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A class of new nonlinear retarded difference inequalities is established. An application of the obtained inequalities to the estimation
of finite difference equations is given.

1. Introduction

Difference inequalities which give explicit bounds on
unknown functions provide a very useful and important
tool in the study of many qualitative as well as quantitative
properties of solutions of nonlinear difference equations.
Various investigators have discovered many useful and new
difference inequalities, mainly inspired by their applications
in various branches of difference equations; see [1–25] and
the references cited therein.

Sugiyama [2] established the most precise and complete
discrete analogue of the Gronwall inequality (see [1]) in the
following form.

Let 𝑢(𝑛) and 𝑓(𝑛) be nonnegative functions defined for
𝑛 ∈ N, and suppose that 𝑓(𝑛) ≥ 0 for every 𝑛 ∈ N. If

𝑢 (𝑛) ≤ 𝑢
0
+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑢 (𝑠) , 𝑛 ∈ N, (1)

whereN is the set of points 𝑛
0
+ 𝑘 (𝑘 = 0, 1, 2, . . .), 𝑛

0
≥ 0 is a

given integer, and 𝑢
0
is a nonnegative constant, then

𝑢 (𝑛) ≤ 𝑢
0

𝑛−1

∏

𝑠=𝑛0

[1 + 𝑓 (𝑠)] , 𝑛 ∈ N. (2)

Pachpatte [4] established a generalized discrete analogue of
the Gronwall inequality in the following form.

Let 𝑚(𝑠) be a positive and monotone nondecreasing
function onN, and let 𝑎(𝑠), 𝑏(𝑠) be nonnegative functions on
N. If 𝑢(𝑛) satisfies

𝑢 (𝑛) ≤ 𝑚 (𝑠) +

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠) (𝑢 (𝑠) +

𝑠−1

∑

𝜏=𝑛0

𝑏 (𝜏) 𝑢 (𝜏)) , ∀𝑛 ∈ N,

(3)
then

𝑢 (𝑛) ≤ 𝑃 (𝑛)𝑚 (𝑠) , ∀𝑛 ∈ N, (4)
where

𝑃 (𝑛) = 1 +

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠)

𝑠−1

∏

𝜏=𝑛0

[1 + 𝑎 (𝜏) + 𝑏 (𝜏)] , ∀𝑛 ∈ N. (5)

Besides the results mentioned above, the following results
are closely related to the investigation of the present paper,
and, particularly, they will be used as lemmas for the proofs
of our main results in Theorems 3 and 4.

Lemma 1 (see [5]). Let 𝑢(𝑛), 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛), and 𝑑(𝑛) be
nonnegative functions defined on N, for which the inequality

𝑢 (𝑛) ≤ 𝑢
0
+

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠) 𝑢 (𝑠) +

𝑛−1

∑

𝑠=𝑛0

𝑏 (𝑠)

× (

𝑠−1

∑

𝑡=𝑛0

𝑐 (𝑡) (

𝑡−1

∑

𝜏=𝑛0

𝑑 (𝜏) 𝑢
𝛼
(𝜏))) , ∀𝑛 ∈ N,

(6)
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holds, where 𝑢
0
is a nonnegative constant and 0 < 𝛼 < 1. If

1+𝑎(𝑛)− 𝑏(𝑛) ≥ 0 and 1+𝑎(𝑛)+ 𝑏(𝑛)− 𝑐(𝑛) ≥ 0 for all 𝑛 ∈ N,
then

𝑢 (𝑛) ≤ 𝑢
0

𝑛−1

∏

𝑠=𝑛0

[1 + 𝑎 (𝑠) − 𝑏 (𝑠)]

+

𝑛−1

∑

𝑠=𝑛0

𝑏 (𝑠)

𝑛−1

∏

𝑡=𝑠+1

[1 + 𝑎 (𝑡) − 𝑏 (𝑡)]

×

{

{

{

𝑢
0

𝑠−1

∏

𝑡=𝑛0

[1 + 𝑎 (𝑡) + 𝑏 (𝑡) − 𝑐 (𝑡)]

+

𝑠−1

∑

𝑡=𝑛0

𝑐 (𝑡)

𝑠−1

∏

𝜏=𝑡+1

[1 + 𝑎 (𝜏) + 𝑏 (𝜏) − 𝑐 (𝜏)]

×

𝑡−1

∏

𝜏=𝑛0

[1 + 𝑎 (𝜏) + 𝑏 (𝜏) + 𝑐 (𝜏)]

× [𝑢
1−𝛼

0
+ (1 − 𝛼)

𝑡−1

∑

𝜏=𝑛0

𝑑 (𝜏)

×

𝜏

∏

𝜌=𝑛0

[1 + 𝑎 (𝜌) + 𝑏 (𝜌)

+ 𝑐 (𝜌)]
𝛼−1

]

1/(1−𝛼)

}

}

}

, ∀𝑛 ∈ N.

