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The chirp signal exp(𝑖𝜋(𝑥−𝑦)
2
) is a typical example of CAZAC (constant amplitude zero autocorrelation) sequence. Using the chirp

signals, the chirp z transform and the chirp-Fourier transform were defined in order to calculate the discrete Fourier transform.
We define a transform directly from the chirp signals for an even or odd number 𝑁 and the continuous version. We study the
fundamental properties of the transform and how it can be applied to recursion problems and differential equations. Furthermore,
when 𝑁 is not prime and 𝑁 = 𝑀𝐿, we define a transform skipped 𝐿 and develop the theory for it.

1. Introduction

Chirp signal has beenwidely used in technology, for example,
the radar system [1], as the linear FM pulse signal, the
spectrum analyser as the sweep signal, the communications
as the chirp modulation signal [2], and CAZAC sequence.
Since the CAZAC sequences have constant amplitude and
zero autocorrelation properties, they are now widely used
in the fields of channel estimation and time and frequency
synchronizations for OFDM (orthogonal frequency division
multiplexing) and CDMA (code division multiple access)
techniques which are employed as the standard transmission
techniques in the wireless communications systems [3–5].
For the discrete Fourier transform theory, attached the chirp
signal and Fourier transform, two kinds of transforms were
already defined, namely, chirp z transform and chirp-Fourier
transform. The first transform is (i) Fourier transform, (ii)
product with the chirp signal, the second one is (i) product
with the chirp signal (ii) Fourier transform [6]. These trans-
forms were investigated mainly for the calculation of discrete
Fourier transform (DFT).

In this paper, we define another transform directly treat-
ing the chirp signal, which is equal to (i) the product of
the chirp signal, (ii) Fourier transform, and (iii) the product
of the chirp signal, and which has a new meaning. Our
motivation is totally different with the ones for the chirp z

transform and the chirp-Fourier transform. We name it as
chirp signal transform and consider the transform for an even
or odd number 𝑁, continuous case, and skipped version in
the case of 𝑁 = 𝐿𝑀. We calculate firstly some examples for
the transform of discrete, continuous, and skipped versions.
Secondly, we show the inverse transform for the transform
elementary, not using usual Fourier transform theory.Thirdly
we study the properties of the original chirp signal, which is
fundamental for our theory. Finally, we apply the transform
to the theory of recursion problems and ordinary differential
and partial differential equations.

Chirp z transform and chirp-Fourier transform are based
on the “orthogonality” of exp(𝑖2𝜋𝑥𝑦), 𝑦 ∈ R; on the
other hand, our chirp signal transform is founded on the
orthogonality of exp(𝑖𝜋(𝑥 − 𝑦)

2
), 𝑦 ∈ R. These three kinds

of transforms are changed to each other by the unitary
transform exp(𝑖𝜋𝑥2) and exp(𝑖𝜋𝑦2); however, the represented
meanings are completely different. The two transforms’ 𝑦 is
the meaning of the frequency and the remaining one’s 𝑦 is
the meaning of the position. The chirp signal exp(𝑖𝜋(𝑥 −

V𝑡)
2
) is useful for the radar, because it can be generated

by simple liner FM pulse which can increase the frequency
bandwidth of pulse and accordingly improve the accuracy
of range measurement. Moreover, the chirp signals (LFM or
NLFM) have satisfied properties of ambiguity function for
radar application. The chirp signal transform shows that any
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𝐿2-function is represented as a sum of such chirp signals with
different central positions.

Furthermore, let 𝐿 and 𝐿 be (𝜕/𝜕𝑥) + 𝑖2𝜋𝑥 and (𝜕/𝜕𝑥) −

𝑖2𝜋𝑥. Since [𝐿, 𝐿] = 4𝜋𝑖, the set {𝐿, 𝐿} generates the Lie
algebra 𝑠𝑙(2,C). Additionally, 𝐹𝐿 = 𝑖2𝜋𝑦𝐹 and 𝐹𝐿 = −𝑖2𝜋𝑦𝐹.
It seems that the set {𝐿, 𝐿, 𝐹, 𝐹} has a good property for
representation theory. It is very similar to the construction for
the solution of harmonic oscillator in quantummechanics by
𝐿 and 𝐿. We expect to develop the algebraic theory for using
the relationship of the differential operators𝐿, 𝐿 and the chirp
transforms 𝐹, 𝐹 in order to solve some differential equations.

2. Definitions, Notations, and Examples

In this section, we define chirp signal transform for discrete,
continuous, and skipped versions.

For an even (resp., odd) 𝑁 and a constant number 𝑎 with
(𝑎, 𝑁) = 1, we define chirp signal transform 𝐹 of the function
over the set {0, 1, 2, . . . , 𝑁 − 1}. Consider

𝐹 (𝑓) (𝑦) =
1

√𝑁

𝑁−1

∑
𝑥=0

exp(𝑖
𝑎𝜋

𝑁
(𝑥 − 𝑦)

2

) 𝑓 (𝑥)

(resp.,
1

√𝑁

𝑁−1

∑
𝑥=0

exp(
𝑖𝑎𝜋 (𝑥 − 𝑦) (𝑥 + 1 − 𝑦)

𝑁
) 𝑓 (𝑥)) .

(1)

When 𝑁 is odd especially, 𝐹𝑓(𝑦) can be also defined by
(1/√𝑁) ∑

𝑁−1

𝑥=0
exp((𝑖2𝜋(𝑥 − 𝑦)(𝑥 + 1 − 𝑦))/𝑁)𝑓(𝑥).

On the other hand, we also define chirp signal transform
𝐹 for continuous version, for 𝐿2(R),

𝐹 (𝑓) (𝑦) := ∫
∞

−∞

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑓 (𝑥) 𝑑𝑥. (2)

Since exp(𝑖𝜋(𝑥 − 𝑦)
2
) = exp(𝑖𝜋𝑦2) ⋅ exp(−𝑖2𝜋𝑥𝑦) exp(𝑖𝜋𝑥2),

the left hand side 𝐹(𝑓)(𝑦) is equal to

exp (𝑖𝜋𝑦
2
) (∫
∞

−∞

exp (−𝑖2𝜋𝑥𝑦) (exp (𝑖𝜋𝑥
2
) 𝑓 (𝑥))) 𝑑𝑥.

