ ∫

Ω

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 (𝑥) 𝑑𝑥}

− ∫

Ω

𝐹 (𝑥, 𝑡𝑢
𝑛 (𝑥)) 𝑑𝑥

≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

𝑡
4

4𝑛

+ ∫

Ω

{

1

4

𝑡
4
𝑓 (𝑥, 𝑢

𝑛 (𝑥)) 𝑢𝑛 (𝑥) − 𝐹 (𝑥, 𝑡𝑢
𝑛 (𝑥))} 𝑑𝑥

≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

𝑡
4

4𝑛

+ ∫

Ω

{

1

4

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 (𝑥) − 𝐹 (𝑥, 𝑢

𝑛 (𝑥))} 𝑑𝑥

(41)

and our claim (37) is proved.
On the other hand,

𝐼 (𝑢
𝑛
) =

1

2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1

4

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

4
− ∫

Ω

𝐹 (𝑥, 𝑢
𝑛 (𝑥)) 𝑑𝑥

≥

1

4

{−

1

𝑛

+ ∫

Ω

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 (𝑥) 𝑑𝑥}

− ∫

Ω

𝐹 (𝑥, 𝑢
𝑛 (𝑥)) 𝑑𝑥.

(42)

That is,

∫

Ω

{

1

4

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 (𝑥) − 𝐹 (𝑥, 𝑢

𝑛 (𝑥))} 𝑑𝑥 ≤

1

4𝑛

+ 𝐼 (𝑢
𝑛
) .

(43)

Combining (37) and (43), we find that

𝐼 (𝑡𝑢
𝑛
) ≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1 + 𝑡
4

4𝑛

+ 𝐼 (𝑢
𝑛
) , ∀𝑡 ≥ 0, 𝑛 ∈ N.

(44)

3. Proofs of the Main Results

Proof of Theorem 3. By Lemma 9, the geometry conditions of
Mountain Mass Theorem hold. So we only need to verify
condition (PS). Let {𝑢

𝑛
} ⊂ 𝐸 be a (PS) sequence such that,

for every 𝑛 ∈ N,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1

4

‖𝑢‖
4
− ∫

Ω

𝐹 (𝑥, 𝑢
𝑛
) 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐, (45)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 +
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
)∫

Ω

∇𝑢
𝑛
∇V 𝑑𝑥 − ∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) V 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜀
𝑛 ‖V‖

V ∈ 𝐸,

(46)

where 𝑐 > 0 is a positive constant and {𝜀
𝑛
} ⊂ R+ is a sequence

which converges to zero.

Step 1. In order to prove that {𝑢
𝑛
} has a convergence subse-

quence, we first show that it is a bounded sequence. To do this,
we argue by contradiction assuming that, for a subsequence
which we follow denoted by {𝑢

𝑛
}, we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󳨀→ +∞ as 𝑛 󳨀→ ∞. (47)

Without loss of generality, we can assume that ‖𝑢
𝑛
‖ > 1, for

all 𝑛 ∈ N, and define 𝑧
𝑛
= 𝑢
𝑛
/‖𝑢
𝑛
‖. Obviously, ‖𝑧

𝑛
‖ = 1,

for all 𝑛 ∈ N, and then it is possible to extract a subsequence
(denoted also by {𝑧

𝑛
}) such that

𝑧
𝑛
⇀ 𝑧
0

in 𝐸, (48)

𝑧
𝑛
󳨀→ 𝑧
0

in 𝐿
4
(Ω) , (49)

𝑧
𝑛 (𝑥) 󳨀→ 𝑧

0 (𝑥) a.e. 𝑥 ∈ Ω, (50)
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝑞 (𝑥) a.e. 𝑥 ∈ Ω, (51)

where 𝑧
0
∈ 𝐸 and 𝑞 ∈ 𝐿

4
(Ω). Dividing both sides of (46) by

‖𝑢
𝑛
‖
3, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 +
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
)
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

−2
∫

Ω

∇𝑧
𝑛
∇V 𝑑𝑥 − ∫

Ω

𝑓 (𝑥, 𝑢
𝑛
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
V 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝜀
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
‖V‖ , ∀V ∈ 𝐸.

