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An adaptive sliding controller using radial basis function (RBF) network to approximate the unknown system dynamics
microelectromechanical systems (MEMS) gyroscope sensor is proposed. Neural controller is proposed to approximate the
unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model
uncertainties and external disturbances. Online neural network (NN) weight tuning algorithms, including correction terms, are
designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The
tracking error bound can bemade arbitrarily small by increasing a certain feedback gain. Numerical simulation for aMEMS angular
velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the
satisfactory tracking performance and robustness.

1. Introduction

MEMS gyroscopes have become themost growingmicrosen-
sors for measuring angular velocity in recent years due to
their compact size, low cost, and high sensitivity. Fabrication
imperfections always result in some cross stiffness and damp-
ing effects and the performance of the MEMS gyroscope
is deteriorated by the effects of time varying parameters,
quadrature errors, and external disturbances. Therefore it is
necessary to utilize advanced controlmethods tomeasure the
angular velocity and minimize the cross coupling terms.

During the past few years, advanced control approaches
have been proposed to control the MEMS gyroscope. Leland
[1] presented an adaptive controller for tuning the natural
frequency of the drive axis of a vibratory gyroscope. Park et al.
[2] presented an adaptive controller for a MEMS gyroscope
which drives both axes of vibration and controls the entire
operation of the gyroscope. Batur et al. [3] developed a
sliding mode controller and adaptive controller for a MEMS
gyroscope. Robust adaptive controller has been developed
using adaptive sliding mode control to control the vibration
ofMEMS gyroscope [4]. Tsai and Sue [5] proposed integrated
model reference adaptive control and time-varying angular

rate estimation algorithm for micromachined gyroscopes.
Raman et al. [6] developed a closed-loop digitally controlled
MEMS gyroscope using unconstrained sigma-delta force
balanced feedback control. Since neural network has the
capability to approximate any nonlinear function over the
compact input space, RBF’s properties make them attractive
for interpolation and functional modeling. Therefore neural
network’s learning ability makes it a useful tool for adaptive
application. Lewis et al. [7, 8] developed neural network
approaches for robot manipulator. Feng [9] presented a
compensating scheme for robot tracking based on neural
networks and Lin and Chen [10] used neural network based
robust nonlinear control for a magnetic levitation system.
Park et al. [11] developed adaptive neural sliding mode
control for the nonholonomic wheeled mobile robots with
model uncertainty. Sadati andGhadami [12] derived adaptive
multimodel sliding mode control of robotic manipulators
using soft computing. Lee and Choi [13] used neural network
based robust nonlinear control for a magnetic levitation
system. Lin et al. [14] developed an adaptive RBF neural
network controller for robot manipulators. Huang et al.
[15] developed a novel RBF sliding mode controller for a
dynamic absorber. An adaptive neural compensation scheme
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without sliding mode method for tracking control of MEMS
gyroscope was proposed [16]. In [17], robust adaptive sliding
mode control is utilized to estimate the angular velocity of
MEMS triaxial gyroscope, and neural network is adopted to
estimate the upper bound of system nonlinearities. In [18], an
input-output linearization technique is incorporated into the
neural adaptive tracking control to cancel the nonlinearities
and the adaptive neural network is used to perform the
linearization control law. In this paper, different from [16–18],
neural controller is proposed to approximate the unknown
system model and sliding mode controller is employed to
eliminate the approximation error and attenuate the model
uncertainties and external disturbances. In order to improve
the tracking performance of MEMS gyroscope, a robust
adaptive control strategy of MEMS gyroscope using neural
sliding compensator is developed. The proposed control
strategy has the following advantages.

(1) An adaptive neural slidingmode control is adopted to
on-line mimic the unknown model and compensate
the approximation error. It incorporates RBF neural
network into the adaptive sliding control system of
MEMS gyroscope to learn the approximate model.
Adaptive neural sliding mode compensation scheme
is proposed to deal with the model approximation
in the presence of model uncertainties and external
disturbances.

(2) This paper integrates adaptive control, sliding mode
control, and the nonlinear approximation of neural
network control. Neural controller is proposed to
approximate the unknown system model and sliding
controller is employed to eliminate the approximation
error and attenuate the model uncertainties and
external disturbances.