(3)

We denote exp(𝑖𝜋𝑥
2
)𝑓(𝑥) to be (𝑈𝑓)(𝑥) and the Fourier

transform as F; then, 𝐹 is also written as 𝑈F𝑈. It is also
the same for discrete cases. The transforms 𝑈F andF𝑈 are
called as chirp z transform and chirp-Fourier transform [6].

Let 𝑁 be even and divided as 𝐿 ⋅ 𝑀. Then, we write

𝑒
𝐿,𝑁

(𝑥) =
{

{

{

exp(𝑖
𝜋

𝐿𝑁
𝑥2) , if 𝑥 | 𝐿

0, if 𝑥 ∤ 𝐿.
(4)

We define chirp signal transform 𝐹
𝐿,𝑁

as (𝐹
𝐿,𝑁

𝑓)(𝑦) = (1/

√𝑀) ∑
𝑁−1

𝑥=0
𝑓(𝑥) ⋅ 𝑒

𝐿,𝑁
(𝑥 − 𝑦).

If 𝑁 is odd, both 𝑐 and 𝑑 are even or odd with (𝑐, 𝑁) = 1,
and 𝑁 = 𝐿𝑀, then we define

𝑒
𝐿,𝑁

(𝑥) =
{

{

{

exp(𝑖
𝜋𝑥

𝐿𝑁
(𝑐𝑥 + 𝑑)) , if 𝑥 | 𝐿

0, if 𝑥 ∤ 𝐿.
(5)

In the following, we calculate some examples for the
above chirp signal transform 𝐹.

(i) For 𝑎 < 𝑏, let 𝜒
[𝑎,𝑏]

be the step function 𝜒
[𝑎,𝑏]

(𝑥) =

1 (𝑥 ∈ [𝑎, 𝑏]) or 0 (𝑥 ∉ [𝑎, 𝑏]).
Then, the chirp signal transform of 𝜒

[𝑎,𝑏]
is the following:

(𝐹𝜒
[𝑎,𝑏]

) (𝑦) = ∫
∞

−∞

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝜒
[𝑎,𝑏]

(𝑥) 𝑑𝑥

= ∫
𝑏

𝑎

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑑𝑥

= ∫
𝑏

𝑎

∞

∑
𝑘=0

𝑖𝜋(𝑥 − 𝑦)
2𝑘

𝑘!
𝑑𝑥

=

∞

∑
𝑘=0

(∫
𝑏

𝑎

(𝑥 − 𝑦)
2𝑘

𝑑𝑥)
(𝑖𝜋)
𝑘

𝑘!

=

∞

∑
𝑘=0

[
1

2𝑘 + 1
(𝑥 − 𝑦)

2𝑘+1

]
𝑏

𝑎

(𝑖𝜋)
𝑘

𝑘!

=

∞

∑
𝑘=0

(𝑖𝜋)
𝑘

𝑘! (2𝑘 + 1)
{(𝑏 − 𝑦)

2𝑘+1

− (𝑎 − 𝑦)
2𝑘+1

} .

(6)

(ii) We also calculate the chirp signal transform for the
Gaussian distribution exp(−𝜋𝑥2). Consider

(𝐹 (exp (−𝜋𝑥
2
))) (𝑦)

= ∫
∞

−∞

exp (−𝜋𝑥
2
) exp (𝑖𝜋(𝑥 − 𝑦)

2

) 𝑑𝑥

= ∫
∞

−∞

exp (−𝜋 (𝑥
2

− 𝑖(𝑥 − 𝑦)
2

)) 𝑑𝑥

= exp (−𝜋
1 − 𝑖

2
𝑦
2
)

× (∫
∞

−∞

exp(−𝜋 (1 − 𝑖) (𝑥 +
𝑖

1 − 𝑖
𝑦)
2

) 𝑑𝑥) .

(7)

Since exp(−𝜋(1 − 𝑖)𝑧2) is holomorphic and ∫
∞

−∞
exp(−𝜋(1 −

𝑖)(𝑥 + (𝑖/(1 − 𝑖))𝑦)
2
)𝑑𝑥 is constant up to 𝑦, we denote it as 𝑐.

The above is equal to exp(−𝜋((1−𝑖)/2)𝑦2)(∫
∞

−∞
exp(−𝜋(1−

𝑖)𝑥2)𝑑𝑥). Therefore,

(𝐹 (exp (−𝜋𝑥
2
))) (𝑦) = 𝑐

 exp (−𝜋
1 − 𝑖

2
𝑦
2
) . (8)

When 𝑁 is odd and 𝑁 = 𝐿𝑀, we calculate the skipped
chirp transform of 𝑓(𝑥) = exp(−2𝜋𝑖(𝑥𝑦/𝑁)) at 𝑦 = 0 with
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respect to exp(𝑖𝜋(𝑥(𝑥 + 𝑑)/𝐿𝑁)), 𝑑 = 𝐿𝛼, and 𝑥 = 𝐿𝑚. Now,
𝑑 is odd, and 𝛼 is also odd. Consider

𝐹
𝐿,𝑁

(exp(−2𝜋𝑖
𝑥𝑘

𝑁
)) (0)

= ∑
𝑥

exp(𝑖𝜋
𝐿𝑚 (𝐿𝑚 + 𝐿𝛼)

𝐿𝑁
) exp(−2𝜋𝑖

𝐿𝑚𝑘

𝑁
)

= ∑ exp(𝑖𝜋
𝑚2 + 𝑚𝛼 − 2𝑚𝑘

𝑀
)

=

𝑀−1

∑
𝑚=0

exp(
𝑖𝜋 (𝑚 − 𝑘) (𝑚 − 𝑘 + 𝛼)

𝑀
) exp(

𝑖𝜋𝑘 (𝛼 − 𝑘)

𝑀
)

= 𝐶 exp(
𝜋𝑖𝑘 (𝛼 − 𝑘)

𝑀
) .

(9)
Finally, we explain briefly that the discrete chirp signal

transform becomes the continuous one, when 𝑁 increases to
the infinity.