(52)

Passing to the limit we deduce from (48) that

lim
𝑛→∞

∫

Ω

𝑓 (𝑥, 𝑢
𝑛
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
V 𝑑𝑥 = ∫

Ω

∇𝑧
0
∇V 𝑑𝑥, (53)

for all V ∈ 𝐸.
Now we claim that 𝑧

0
(𝑥) ≤ 0 for a.e. 𝑥 ∈ Ω. To verify this,

let us observe that by choosing V = 𝑧
+

0
= max{𝑧

0
, 0} in (53)

we have

lim
𝑛→∞

∫

Ω
+

𝑓 (𝑥, 𝑢
𝑛
)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
𝑧
0
𝑑𝑥 = ∫

Ω
+

󵄨
󵄨
󵄨
󵄨
∇𝑧
0

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 < +∞, (54)

where Ω+ = {𝑥 ∈ Ω | 𝑧
0
(𝑥) > 0}. But, on the other hand,

from (𝐻
2
) and (𝐻

3
),

𝑓 (𝑥, 𝑢
𝑛 (𝑥))

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
𝑧
0 (𝑥) ≥ (−𝑙𝑞(𝑥)

3
− 𝐾
1
) 𝑧
0 (𝑥) , a.e. 𝑥 ∈ Ω,

(55)

for some positive constant 𝐾
1

> 0. Moreover, using
lim
𝑛→∞

𝑢
𝑛
(𝑥) = +∞, for a.e. 𝑥 ∈ Ω

+, (50), and the
superlinearity of 𝑓 (see (𝐻

3
)), we also deduce

lim
𝑛→∞

𝑓 (𝑥, 𝑢
𝑛 (𝑥))

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
𝑧
0 (𝑥) = lim

𝑛→∞

𝑓 (𝑥, 𝑢
𝑛 (𝑥))

𝑢
3

𝑛

𝑧
𝑛(𝑥)
3
𝑧
0 (𝑥)

= +∞, a.e. 𝑥 ∈ Ω
+
.

(56)
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Therefore, if |Ω+| > 0, by the Fatou lemma, we will obtain
that

lim
𝑛→∞

∫

Ω
+

𝑓 (𝑥, 𝑢
𝑛 (𝑥))

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

3
𝑧
0 (𝑥) 𝑑𝑥 = +∞ (57)

which contradicts (54).Thus |Ω+| = 0 and the claim is proved.

Clearly, 𝑧
0
(𝑥) ̸≡ 0. By (𝐻

2
), there exists 𝑐 > 0 such that

|𝑓(𝑥, 𝑢
𝑛
)|/|𝑢
𝑛
|
3
≤ 𝑐 for a.e. 𝑥 ∈ Ω. By using the Lebesgue

dominated convergence theorem in (53), we have

󵄩
󵄩
󵄩
󵄩
𝑧
0

󵄩
󵄩
󵄩
󵄩

2
∫

Ω

∇𝑧
0
∇V 𝑑𝑥 − ∫

Ω

𝑙𝑧
3

0
V 𝑑𝑥 = 0, (58)

for all V ∈ 𝐸. This contradicts our assumption; that is, 𝑙 ̸= 𝜇
𝑖
,

for all 𝑖 ∈ N.

Step 2. Now, we prove that {𝑢
𝑛
} has a convergence subse-

quence. In fact, we can suppose that

𝑢
𝑛
⇀ 𝑢 in 𝐸,

𝑢
𝑛
󳨀→ 𝑢 in 𝐿

𝑞
(Ω) , ∀1 ≤ 𝑞 < 6,

𝑢
𝑛 (𝑥) 󳨀→ 𝑢 (𝑥) a.e. 𝑥 ∈ Ω.