(3) The proposed adaptive neural sliding controller does
not need to establish accurate mathematical model
and has the ability to approximate the nonlinear char-
acteristics of system model. The proposed adaptive
neural network slidingmode controller can guarantee
the stability of the closed-loop system and improve
the robustness for external disturbances and model
uncertainties.

The paper is organized as follows. In Section 2, the
dynamics of MEMS gyroscope is described. In Section 3,
problem is formulated. In Section 4, an adaptive RBFnetwork
compensation is derived to guarantee the asymptotic stability
of the closed-loop system. Simulation results are presented in
Section 5 to verify the effectiveness of the proposed adaptive
neural compensation control. Conclusions are provided in
Section 6.

2. Dynamics of MEMS Gyroscope

The dynamics of vibratory MEMS gyroscope is described in
this section. A two-axis MEMS vibratory gyroscope mainly
contains three parts: one is the sensitive element of single
proof mass (𝑚) suspended by spring beams, another is
electrostatic actuations and sensing mechanisms for forcing

an oscillatorymotion and sensing the position and velocity of
the sensitive element, and the other is the rigid frame which
is rotated along the rotation axis.

A schematic model of a two-axis MEMS vibratory gyro-
scope is shown in Figure 1. As an electromechanical system
for special use, the initial and the most important step is
to derive the motion equations. In this section the motion
equations ofMEMS gyroscope are derived based on Lagrange
equation:
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where 𝑘
𝑥
is the total stiffness of the elastic suspension along

the 𝑥-axis and 𝑘
𝑦
is the total stiffness along the 𝑦-axis.

Now using the Lagrange equation (1), the following motion
equations that reveal the dynamics of MEMS gyroscope will
appear after some simple transformations:
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and used to reconstruct the unknown external angular rate
Ω
𝑧
. 𝑢
𝑥
and 𝑢

𝑦
are external forces or control inputs.

Assuming that the external angular rate is almost constant
over a long enough time interval, under typical assumptions
Ω
𝑥
≈ Ω
𝑦
≈ 0, only the 𝑧-axis component of the angular

rate Ω
𝑧
causes a dynamic coupling between the two axes.

Taking fabrication imperfections into account, which cause
extra coupling between the two axes, the motion equations of
a MEMS gyroscope is finally given by
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Rewriting the gyroscope dynamics into vector forms
results in
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3. Problem Formulation

All the MEMS gyroscope parameters in (6) cannot be known
precisely. This may arise because the MEMS gyroscope is
being subjected to unknown angular rate or because the
exact evaluation of the gyroscope’s dynamic is too costly.
The dynamical model contains model uncertainties, external
disturbance, and even some nonlinearities. We assume the
external disturbances are bounded; that is ‖𝜏

𝑑
‖ ≤ 𝑏

𝑑
, for

some unknown positive constant 𝑏
𝑑
.

Let q
𝑑
= [𝑥
𝑑
, 𝑦
𝑑
]
𝑇 denote the desired trajectory of the

proof mass in the 𝑥-𝑦 plan.
Define the tracking error as follows:

e (𝑡) = q
𝑑 (
𝑡) − q (𝑡) . (7)

The sliding mode is defined as

r (𝑡) = ė (𝑡) + Λe (𝑡) , (8)

where Λ = Λ
𝑇
> 0 is a design parameter matrix.

Differentiating r(𝑡) and using (6), the MEMS gyroscope
dynamics can be expressed as

𝑀 ̇r = −𝐷r − 𝜏 + f (x) − 𝜏𝑑, (9)

where the unknown gyroscope function is

f (x) = 𝑀 (q̈𝑑 + Λė) + 𝐷 (q̇𝑑 + Λe) + 𝐾q + 2Ωq̇, (10)
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Figure 1: Schematic model of a two-axis MEMS vibratory gyro-
scope.

and x ∈ R10 are the available measured signals:

x = [e𝑇 ė𝑇 q𝑇
𝑑

q̇𝑇
𝑑

q̈𝑇
𝑑
]

𝑇

. (11)

If we can reconstruct an estimate of f(x) using x by some
means not yet disclosed, we now define a control input as