Let 𝐻 be an even positive integer, and 1/𝐻 is denoted by
𝜖. Then, we define 𝐹

𝐻
for 𝑓 in 𝐿2(R),

(𝐹
𝐻

𝑓) (𝜖𝑚) =
1

𝐻

𝐻
2
/2

∑

𝑛=−(𝐻
2
/2)

exp(
𝑖𝜋(𝑛 − 𝑚)

2

𝐻2
) 𝑓 (𝜖𝑛)

=
1

𝐻

𝐻
2
/2

∑

𝑛=−(𝐻
2
/2)

exp (𝑖𝜋(𝜖𝑛 − 𝜖𝑚)
2
) 𝑓 (𝜖𝑛) .

(10)

Now,

(𝐹𝑓) (𝑦) = ∫
∞

−∞

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑓 (𝑥) 𝑑𝑥

= lim
𝐿→∞

∫
𝐿/2

−(𝐿/2)

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑓 (𝑥) 𝑑𝑥

= lim
𝐿→∞

lim
𝐻→∞

1

𝐻

(𝐻/2)𝐿

∑
𝑛=−(𝐻/2)𝐿

exp (𝑖𝜋(𝜖𝑛 − 𝑦)
2

) 𝑓 (𝜖𝑛) .

(11)
If the final lim

𝐿→∞
lim
𝐻→∞

coincides to lim
𝐻→∞

under
𝐿 = 𝐻, the above 𝐹 for the continuous case is the limit of
the 𝐹
𝐻
for the discrete case. When 𝐻 is odd, we can do the

similar calculation. Furthermore, this correspondence can be
represented as an infinitesimal lattice Fourier transform in
nonstandard analysis [7–9].

3. The Inverse Chirp Signal Transform 𝐹−1

In this section, we show the inverse transform of the chirp
signal transform defined in the first section. Let 𝑁 be an
integer, and let 𝐾 be the function space from {0, 1, . . . , 𝑁 − 1}

to the complex number field C. For 𝑓, 𝑔 ∈ 𝐾, the 𝐿2 inner
product is defined by

(𝑓, 𝑔) =

𝑁−1

∑
𝑥=0

𝑓 (𝑥)𝑔 (𝑥) . (12)

If 𝑓(𝑥 − 𝑎), 0 ≤ 𝑎 ≤ 𝑁 − 1 are orthogonal to each other,
then an arbitrary function 𝑔 ∈ 𝐾 is represented as a linear
combination of {𝑓(𝑥 − 𝑎), 0 ≤ 𝑎 ≤ 𝑁 − 1}. For example, in
the case of even 𝑁, 𝑓(𝑥 − 𝑎) = exp(𝑖𝑎𝜋((𝑥 − 𝑎)

2
/𝑁)) satisfies

such property. Now,

(𝐹𝐹𝑓) (𝑧)

=
1

𝑁

𝑁−1

∑
𝑦=0

(

𝑁−1

∑
𝑥=0

exp(−𝑖𝑎𝜋
(𝑦 − 𝑧)

2

𝑁
)

× exp(𝑖𝑎𝜋
(𝑥 − 𝑦)

2

𝑁
) 𝑓 (𝑥))

=
1

𝑁

𝑁−1

∑
𝑥=0

(

𝑁−1

∑
𝑦=0

exp(
𝑖𝑎𝜋 (𝑥 + 𝑧 − 2𝑦) (𝑥 − 𝑧)

𝑁
)) 𝑓 (𝑥) .

(13)

Since ∑
𝑁−1

𝑦=0
exp((−2𝑖𝑎𝜋(𝑥 − 𝑧))/𝑁)𝑦 is 𝑁 for 𝑥 = 𝑧, or 0 for

𝑥 ̸= 𝑧, the above (𝐹𝐹𝑓)(𝑧) is equal to 𝑓(𝑧). Hence, 𝐹𝐹 = 𝑖𝑑,
and 𝐹−1 = 𝐹.

Similarly, when 𝑁 is odd, 𝑓(𝑥) = exp(𝑖𝑎𝜋(𝑥(𝑥 + 𝑐)/𝑁))

satisfies the same property; in fact, (𝑥 − 𝑦)(𝑥 − 𝑦 + 𝑐) − (𝑥 −

𝑧)(𝑥 − 𝑧 + 𝑐) = −2(𝑦 − 𝑧)𝑥 + (𝑦 − 𝑧)(𝑦 + 𝑧) − 𝑐(𝑦 − 𝑧).
Hence, (𝐹

−1𝑓)(𝑦) = (1/√𝑁) ∑
𝑁−1

𝑥=0
exp(−(𝑖𝑎𝜋(𝑥 − 𝑦)(𝑥 −

𝑦 − 𝑐)/𝑁))𝑓(𝑥).
We remark that the suffix of 𝑐 is changed from positive to

negative as 𝐹 to 𝐹−1.
Next, we prove that 𝐹𝐹 = 𝑖𝑑 for the continuous version.

We try to prove it directly.
Let 𝑔
𝑡
(𝑥) be exp(−𝜋(𝑡𝑥)

2
) for 𝑡 ∈ R − {0}. Then, the

Fourier transform of 𝑔
𝑡
is calculated as follows:

(F (𝑔
𝑡
)) (𝑦) = ∫

∞

−∞

exp (−2𝜋𝑖𝑥𝑦) exp (−𝜋(𝑡𝑥)
2
) 𝑑𝑥

= (∫
∞

−∞

exp(−𝜋(𝑡𝑥 + 𝑖
𝑦

𝑡
)
2

) 𝑑𝑥)

× exp(−𝜋(
𝑦

𝑡
)
2

) ,

(14)

and we put 𝑡𝑥 as 𝑥

=(∫
∞

−∞

exp(−𝜋(𝑥


+ 𝑖
𝑦

𝑡
)
2

) 𝑑𝑥

)

1

|𝑡|
exp(−𝜋(

𝑦

𝑡
)
2

),

as ∫
∞

−∞

exp(−𝜋(𝑥


+ 𝑖
𝑦

𝑡
)
2

) 𝑑𝑥


= 1,

=
1

|𝑡|
exp(−𝜋(

𝑦

𝑡
)
2

) .