(59)

Now, since 𝑓 has the subcritical growth onΩ, for every 𝜖 > 0,
we can find a constant 𝐶(𝜖) > 0 such that

𝑓 (𝑥, 𝑠) ≤ 𝐶 (𝜖) + 𝜖|𝑠|
5
, ∀ (𝑥, 𝑠) ∈ Ω ×R. (60)

Then
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢
𝑛
− 𝑢) 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (𝜖) ∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥 + 𝜖∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨

5
𝑑𝑥

≤ 𝐶 (𝜖) ∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

+ 𝜖(∫

Ω

(
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨

5
)

6/5

𝑑𝑥)

5/6

(∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨

6
)

1/6

≤ 𝐶 (𝜖) ∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥 + 𝜖𝐶 (Ω) .

(61)

Similarly, since 𝑢
𝑛
⇀ 𝑢 in 𝐸, ∫

Ω
|𝑢
𝑛
− 𝑢|𝑑𝑥 → 0. Since 𝜖 > 0

is arbitrary, we can conclude that

∫

Ω

(𝑓 (𝑥, 𝑢
𝑛
) − 𝑓 (𝑥, 𝑢)) (𝑢𝑛 − 𝑢) 𝑑𝑥 󳨀→ 0 as 𝑛 󳨀→ ∞.

(62)

By (46), we have

⟨𝐼
󸀠
(𝑢
𝑛
) − 𝐼
󸀠
(𝑢) , (𝑢𝑛 − 𝑢)⟩ 󳨀→ 0 as 𝑛 󳨀→ ∞. (63)

From (62) and (63), we obtain
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󳨀→ ‖𝑢‖ as 𝑛 󳨀→ ∞. (64)

So we have 𝑢
𝑛
→ 𝑢 in 𝐸 which means that 𝐼 satisfies (PS).

Proof of Theorem 4. Since 𝑙 = 𝜆
1
, obviously, Lemma 9 (i)

holds. We only need to show that Lemma 9 (ii) holds. Let
𝑢 = 𝑡𝜓

1
. Using the condition (𝐻

3
), then there exists 𝑀 > 0

large enough such that

𝐹 (𝑥, 𝑡) ≥ 𝑀𝑡
4
− 𝑐, (65)

for all 𝑥 ∈ Ω and 𝑡 large enough. So we have

𝐼 (𝑡𝜓
1
) ≤

1

2

𝑡
2󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

2
+

1

4

𝑡
4󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

4
−𝑀𝑡
4󵄩󵄩
󵄩
󵄩
𝜓
1

󵄩
󵄩
󵄩
󵄩

4

+ 𝐶 󳨀→ −∞ as 𝑡 󳨀→ +∞.

(66)

By Proposition 2, there exists a sequence {𝑢
𝑛
} ⊂ 𝐸 such that

𝐼 (𝑢
𝑛
) =

1

2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2
+

1

4

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

4
− ∫

Ω

𝐹 (𝑥, 𝑢
𝑛
) 𝑑𝑥 = 𝑐 + ∘ (1) ,

(67)

(1 +
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
󸀠
(𝑢
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩𝐸∗

󳨀→ 0 as 𝑛 󳨀→ ∞. (68)

Clearly, (68) implies that

⟨𝐼
󸀠
(𝑢
𝑛
) , 𝑢
𝑛
⟩ =

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

4
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2

− ∫

Ω

𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛𝑑𝑥 = ∘ (1) .