𝜏 =
̂f (x) + 𝐾Vr, (12)

where gain matrix 𝐾V = 𝐾
𝑇

V > 0 and ̂f(x) is the estimate of
f(x). The closed-loop system becomes

𝑀 ̇r = −𝐷r − ̂f − 𝐾Vr + f − 𝜏𝑑

= − (𝐾V + 𝐷) r + ̃f − 𝜏𝑑,
(13)

where the functional estimation error is given by

̃f = f − ̂f . (14)

Equation (13) is an error systemwherein the slidingmode
is driven by the functional estimation error. The control
𝜏
0
incorporates a proportional-plus-derivative (PD) term in

𝐾Vr = 𝐾V(ė+Λe). In the next section we will use (13) to focus
on selectingNN tuning algorithms that guarantee the stability
of the sliding mode r(𝑡).

4. Adaptive Neural Network Controller

4.1. RBF Neural Network. RBF neural network has the uni-
versal approximation property that states that any sufficiently
smooth function can be approximated by a suitable large net-
work for all inputs in a compact set and the resulting function
reconstruction error is bounded. The RBF network has a fast
convergence property and a simple architecture.Therefore, in
this section we apply RBF network for compensating for the
unknown dynamics part in Section 2.
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The structure of RBF neural network is a three-layer feed
forward network shown as in Figure 2. The output of an RBF
neural network can be described as

𝑦
𝑖
=

𝑛
2

∑

𝑗=1

𝜔
𝑖𝑗
𝜙
𝑗
, 𝑖 = 1, 2, . . . 𝑛

3
,

𝜙
𝑗 (
x) = 𝑔(






x − c
𝑗







𝜎
𝑗

) , 𝑗 = 1, 2, . . . 𝑛
2
,

(15)

where 𝑛
2
and 𝑛
3
are the numbers of hidden and output nodes,

respectively, and x ∈ R𝑛1 and 𝜔
𝑖𝑗
is the weight connecting

the 𝑗th hidden node to the 𝑖th output node.𝑦
𝑖
is the output of

the 𝑖th node. 𝜙
𝑗
(x) is the 𝑗th radial basis function. c

𝑗
∈ R𝑛1 is

the center vector and𝜎
𝑗
represents thewidth of the 𝑗th hidden

node.The activation function𝑔 is often chosen to beGaussian
function 𝑔(𝛼) = exp(−𝛼2).

If the RBF net parameters c
𝑗
and 𝜎

𝑗
are kept fixed, the

only adjustable weights 𝜔 appear linearly with respect to the
known nonlinearity 𝜙(x). Now, the output of RBF NN can be
rewritten as

y = 𝑊𝑇𝜙 (x) , (16)

where𝑊𝑇 = [𝜔
𝑖𝑗
] and 𝜙(x) = [𝜙

𝑗
(x)].

𝜔
𝑖𝑗
is the weight connecting the 𝑗th hidden node to

the 𝑖th output node. 𝜙
𝑗
(x) is the 𝑗th radial basis function.

Following the above results, the unknown MEMS gyro-
scope function f(x) can be parameterized by a RBF network
with output ̂f(x,�̂�), where �̂� is the matrix of adjustable
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Figure 4: Position tracking of 𝑥-axis with adaptive neural sliding
compensator.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.05

0.1

0.15

Time (s)

−0.15

−0.1

−0.05

qdy
qy

Po
sit

io
n 

tr
ac

ki
ng

 fo
ry

-a
xi

s

Figure 5: Position tracking of 𝑦-axis with adaptive neural sliding
compensator.

weights. We assume that the function f(x) is given by a
RBF NN for some constant “ideal” NN weights 𝑊, and the
net reconstruction error 𝜀(x) is bounded by an unknown
constant 𝜀

𝑁
as

f (x) = 𝑊𝑇𝜙 (x) + 𝜀 (x) , (17)

where 𝜀(x), as mentioned above, is the NN functional recon-
struction error vector. For the ideal NN weights, ‖𝜀(x)‖ ≤ 𝜀

𝑁
.