(15)

Now, lim
𝑡→∞

𝑔
𝑡
(𝑥) = 1 and lim

𝑡→0
(1/|𝑡|) exp(−𝜋(𝑦/𝑡)

2
)

is equal to ∞ for 𝑦 = 0 and 0 for 𝑦 ̸= 0. We denote
(1/|𝑡|) exp(−𝜋(𝑦/𝑡)

2
) to be 𝛿

𝑡
(𝑦); then, (F(𝑔

𝑡
))(𝑦) is equal to

𝛿
𝑡
(𝑦).
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Theorem 1. 𝐹𝐹𝑓 = 𝑓 for 𝑓 ∈ 𝐿2(R).

Proof. Consider

𝐹 (𝐹 (𝑓)) (𝑧)

= ∫
∞

−∞

exp (−𝑖𝜋(𝑦 − 𝑧)
2

) (𝐹 (𝑓) (𝑦)) 𝑑𝑦

= lim
𝑡→∞

∫
∞

−∞

𝑔
𝑡

(𝑦) exp (−𝑖𝜋(𝑦 − 𝑧)
2

) (𝐹 (𝑓) (𝑦)) 𝑑𝑦

= lim
𝑡→∞

∫
∞

−∞

𝑔
𝑡

(𝑦) exp (−𝑖𝜋(𝑦 − 𝑧)
2

)

× (∫
∞

−∞

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑓 (𝑥) 𝑑𝑥) 𝑑𝑦;

(16)

by Fubini’s theorem,

= lim
𝑡→∞

∫
∞

−∞

𝑓 (𝑥) (∫
∞

−∞

𝑔
𝑡

(𝑦) exp (−𝑖𝜋(𝑦 − 𝑧)
2

)

× exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑑𝑦) 𝑑𝑥

= lim
𝑡→∞

∫
∞

−∞

𝑓 (𝑥) (∫
∞

−∞

𝑔
𝑡

(𝑦) exp (−𝑖2𝜋 (𝑥 − 𝑧) 𝑦) 𝑑𝑦)

× exp (𝑖𝜋 (𝑥
2

− 𝑧
2
)) 𝑑𝑥

= lim
𝑡→∞

∫
∞

−∞

𝑓 (𝑥) 𝛿
𝑡

(𝑥 − 𝑧) exp (𝑖𝜋 (𝑥
2

− 𝑧
2
)) 𝑑𝑥

= lim
𝑡→∞

∫
∞

−∞

(𝑓 (𝑥) ⋅ exp (𝑖𝜋 (𝑥
2

− 𝑧
2
))) 𝛿
𝑡

(𝑥 − 𝑧) 𝑑𝑥

= 𝑓 (𝑧) ⋅ exp (0) = 𝑓 (𝑧) .

(17)

Finally, we show the inverse transform of the chirp signal
transform for skipped version.When𝑁 is even, we obtain the
following.

Theorem 2. Functions 𝑒
𝐿,𝑁

(𝑥 − 𝑎), 0 ≤ 𝑎 ≤ 𝑁 − 1 are
orthogonal to each other.

Proof. For 𝑎, 𝑏, if 𝑎 − 𝑏 ∤ 𝐿; then, (𝑒
𝐿,𝑁

(𝑥 − 𝑎), 𝑒
𝐿,𝑁

(𝑥 − 𝑏)) = 0

by the definition. If 𝑎 − 𝑏 | 𝐿, then 𝑎 − 𝑏 is written as 𝐿 ⋅ 𝛼.
Consider

𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑥 − 𝑎) 𝑒
𝐿,𝑁

(𝑥 − 𝑏)

=

𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑥) 𝑒
𝐿,𝑁

(𝑥 − (𝑏 − 𝑎))

=

𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑥) 𝑒
𝐿,𝑁

(𝑥 − 𝐿𝛼)

=

(𝑁/𝐿)−1

∑
𝑚=0

𝑒
𝐿,𝑁

(𝐿𝑚) 𝑒
𝐿,𝑁

(𝐿𝑚 − 𝐿𝛼)

=

(𝑁/𝐿)−1

∑
𝑚=0

exp(−𝑖𝜋
(𝐿𝑚)
2

𝐿𝑁
) exp(𝑖𝜋

(𝐿𝑚 − 𝐿𝛼)
2

𝐿𝑁
)

=

(𝑁/𝐿)−1

∑
𝑚=0

exp(𝑖
𝜋𝐿2

𝐿𝑁
(𝛼
2

− 2𝛼𝑚))

= exp(𝑖
𝜋𝐿

𝑁
𝛼
2
)

(𝑁/𝐿)−1

∑
𝑚=0

exp(−
𝑖2𝜋

𝑁
𝐿 ⋅ 𝛼𝑚)

=
{

{

{

0, if 𝐿 ⋅ 𝛼 ∤ 𝑁

exp(𝑖
𝜋𝐿

𝑁
𝛼2) ⋅ 𝑀, if 𝐿 ⋅ 𝛼 | 𝑁.

(18)

Hence, if 𝛼 = 0, then (𝑒
𝐿,𝑁

, 𝑒
𝐿,𝑁

) = 𝑀; otherwise,
(𝑒
𝐿,𝑁

(𝑥 − 𝑎), 𝑒
𝐿,𝑁

(𝑥 − 𝑏)) = 0.

We assume that 𝑁 is odd. We obtain the following.

Theorem 3. Functions 𝑒
𝐿,𝑁

(𝑥 − 𝑎), 0 ≤ 𝑎 ≤ 𝑁 − 1 are
orthogonal to each other.