(69)

To complete our proof, we first need to verify that {𝑢
𝑛
} is

bounded in 𝐸. Similar to the proof of Theorem 3, we have
𝑧
0
(𝑥) ≤ 0, 𝑥 ∈ Ω, 𝑧

0
(𝑥) ̸≡ 0, and

󵄩
󵄩
󵄩
󵄩
𝑧
0

󵄩
󵄩
󵄩
󵄩

2
∫

Ω

∇𝑧
0
∇V 𝑑𝑥 − ∫

Ω

𝑙𝑧
3

0
V 𝑑𝑥 = 0, (70)

for all V ∈ 𝐸. By maximum principle, 𝑧
0

< 0 is an
eigenfunction of 𝜇

1
; then |𝑢

𝑛
(𝑥)| → ∞ for a.e. 𝑥 ∈ Ω. By

our assumptions, we have

lim
𝑛→∞

(𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 (𝑥) − 4𝐹 (𝑥, 𝑢

𝑛 (𝑥))) = +∞ (71)

uniformly in 𝑥 ∈ Ω, which implies that

∫

Ω

(𝑓 (𝑥, 𝑢
𝑛 (𝑥)) 𝑢𝑛 (𝑥) − 4𝐹 (𝑥, 𝑢

𝑛 (𝑥))) 𝑑𝑥 󳨀→ +∞

as 𝑛 󳨀→ ∞.

(72)

On the other hand, (69) implies that

4𝐼 (𝑢
𝑛
) − ⟨𝐼

󸀠
(𝑢
𝑛
) , 𝑢
𝑛
⟩ 󳨀→ 4𝑐 as 𝑛 󳨀→ ∞. (73)

Thus

∫

Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢
𝑛
− 4𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥 󳨀→ −∞ as 𝑛 󳨀→ ∞,

(74)

which contradicts (72). Hence {𝑢
𝑛
} is bounded. According to

the Step 2 proof of Theorem 3, we have 𝑢
𝑛
→ 𝑢 in 𝐸 which

means that 𝐼 satisfies (𝐶
𝑐
).
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Proof of Theorem 5. By Lemma 9 and Proposition 2, (67)–
(69) hold. We still can prove that {𝑢

𝑛
} is bounded in 𝐸.

Assume that ‖𝑢
𝑛
‖ → +∞ as 𝑛 → ∞. Similar to the proof

of Theorem 3, we have 𝑧
0
(𝑥) ≤ 0 and when 𝑧

0
(𝑥) < 0,

𝑢
𝑛
= 𝑧
𝑛
‖𝑢
𝑛
‖ → −∞ as 𝑛 → ∞. Let

𝑠
𝑛
=

𝑚

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

, 𝑤
𝑛
= 𝑠
𝑛
𝑢
𝑛
=

𝑚𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

, (75)

where 𝑚 = √2[𝑐
1/2

+ 𝑐
1/4

]. Since {𝑤
𝑛
} is bounded in 𝐸, it is

possible to extract a subsequence (denoted also by {𝑤
𝑛
}) such

that
𝑤
𝑛
⇀ 𝑤
0

in 𝐸,

𝑤
𝑛
󳨀→ 𝑤

0
in 𝐿
4
(Ω) ,

𝑤
𝑛 (𝑥) 󳨀→ 𝑤

0 (𝑥) a.e. 𝑥 ∈ Ω,

󵄨
󵄨
󵄨
󵄨
𝑤
𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ ℎ (𝑥) a.e. 𝑥 ∈ Ω,

(76)

where 𝑤
0
∈ 𝐸 and ℎ ∈ 𝐿

4
(Ω).

If ‖𝑢
𝑛
‖ → +∞ as 𝑛 → ∞, then 𝑤

0
(𝑥) ≡ 0. In fact,

letting Ω
−
= {𝑥 ∈ Ω : 𝑤

0
(𝑥) < 0} and noticing 𝑙 = +∞, it

follows from (𝐻
3
) that

𝑓 (𝑥, 𝑢
𝑛
)

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨

2
𝑢
𝑛

≥ 𝑀 uniformly for all 𝑥 ∈ Ω
−
, (77)

where 𝑀 is a large enough constant. Therefore, by (69) and
(75), we have

𝑚
4
= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑤
𝑛

󵄩
󵄩
󵄩
󵄩

4

= lim
𝑛→∞

∫

Ω

𝑓 (𝑥, 𝑢
𝑛
)