(7)

Lemma 2 (see [3, 7]). Let 𝑤(𝑛, 𝑟) be a real-valued function
defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and monotone nondecreasing
with respect to 𝑟 for any fixed 𝑛 ∈ N. Let 𝑢(𝑛) be a real-valued
function defined for 𝑛 ∈ N such that

Δ𝑢 (𝑛) ≤ 𝑤 (𝑛, 𝑢 (𝑛)) , ∀𝑛 ∈ N. (8)

Let 𝑟(𝑛) be a solution of

Δ𝑟 (𝑛) = 𝑤 (𝑛, 𝑟 (𝑛)) , 𝑟 (𝑛
0
) = 𝑟
0
, ∀𝑛 ∈ N, (9)

such that 𝑢(𝑛
0
) ≤ 𝑟(𝑛

0
). Then

𝑢 (𝑛) ≤ 𝑟 (𝑛) , ∀𝑛 ∈ N. (10)

Pachpatte [7, 8] also established some difference inequal-
ities of product form as follows.

Let 𝑢, 𝑎, and 𝑏 be nonnegative functions defined onN and
let 𝑐 be a nonnegative constant. Let 𝑤(𝑛, 𝑟) be a nonnegative
function defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and monotone

nondecreasing with respect to 𝑟 for any fixed 𝑛 ∈ N. If 𝑢(𝑛)
satisfies

𝑢
2
(𝑛) ≤ 𝑐

2
+ 2

𝑛−1

∑

𝑠=𝑛0

𝑢 (𝑠)

× [𝑎 (𝑠) (𝑢 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑏 (𝑡) 𝑢 (𝑡))

+ 𝑤 (𝑠, 𝑢 (𝑠)) ] , ∀𝑛 ∈ N,

(11)

then

𝑢 (𝑛) ≤ 𝑃 (𝑛) 𝑟 (𝑛) , ∀𝑛 ∈ N, (12)

where 𝑃(𝑛) is defined by (5) and 𝑟(𝑛) is a solution of

Δ𝑟 (𝑛) = 𝑤 (𝑛, 𝑃 (𝑛) 𝑟 (𝑛)) , 𝑟 (𝑛
0
) = 𝑐, ∀𝑛 ∈ N. (13)

Let𝑢, 𝑎, and 𝑏 be nonnegative functions defined for 𝑛 ∈ N and
let 𝑐 be a nonnegative constant. Let 𝑤(𝑛, 𝑟) be a nonnegative
function defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and monotone
nondecreasing with respect to 𝑟 for any fixed 𝑛 ∈ N. If 𝑢(𝑛)
satisfies

𝑢
2
(𝑛) ≤ 𝑐

2
+

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠) (𝑢 (𝑠 + 1) + 𝑢 (𝑠))

× [(𝑢 (𝑠) +

𝑠−1

∑

𝜏=𝑛0

𝑏 (𝜏) 𝑢 (𝜏)) + 𝑤 (𝑠, 𝑢 (𝑠))] ,

∀𝑛 ∈ N,

(14)

then

𝑢 (𝑛) ≤ 𝑃 (𝑛) 𝑟 (𝑛) , ∀𝑛 ∈ N, (15)

where 𝑃(𝑛) is defined by (5) and 𝑟(𝑛) is a solution of the
difference equation

Δ𝑟 (𝑛) = 𝑎 (𝑛)𝑤 (𝑛, 𝑃 (𝑛) 𝑟 (𝑛)) , 𝑟 (𝑛
0
) = 𝑐, ∀𝑛 ∈ N.

(16)

Motivated by the results given in [5, 7, 8], in this paper,
we discuss new nonlinear difference inequalities:

𝑢
2
(𝑛)

≤ 𝑐
2
+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) (𝑢 (𝑠 + 1) + 𝑢 (𝑠))

× [(𝑢 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢
𝛼
(𝜏)) + 𝑤 (𝑠, 𝑢 (𝑠))] ,

0 < 𝛼 < 1, ∀𝑛 ∈ N.

(17)

It is important to note that the inequality given above
can be used as tools in the study of certain classes of finite
difference equations. In Section 3 we provide an application
of our results to the estimation of finite difference equations.
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2. Main Results

Throughout this paper, let N := {𝑛
0
, 𝑛
0
+ 1, 𝑛

0
+ 2, . . .} and

N
𝑇

:= {𝑛
0
, 𝑛
0

+ 1, 𝑛
0

+ 2, . . . , 𝑇}, 𝑇 ∈ N. For function
𝑢(𝑛), 𝑛 ∈ N, we define the operator Δ by Δ𝑢(𝑛) =

𝑢(𝑛 + 1) − 𝑢(𝑛). Obviously, the linear difference equation
Δ𝑢(𝑛) = 𝑓(𝑛) with the initial condition 𝑢(𝑛

0
) = 0 has the

solution 𝑢(𝑛) = ∑
𝑛−1

𝑠=𝑛0
𝑓(𝑠). For convenience, in the sequel we

complementarily define that ∑𝑛0−1
𝑠=𝑛0

𝑓(𝑠) = 0 and ∏
𝑛0−1

𝑠=𝑛0
𝑓(𝑠) =

1.