Proof. We denote 𝑑 to be 𝑑 = 𝐿𝛽. For 𝑎, 𝑏, if 𝑎 − 𝑏 ∤ 𝐿, then
(𝑒
𝐿,𝑁

(𝑥 − 𝑎), 𝑒
𝐿,𝑁

(𝑥 − 𝑏)) = 0 by the definition. If 𝑎 − 𝑏 | 𝐿,
then 𝑎 − 𝑏 is written as 𝐿 ⋅ 𝛼. Consider
𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑥 − 𝑎) 𝑒
𝐿,𝑁

(𝑥 − 𝑏)

=

𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑥) 𝑒
𝐿,𝑁

(𝑥 − (𝑏 − 𝑎))

=

𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑥) 𝑒
𝐿,𝑁

(𝑥 − 𝐿𝛼)

=

(𝑁/𝐿)−1

∑
𝑚=0

𝑒
𝐿,𝑁

(𝐿𝑚) 𝑒
𝐿,𝑁

(𝐿𝑚 − 𝐿𝛼)

=

(𝑁/𝐿)−1

∑
𝑚=0

exp(−𝑖𝜋
𝐿𝑚 (𝑐𝐿𝑚 + 𝐿𝛽)

𝐿𝑁
)

× exp(𝑖𝜋
(𝐿𝑚 − 𝐿𝛼) (𝑐 (𝐿𝑚 − 𝐿𝛼) + 𝐿𝛽)

𝐿𝑁
)

= exp (−
𝜋𝑖𝐿

𝐿𝑁
𝛼𝛽)

(𝑁/𝐿)−1

∑
𝑚=0

exp(−
2𝜋𝑖

𝑁
𝑐𝐿𝛼𝑚) = 0

(19)

since (𝑐, 𝑁) = 1.
Hence, if 𝛼 = 0, then (𝑒

𝐿,𝑁
, 𝑒
𝐿,𝑁

) = 𝑀; otherwise,
(𝑒
𝐿,𝑁

(𝑥 − 𝑎), 𝑒
𝐿,𝑁

(𝑥 − 𝑏)) = 0.
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The above theorem leads to the same property as the even
case. Hence, for both cases, we obtain

(𝐹
−1

𝐿,𝑁
𝑓) (𝑦) =

1

√𝑀

𝑁−1

∑
𝑥=0

𝑒
𝐿,𝑁

(𝑦 − 𝑥) 𝑓 (𝑥) . (20)

4. Properties of the Chirp Signal

In this section, we show some properties of the chirp signal
exp(𝑖𝜋(𝑥 − 𝑦)

2
) which is fundamental for our chirp signal

transform.
Since (𝜕/𝜕𝑥)(exp(𝑖𝜋(𝑥−𝑦)

2
)) = 2𝜋𝑖(𝑥−𝑦) exp(𝑖𝜋(𝑥−𝑦)

2
),

((𝜕/𝜕𝑥) − 𝑖2𝜋𝑥)(exp(𝑖𝜋(𝑥 − 𝑦)
2
)) = (−𝑖2𝜋𝑦) exp(𝑖𝜋(𝑥 − 𝑦)

2
).

Now, we write the differential operators (𝜕/𝜕𝑥) + 𝑖2𝜋𝑥,
(𝜕/𝜕𝑥)−𝑖2𝜋𝑥 as 𝐿, 𝐿.The differential operators 𝐿 and 𝐿 satisfy
the following properties:

𝐿𝐿 =
𝑑2

𝑑𝑥2
+ (4𝜋𝑥

2
+ 2𝜋𝑖) ,

𝐿𝐿 =
𝑑2

𝑑𝑥2
+ (4𝜋𝑥

2
− 2𝜋𝑖) ,

[𝐿, 𝐿] = 𝐿𝐿 − 𝐿𝐿 = 4𝜋𝑖.

(21)

Then, the chirp signal exp(𝑖𝜋(𝑥 − 𝑦)
2
) is the eigen func-

tion of𝐿with the eigen value−𝑖2𝜋𝑦. LetΦ satisfy the equation
𝐿Φ = 0. Then, 𝐿𝐿(𝐿Φ) = 𝐿(𝐿𝐿Φ) = 𝐿(4𝜋𝑖 + 𝐿𝐿)Φ = 4𝜋𝑖𝐿Φ.
Similarly, 𝐿𝐿(𝐿

𝑛

Φ) = 𝑛 ⋅ 4𝜋𝑖𝐿
𝑛

Φ; that is, 𝐿
𝑛

Φ is the eigen
function for 𝐿𝐿 with eigen value 𝑛 ⋅ 4𝜋𝑖.

Let 𝑁 be an odd integer, and let 𝑐, 𝑑 be integers. Then,
we define 𝑓

𝑁,𝑐,𝑑
(𝑥) as exp(−(𝑖𝜋𝑥(𝑐𝑥 + 𝑑)/𝑁)). We have the

following.

Theorem 4. The function 𝑓
𝑁,𝑐,𝑑

(𝑥) is periodic iff both 𝑐 and 𝑑

are odd or even.

Proof. Consider

𝑥 (𝑐𝑥 + 𝑑) − (𝑥 + 𝑁) (𝑐 (𝑥 + 𝑁) + 𝑑)

= −2𝑐𝑥𝑁 + 𝑁 (𝑐𝑁 + 𝑑) ≡ 0 (mod 2𝑁)
(22)

iff 𝑐𝑁 + 𝑑 is even. Since 𝑁 is odd and both 𝑐 and 𝑑 are odd or
even, 𝑐𝑁 + 𝑑 is always even.

Theorem 5. 𝑓
𝑁,𝑐,𝑑

(𝑥 − 𝑎), 0 ≤ 𝑎 ≤ 𝑁 − 1 are orthogonal to
each other, iff 𝑎 ∤ 𝑁.

Proof. Consider

𝑁−1

∑
𝑥=0

𝑓 (𝑥) 𝑓 (𝑥 + 1)

=

𝑁−1

∑
𝑥=0

exp(
−𝑖𝜋𝑥 (𝑎𝑥 + 𝑏)

𝑁
)

× exp(
𝑖𝜋 (𝑥 + 1) (𝑎 (𝑥 + 1) + 𝑏)

𝑁
)

= exp(
𝜋𝑖 (𝑎 + 𝑏)

𝑁
)

𝑁−1

∑
𝑛=0

exp (
2𝜋𝑖

𝑁
𝑎𝑛) ,

exp (2𝜋𝑖𝑎/𝑁) ̸= 1 iff 𝑎 ∤ 𝑁.