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨

2
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨
𝑤
𝑛

󵄨
󵄨
󵄨
󵄨

4
𝑑𝑥

≥ lim
𝑛→∞

∫

Ω
−

𝑓 (𝑥, 𝑢
𝑛
)

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨

2
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨
𝑤
𝑛

󵄨
󵄨
󵄨
󵄨

4
𝑑𝑥

≥ 𝑀 lim
𝑛→∞

∫

Ω
−

󵄨
󵄨
󵄨
󵄨
𝑤
0

󵄨
󵄨
󵄨
󵄨

4
𝑑𝑥.

(78)

So𝑤
0
≡ 0 for a.e. 𝑥 ∈ Ω. But if𝑤

0
≡ 0, then ∫

Ω
𝐹(𝑥, 𝑤

𝑛
)𝑑𝑥 →

0. Hence

𝐼 (𝑤
𝑛
) =

𝑚
2

2

+

𝑚
4

4

. (79)

On the other hand, by ‖𝑢
𝑛
‖ → ∞ as 𝑛 → ∞, we have 𝑠

𝑛
→

0 as 𝑛 → ∞. From Lemma 12 and (67), we get

𝐼 (𝑤
𝑛
) = 𝐼 (𝑠

𝑛
𝑢
𝑛
)

≤

𝑚
2

2

+

1 + (𝑠
𝑛
)
4

4𝑛

+ 𝐼 (𝑢
𝑛
)

≤ 𝑐 +

𝑚
2

2

, as 𝑛 󳨀→ ∞.

(80)

Obviously, it contradicts (79). So {𝑢
𝑛
} is bounded in 𝐸.

According to the Step 2 proof ofTheorem 3, we have 𝑢
𝑛
→ 𝑢

in 𝐸 which means that 𝐼 satisfies (𝐶
𝑐
).

Proof of Theorem 6. By Lemma 11, the geometry conditions
of Mountain Pass Theorem hold. So we only need to verify
condition (PS). Similar to the Step 1 proof of Theorem 3, we
easily know that (PS) sequence {𝑢

𝑛
} is bounded in𝐸. Next, we

prove that {𝑢
𝑛
} has a convergence subsequence. Without loss

of generality, suppose that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
≤ 𝛽,

𝑢
𝑛
⇀ 𝑢 in 𝐸,

𝑢
𝑛
󳨀→ 𝑢 in 𝐿

𝑞
(Ω) , ∀𝑞 ≥ 1,

𝑢
𝑛 (𝑥) 󳨀→ 𝑢 (𝑥) a.e. 𝑥 ∈ Ω.

(81)

Now, since𝑓 has the subcritical exponential growth (SCE) on
Ω, we can find a constant 𝐶

𝛽
> 0 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶
𝛽
exp( 𝛼

2

2𝛽
2
|𝑡|
2
) , ∀ (𝑥, 𝑡) ∈ Ω ×R. (82)

Thus, by the Moser-Trudinger inequality (see Lemma 10),
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢
𝑛
− 𝑢) 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶(∫

Ω

exp(𝛼
2

𝛽
2

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

󵄨
󵄨
󵄨
󵄨

2
)𝑑𝑥)

1/2

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨2

≤ 𝐶(∫

Ω

exp(𝛼
2

𝛽
2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

)𝑑𝑥)

1/2

󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨2

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛
− 𝑢

󵄨
󵄨
󵄨
󵄨2
󳨀→ 0.

(83)

Similar to the last proof of Theorem 3, we have 𝑢
𝑛
→ 𝑢 in 𝐸

which means that 𝐼 satisfies (PS).

Proof of Theorem 7. Combining the proof ofTheorems 4 and
6, we easily prove it.

Proof of Theorem 8. Combining the proof ofTheorems 5 and
6, we easily prove it.
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