Meanwhile, we assume that the ideal weights are bounded
by

‖𝑊‖ ≤ 𝑊𝐵
. (18)

4.2. Controller Structure and Error System Dynamics. Define
the NN functional estimate of (10) as

̂f (x) = �̂�𝑇𝜙 (x) (19)
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Figure 6: Tracking errors with adaptive neural sliding compensator.

with �̂� as the estimated values of the ideal RBF NN weights
𝑊.

Substituting (19) into (12) yields

𝜏 = 𝑊
𝑇
𝜙 (x) + 𝐾Vr. (20)

The proposed NN control structure is shown in Figure 3.
Using this controller, the sliding mode dynamics become

𝑀 ̇r = − (𝐾V + 𝐷) r + �̃�
𝑇
𝜙 (x) + (𝜀 − 𝜏𝑑)

= − (𝐾V + 𝐷) r + 𝜍1,
(21)

where �̃� = 𝑊 − �̂� and 𝜍
1
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𝜙(x) + (𝜀 − 𝜏
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Theorem 1. Let the designed trajectory be bounded, the control
input for (6) given by (20), and weights tuning provided by

̇
�̂� = 𝐹𝜙 (x) r𝑇 − 𝛾𝐹 ‖r‖ �̂� (22)

with any constant gain matrix 𝐹 = 𝐹T > 0 and scalar design
parameter 𝛾 > 0. Then, for large enough control gain 𝐾V, the
sliding mode r(𝑡) and NN weight estimates �̂� are uniformly
ultimate bounded. Moreover, the tracking error may be kept as
small as desired by increasing the gains 𝐾V in (20).

Proof. Consider the following Lyapunov function candidate:
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which is negative as long as the term in braces is positive.
Completing the square yields

𝐾Vmin ‖r‖ + 𝛾
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+ 𝐾Vmin ‖r‖ − (𝜀𝑁 + 𝑏𝑑) ,
(27)

which is guaranteed positive as long as

‖r‖ >
𝛾𝑊
2

𝐵
/4 + (𝜀

𝑁
+ 𝑏
𝑑
)

𝐾Vmin
≡ 𝑏
𝑟

(28)

or






�̃�
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𝑊
𝐵

2

+ √
𝛾𝑊
2

𝐵

4

+

𝜀
𝑁
+ 𝑏
𝑑

𝛾

≡ 𝑏
𝑊
. (29)

Thus, �̇� is negative outside a compact set; this demonstrates
the UUB (uniformly ultimate bounded) of both ‖r‖ and
‖�̃�‖
𝐹
. Since any excursions of ‖r‖ or ‖�̃�‖

𝐹
beyond the

bounds given in (28) and (29), respectively, lead to a decrease
in the Lyapunov function 𝐿, it follows that the right-hand
sides of (28) and (29) can be taken as practical bounds on
‖r‖ and ‖�̃�‖

𝐹
, respectively. Note from (28), moreover, that

arbitrarily small error bounds may be achieved by selecting
large tracking control gains𝐾V.
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Figure 7: Control inputs for gyroscope with adaptive neural sliding compensator ((a): 𝑢
𝑥
; (b): 𝑢

𝑦
).
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Figure 8: RBF network approximation of 𝑥-axis component with
adaptive neural sliding compensator.
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Figure 9: RBF network approximation of 𝑦-axis component with
adaptive neural sliding compensator.

Remark 2. Given𝐴 = [𝑎
𝑖𝑗
], the Frobenius norm is defined by

‖𝐴‖
2

𝐹
= tr (𝐴𝑇𝐴) = ∑𝑎2

𝑖𝑗
. (30)

The associated inner product is ⟨𝐴, 𝐵⟩
𝐹
= tr(𝐴𝑇𝐵), where the

dimensions of 𝐴 and 𝐵 are suitable for matrix product.
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Figure 10: Position tracking of 𝑥-axis without NN controller.
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Figure 11: Position tracking of 𝑦-axis without NN controller.