(23)

Secondly, we calculate the Fourier transform for the chirp
signal. Consider

1

√𝑁

𝑁−1

∑
𝑥=0

exp(−𝑖
𝜋𝑥2

𝑁
) exp (−𝑖

2𝜋𝑥𝑦

𝑁
)

=
1

√𝑁

𝑁−1

∑
𝑥=0

exp(−
𝑖𝜋

𝑁
(𝑥
2

+ 2𝑥𝑦))

=
1

√𝑁

𝑁−1

∑
𝑥=0

exp(−𝑖
𝜋

𝑁
((𝑥 + 𝑦)

2

− 𝑦
2
))

= (
1

√𝑁

𝑁−1

∑
𝑥=0

exp(−𝑖
𝜋

𝑁
(𝑥 + 𝑦)

2

)) exp(𝑖
𝜋𝑦2

𝑁
) ;

(24)

Since exp(−𝑖(𝜋/𝑁)𝑥2) is periodic,

= (
1

√𝑁

𝑁−1

∑
𝑥=0

exp (−𝑖
𝜋

𝑁
𝑥
2
)) exp(𝑖

𝜋𝑦2

𝑁
) ; (25)

we denote (1/√𝑁) ∑
𝑁−1

𝑥=0
exp(−𝑖(𝜋/𝑁)𝑥2) by 𝐶

= 𝐶 exp(𝑖
𝜋𝑦2

𝑁
) . (26)

Now, since Fourier transform preserves the norm, |𝐶| = 1.
Hence, the Fourier transform for exp(−𝑖(𝜋𝑥2/𝑁)) is equal

to 𝐶 exp(𝑖(𝜋𝑦2/𝑁)).
Now, we assume 𝑁 is even, 𝐿 divides 𝑁, and 𝑁 = 𝐿𝑀.

Consider

𝑓
𝑁,𝐿

(𝑥) =

{{

{{

{

exp(𝜋𝑖
𝑥
2

𝐿𝑁
) , 𝑥 = 𝐿𝑚 (𝑥 | 𝐿)

0, 𝑥 ̸= 𝐿𝑚 (𝑥 ∤ 𝐿) .

(27)

We calculate the usual Fourier transformof𝑓
𝑁,𝐿

(𝑥). Consider

(F𝑓
𝑁,𝐿

) (𝑘)

=
1

√𝑁

𝑁−1

∑
𝑥=0

𝑓
𝑁,𝐿

(𝑥) exp(−2𝜋𝑖
𝑥𝑘

𝑁
)

=
1

√𝑁

𝑀−1

∑
𝑚=0

exp(𝜋𝑖
(𝐿𝑚)
2

𝐿𝑁
) exp(

−2𝜋𝑖𝐿𝑚𝑘

𝑁
)
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=
1

√𝑁

𝑀−1

∑
𝑚=0

exp(𝜋𝑖
𝑚2

𝑀
) exp(

−2𝜋𝑖𝑚𝑘

𝑀
)

=
1

√𝑁

𝑀−1

∑
𝑚=0

exp(𝜋𝑖
(𝑚 − 𝑘)

2

𝑀
) exp(−𝜋𝑖

𝑘
2

𝑀
)

= (
1

√𝑁

𝑀−1

∑
𝑚=0

exp(𝜋𝑖
𝑚2

𝑀
)) exp(−𝜋𝑖

𝑘
2

𝑀
) .

(28)

Next, we calculate the Fourier transform of 𝑓
𝑁,𝐿

(𝑥 − 𝑎).
Consider

F𝑓
𝑁,𝐿

(𝑥 − 𝑎) (𝑦) =
1

√𝑁
∑
𝑥

𝑓 (𝑥 − 𝑎) exp(−2𝜋𝑖
𝑥𝑦

𝑁
) ,

𝑥


:= 𝑥 − 𝑎

=
1

√𝑁
∑

𝑥


𝑓 (𝑥

) exp(−2𝜋𝑖

𝑥 + 𝑎

𝑁
𝑦)

=
1

√𝑁
∑

𝑥


𝑓 (𝑥

) exp(−2𝜋𝑖

𝑥𝑦

𝑁
) exp(−2𝜋𝑖

𝑎𝑦

𝑁
) .

(29)

Let 𝑓(𝑥, 𝑡) = exp(𝑖𝜋(𝑥 − V𝑡)
2
). Then, (𝜕/𝜕𝑥)𝑓 = 2𝑖𝜋(𝑥 −

V𝑡)𝑓 and (𝜕/𝜕𝑡)𝑓 = −2𝑖𝜋(𝑥 − V𝑡)V𝑓. Hence, (𝜕/𝜕𝑡)𝑓 =

−V(𝜕/𝜕𝑥)𝑓 = −2𝑖𝜋(𝑥 − V𝑡)V𝑓. It is a chirp signal with central
position V𝑡, which is a wave of 𝑥 and 𝑡.

5. Application for Recursion Formulas and
Ordinary Differential Equations

In this section, we develop some applications of the chirp
signal transform.

(i) For a function 𝑓 from {0, 1, . . . , 𝑁 − 1} to C, we
calculate the chirp signal transform of 𝑓(𝑥 + 1) with even 𝑁,
𝑎 = 1. Consider

(𝐹𝑓 (𝑥 + 1)) (𝑦)

=
1

√𝑁

𝑁−1

∑
𝑥=0

exp(𝑖𝜋
(𝑥 − 𝑦)

2

𝑁
) 𝑓 (𝑥 + 1)

= exp (𝑖𝜋
2𝑦 + 1

𝑁
)

×
{

{

{

1

√𝑁

𝑁

∑

𝑥

=1

exp(𝑖𝜋
(𝑥 − 𝑦)

2

𝑁
)

× (exp(−𝑖
2𝜋𝑥


𝑁
) 𝑓 (𝑥


))

}

}

}

= exp (𝑖𝜋
2𝑦 + 1

𝑁
) {𝐹 (exp(−𝑖

2𝜋𝑥

𝑁
) 𝑓 (𝑥))} (𝑦) .

(30)

We apply this formula to the following equation for a constant
𝐶 and a given function 𝑔(𝑥):

𝑓 (𝑥 + 1) + 𝐶 exp (−𝑖
2𝜋𝑥

𝑁
) 𝑓 (𝑥) = 𝑔 (𝑥) . (31)

We transform this equation by the chirp signal transform
using formula (30),

(exp(𝑖𝜋
2𝑦 + 1

𝑁
) + 𝐶) 𝐹 (exp (−𝑖

2𝜋𝑥

𝑁
) 𝑓 (𝑥)) (𝑦)

= 𝐹 (𝑔 (𝑥)) (𝑦) .

(32)

We assume 𝐶 is not equal to − exp(𝑖𝜋((2𝑦 + 1)/𝑁)) for any
𝑦 ∈ {0, 1, . . . , 𝑁 − 1}. For example, the absolute value of 𝐶 is
not equal to 1. Consider

𝐹 (exp(−𝑖
2𝜋𝑥

𝑁
) 𝑓 (𝑥)) (𝑦)

=
1

exp (𝑖𝜋 ((2𝑦 + 1) /𝑁)) + 𝐶
𝐹 (𝑔 (𝑥)) (𝑦) ;

(33)

hence, 𝑓(𝑥) = exp(𝑖(2𝜋𝑥/𝑁)) ⋅ 𝐹((1/(exp(𝑖𝜋((2𝑦 + 1)/𝑁)) +

𝐶))𝐹(𝑔)(𝑦))(𝑥).
Similarly, we calculate the chirp signal transform of exp(𝑖

(2𝜋(𝑥 + 𝑘)𝑘/𝑁))𝑓(𝑥 + 𝑘). Consider

𝐹 (exp(𝑖
2𝜋 (𝑥 + 𝑘) 𝑘

𝑁
) 𝑓 (𝑥 + 𝑘)) (𝑦)

=
1

√𝑁

𝑁−1

∑
𝑥=0

exp(𝑖𝜋
(𝑥 − 𝑦)

2

𝑁
)

× exp(𝑖
2𝜋 (𝑥 + 𝑘) 𝑘

𝑁
𝑓 (𝑥 + 𝑘)) ,

((𝑥 − 𝑦)
2

+ 2 (𝑥 + 𝑘) 𝑘 = (𝑥 + 𝑘 − 𝑦)
2

+ 2𝑘𝑦 + 𝑘
2
)

= exp(𝑖
𝜋 (2𝑘𝑦 + 𝑘2)

𝑁
)

× (
1

√𝑁

𝑁−1

∑
𝑥=0

exp(𝑖
𝜋(𝑥 + 𝑘 − 𝑦)

2

𝑁
) 𝑓 (𝑥 + 𝑘))

= exp(𝑖
𝜋 (2𝑦 + 𝑘) 𝑘

𝑁
) (𝐹𝑓) (𝑦) .

(34)

Let (𝑇
𝑛
𝑓)(𝑥) be defined by 𝑓(𝑥 + 𝑛). Then, 𝑇

𝑛
exp

(𝑖𝜋((𝑥 − 𝑦)
2
/𝑁)) is equal to exp(𝑖𝜋((𝑥 + 𝑛 − 𝑦)

2
/𝑁)), that is,

exp(𝑖𝜋((𝑥 − (𝑦 − 𝑛))
2
/𝑁)).

We consider the following equation:
𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖

2𝜋 (𝑥 + 𝑘) 𝑘

𝑁
) 𝑇
𝑘
𝑓 (𝑥) = 𝑔 (𝑥) . (35)

We put the chirp signal transform of it. Consider

𝐹 (

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖

2𝜋 (𝑥 + 𝑘) 𝑘

𝑁
) 𝑇
𝑘
𝑓 (𝑥)) = 𝐹 (𝑔 (𝑥)) . (36)
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By equality (34),

(

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖

𝜋 (2𝑦 + 𝑘) 𝑘

𝑁
)) (𝐹𝑓) (𝑦) = 𝐹 (𝑔) (𝑦) . (37)

If ∑
𝑚

𝑘=0
𝐶
𝑘
exp(𝑖((𝜋(2𝑦 + 𝑘)𝑘)/𝑁)) ̸= 0, for 𝑦 ∈ {0, 1, . . . , 𝑁 −

1}, then
(𝐹𝑓) (𝑦)

=
1

∑
𝑚

𝑘=0
𝐶
𝑘
exp (𝑖 ((𝜋 (2𝑦 + 𝑘) 𝑘) /𝑁))

𝐹 (𝑔) (𝑦) .
(38)

Hence,

𝑓 = 𝐹
−1

(
1

∑
𝑚

𝑘=0
𝐶
𝑘
exp (𝑖 ((𝜋 (2𝑦 + 𝑘) 𝑘) /𝑁))

𝐹 (𝑔) (𝑦)) .

(39)
(ii) We put the assumption that lim

𝑥→±∞
𝑓(𝑥) = 0.

Consider
(𝐹𝑓


(𝑥)) (𝑦)

= ∫
∞

−∞

exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑓


(𝑥) 𝑑𝑥

= [𝑓 (𝑥) exp (𝑖𝜋(𝑥 − 𝑦)
2

)]
∞

−∞

− 𝑖2𝜋 ∫
∞

−∞

(𝑥 − 𝑦) 𝑓 (𝑥) exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑑𝑥;

(40)

by the assumption,

= −𝑖2𝜋 ∫
∞

−∞

(𝑥𝑓 (𝑥)) exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑑𝑥

+ 𝑖2𝜋𝑦 ∫
∞

−∞

𝑓 (𝑥) exp (𝑖𝜋(𝑥 − 𝑦)
2

) 𝑑𝑥

= −𝑖2𝜋𝐹 (𝑥𝑓 (𝑥)) (𝑦) + 𝑖2𝜋𝑦𝐹 (𝑓 (𝑥)) (𝑦) .