5. Simulation Analysis

In this section, we will evaluate the proposed adaptive neural
network scheme, which will require no knowledge of the
dynamics, not even their structure on the lumped MEMS
gyroscope sensor model [3, 4]. The control objective is to
maintain the gyroscope system to track the desired reference
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Figure 12: Tracking errors with neural compensator.

trajectory and estimate the unknown function f(x) as in (10).
The parameters of the MEMS gyroscope are shown as

𝑚 = 1.8 × 10
−7kg, 𝑘

𝑥𝑥
= 63.955N/m,

𝑘
𝑦𝑦
= 95.92N/m, 𝑘

𝑥𝑦
= 12.779N/m,

𝑑
𝑥𝑥
= 1.8 × 10

−6N ⋅ s/m, 𝑑
𝑦𝑦
= 1.8 × 10

−6N ⋅ s/m,

𝑑
𝑥𝑦
= 3.6 × 10

−7N ⋅ s/m.
(31)

The unknown angular velocity is assumed Ω
𝑧
= 100 rad/s.

The desired trajectory is defined as 𝑞
𝑑𝑥
= 0.1∗cos(𝜔

1
𝑡), 𝑞
𝑑𝑦
=

0.1 ∗ cos(𝜔
2
𝑡), where 𝜔

1
= 6.17 and 𝜔

2
= 5.11.

The external disturbance is 𝜏
𝑑
= [(sin(6.17 ∗ 𝑡))2 +

cos(6.17 ∗ 𝑡), (sin(5.11 ∗ 𝑡))2 + cos(5.11 ∗ 𝑡)]𝑇.
The gain matrix 𝐾V was taken as 𝐾V = diag{50, 50},

sliding parameter Λ = diag{5, 5}. The RBF neural network
is composed of 45 nodes. As we will see from the subsequent
figure that the unique PD controller (𝐾Vr) could ensure that
the tracking error belongs to a compact set. Thus, when we
design the RBF net centroids, we constrain our attention on
that compact set and take width 𝜎 = 1. The response with
these controller parameters when q = 0 and q̇ = 0 is shown
in the following figures.

Figures 4 and 5 show the proof mass along 𝑥-axis and
𝑦-axis tracking trajectories, respectively. Figure 6 depicts the
tracking errors. It can be seen that the tracking error belongs
to a small region with the adaptive RBF sliding compensator.
The control inputs appear in Figure 7. As seen from the
figure, the control inputs are continuous and smooth with
respect to time, which implies that the proposed controller is
easy to implement. Figures 8 and 9 show the approximation
of RBF network to unknown MEMS gyroscope function
f(x). The approximation result is impressive because of the
satisfactory performance of the RBFNN.As shown in the two
figures, RBF NN could approximate the unknown gyroscope
function quickly using the available measured signals x
throughout the whole compact set.

In order to demonstrate the contribution of RBF NN, the
response without RBF NN is also discussed and shown as in
Figures 10 and 11. The responses with the controller 𝜏 = 𝐾Vr,
that is, with no neural network, are drawn. A PD controller
should give bounded errors if 𝐾V is large enough and the
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Figure 13: 𝑥-axis position tracking with neural compensator.

tracking errors belong to a compact set. It is very clear that
the addition of the NNmakes a very significant improvement
in the tracking performance.

To compare the performance of the proposed controller
and the neural compensator without sliding mode method
in [16], Figures 12, 13, and 14 show the response with the
neural compensator under the same gyroscope parameters
and disturbances introduced herein.

The tracking results with neural compensator show
clearly that both the convergence time and the ultimate
tracking error bound are worse than the proposed neural
sliding mode controller, demonstrating that adaptive sliding
mode controller using neural network approximation could
improve the dynamic and static performance.

6. Conclusion

The trajectory control of the MEMS gyroscope using adap-
tive NN controller is investigated. A novel weight tuning
algorithm designed based on Lyapunov stability theorem is
derived to establish the bounded tracking errors and NN
weights, which consists of a standard term plus robust signal
that provides the possibility of arbitrary small tracking error.
It is clearly observed that the MEMS gyroscope function
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Figure 14: 𝑦-axis position tracking with neural compensator.

f(x) can be effectively approximated by its estimate ̂f(x)
using the RBF neural network and the tracking error of
the proof mass can be greatly improved in the presence of
model uncertainties and external disturbances. Numerical
simulations verify the effectiveness of the proposed adaptive
NN compensation scheme to cope with all structured and
unstructured uncertainties existing in the MEMS gyroscope.
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