(41)

Hence, 𝐹(𝑓(𝑥))(𝑦) = −𝑖2𝜋𝐹(𝑥𝑓(𝑥))(𝑦) + 𝑖2𝜋𝑦𝐹(𝑓(𝑥))(𝑦)

and

𝐹 ((
𝑑

𝑑𝑥
+ 𝑖2𝜋𝑥) 𝑓) (𝑦) = 𝑖2𝜋𝑦𝐹 (𝑓) (𝑦) . (42)

We write the differential operator (𝑑/𝑑𝑥) + 𝑖2𝜋𝑥 as 𝐿;
then, 𝐹(𝐿𝑓)(𝑦) = 𝑖2𝜋𝑦𝐹(𝑓)(𝑦). We consider the following
differential equation, for coefficients 𝐶

𝑘
(0 ≤ 𝑘 ≤ 𝑛) and a

given function 𝑔(𝑥):
𝑛

∑
𝑘=0

𝐶
𝑘
𝐿
𝑘
𝑓 = 𝑔. (43)

We apply the chirp signal transform:

𝐹 (

𝑛

∑
𝑘=0

𝐶
𝑘
𝐿
𝑘
𝑓) = 𝐹 (𝑔) ,

𝑛

∑
𝑘=0

𝐶
𝑘
𝐹 (𝐿
𝑘
𝑓) = 𝐹 (𝑔) ,

(

𝑛

∑
𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘

) 𝐹 (𝑓) = 𝐹 (𝑔) .

(44)

If ∑
𝑛

𝑘=0
𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘
̸= 0 for arbitrary 𝑦, then 𝐹(𝑓) = (1/(∑

𝑛

𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘
))𝐹(𝑔).

Therefore, 𝑓 = 𝐹−1((1/(∑
𝑛

𝑘=0
𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘
))𝐹(𝑔)), formally.

For example, we consider the ordinary differential equa-
tion

𝐿𝑓 (𝑥) + 2𝜋𝑓 (𝑥) = 𝛿 (𝑥) , (45)

where 𝛿(𝑥) is the delta function. Since 𝐹(𝛿)(𝑦) is
equal to exp(𝑖𝜋𝑦

2), the solution 𝑓 is just 𝐹−1((1/

(2𝜋𝑖𝑦 + 2𝜋)) exp(𝑖𝜋𝑦2)), that is, ((1/2𝜋𝑖) ∫
∞

−∞
((exp

(𝑖2𝜋𝑥𝑦))/(𝑦 − 𝑖))𝑑𝑦) exp(−𝑖𝜋𝑥2). The integral ((1/2𝜋𝑖)

∫
∞

−∞
((exp(𝑖2𝜋𝑥𝑦))/(𝑦 − 𝑖))𝑑𝑦) is exp(−2𝜋𝑥), 1/2, 0,

in case 𝑥 > 0, 𝑥 = 0, 𝑥 < 0, respectively. Hence,
𝑓(𝑥) = exp(−𝜋(𝑖𝑥2 + 2𝑥)), 1/2, 0 for 𝑥 > 0, 𝑥 = 0, 𝑥 < 0,
respectively.

6. Application for Partial Recursion Formulas
and Differential Equations

In this section, we consider the application for partial recur-
sion formulas and differential equations.

(i) Let 𝑓(𝑥, 𝑡) be two variable function on {0, 1, . . . , 𝑁 −

1} × R, and let

𝜕𝑓

𝜕𝑡
=

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖2𝜋

(𝑥 + 𝑘) 𝑘

𝑁
) 𝑇
𝑘
𝑓 (𝑥) . (46)

Then

𝐹 (
𝜕𝑓

𝜕𝑡
)

= 𝐹 (

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖2𝜋

(𝑥 + 𝑘) 𝑘

𝑁
) 𝑇
𝑘
𝑓 (𝑥)) ,

𝜕 (𝐹𝑓)

𝜕𝑡
=

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖𝜋

(2𝑦 + 𝑘) 𝑘

𝑁
) ⋅ 𝐹𝑓,

log (𝐹𝑓) = (

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖𝜋

(2𝑦 + 𝑘) 𝑘

𝑁
)) 𝑡 + 𝐶,

𝐹𝑓 = 𝐶 exp(𝑡

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖𝜋

(2𝑦 + 𝑘) 𝑘

𝑁
)) ,

𝑓 = 𝐶𝐹
−1

(exp(𝑡

𝑚

∑
𝑘=0

𝐶
𝑘
exp(𝑖𝜋

(2𝑦 + 𝑘) 𝑘

𝑁
))) .

(47)

(ii) Let 𝑓(𝑥, 𝑡) be two variables function on R × R. We
write 𝐿 = (𝜕/𝜕𝑥) + 𝑖2𝜋𝑥.

Then, it is already shown as

𝐹 (𝐿𝑓) (𝑦) = 𝑖2𝜋𝑦𝐹 (𝑓) (𝑦) . (48)

Let 𝐶
𝑘

(0 ≤ 𝑘 ≤ 𝑛) be complex coefficients. Then, we
consider the following partial differential equation:

𝜕

𝜕𝑡
𝑓 =

𝑛

∑
𝑘=0

𝐶
𝑘

⋅ 𝐿
𝑘
𝑓. (49)
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We put the chirp transform. Consider

𝐹
𝜕

𝜕𝑡
𝑓 = 𝐹 (

𝑛

∑
𝑘=0

𝐶
𝑘

⋅ 𝐿
𝑘
𝑓) ,

𝜕

𝜕𝑡
(𝐹𝑓) = (

𝑛

∑
𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘

) 𝐹 (𝑓) .

(50)

We divide the equation by 𝐹𝑓,

1

𝐹𝑓

𝜕

𝜕𝑡
(𝐹𝑓) =

𝑛

∑
𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘

. (51)

We put ∫ 𝑑𝑡,

𝑙
𝑛

(𝐹𝑓) = (

𝑛

∑
𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘

) 𝑡 + 𝐶. (52)

We write 𝑒
𝑐 = 𝐶,

𝐹𝑓 = 𝐶 exp((

𝑛

∑
𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘

) 𝑡) . (53)

Hence,

𝑓 = 𝐶𝐹
−1 exp((

𝑛

∑
𝑘=0

𝐶
𝑘
(𝑖2𝜋𝑦)

𝑘

) 𝑡) . (54)

7. Conclusions

In this paper, we define the chirp signal transform using
the chirp signal. Furthermore, we develop the theory of the
chirp signal transform and apply it to the recursion problem,
the ordinary differential equation, and the partial differential
equation.
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