Theorem 3. Let 𝑚(𝑠) be a nonnegative and monotone nonde-
creasing function defined on N, and let 𝑓(𝑠), 𝑔(𝑠), and ℎ(𝑠) be
nonnegative functions defined on N

0
. Let 𝛼 be a constant with

0 < 𝛼 < 1. If 𝑢(𝑛) satisfies

𝑢 (𝑛) ≤ 𝑚 (𝑛)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑢 (𝑠) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

×

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) (

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢
𝛼
(𝜏)) , ∀𝑛 ∈ N,

(18)

then

𝑢 (𝑛) ≤ 𝑊
1
(𝑚 (𝑛) , 𝑛) , ∀𝑛 ∈ N, (19)

where

𝑊
1
(𝑚 (𝑛) , 𝑛)

:= 𝑚 (𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

×

{

{

{

𝑚(𝑛)

𝑠−1

∏

𝑡=𝑛0

[1 + 2𝑓 (𝑡) − 𝑔 (𝑡)]

+

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑠−1

∏

𝜏=𝑡+1

[1 + 2𝑓 (𝜏) − 𝑔 (𝜏)]

×

𝑡−1

∏

𝜏=𝑛0

[1 + 2𝑓 (𝜏) + 𝑔 (𝜏)]

× [𝑚
1−𝛼

(𝑛) + (1 − 𝛼)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)

×

𝜏

∏

𝜌=𝑛0

[1 + 2𝑓 (𝜌) + 𝑔 (𝜌)]
𝛼−1

]

1/(1−𝛼)

}

}

}

, ∀𝑛 ∈ N.

(20)

Proof. Fix 𝑇 ∈ N, where 𝑇 is chosen arbitrarily; since 𝑚(𝑡) is
a nonnegative and monotone nondecreasing function, from
(18), we have

𝑢 (𝑛) ≤ 𝑚 (𝑇) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑢 (𝑠)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) (

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢
𝛼
(𝜏)) ,

∀𝑛 ∈ N
𝑇
.

(21)

Now an application of Lemma 1 to (21) yields

𝑢 (𝑛) ≤ 𝑚 (𝑇) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

×

{

{

{

𝑚(𝑇)

𝑠−1

∏

𝑡=𝑛0

[1 + 2𝑓 (𝑡) − 𝑔 (𝑡)]

+

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑠−1

∏

𝜏=𝑡+1

[1 + 2𝑓 (𝜏) − 𝑔 (𝜏)]

×

𝑡−1

∏

𝜏=𝑛0

[1 + 2𝑓 (𝜏) + 𝑔 (𝜏)]

× [𝑚
1−𝛼

(𝑇) + (1 − 𝛼)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)

×

𝜏

∏

𝜌=𝑛0

[1 + 2𝑓 (𝜌) + 𝑔 (𝜌)]
𝛼−1

]

1/(1−𝛼)

}

}

}

,

∀𝑛 ∈ N
𝑇
.

(22)

Since 𝑇 ∈ N is arbitrary, from (22), we get the required
estimate (19).

Theorem4. Let 𝑢, 𝑓, 𝑔,and ℎ be nonnegative functions defined
for 𝑛 ∈ N and let 𝑐 be a nonnegative constant. Let 𝑤(𝑛, 𝑟) be
a real-valued function defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and
monotone nondecreasing with respect to 𝑟 for any fixed 𝑛 ∈ N.
Let 𝛼 be a constant with 0 < 𝛼 < 1. If 𝑢(𝑛) satisfies (17), then

𝑢 (𝑛) ≤ 𝑊
1
(V (𝑛) , 𝑛) , ∀𝑛 ∈ N, (23)

where 𝑊
1
(V(𝑛), 𝑛) is defined by (20) in Theorem 3 and V(𝑛) is

a solution of the difference equation

Δ𝑟 (𝑛) = 𝑓 (𝑛)𝑤 (𝑛,𝑊
1
(𝑟 (𝑛) , 𝑛)) , 𝑟 (𝑛

0
) = 𝑐,

∀𝑛 ∈ N.

(24)

Proof. We first assume that 𝑐 > 0 and define a function 𝑧(𝑛)

by the right-hand side of (17).Then 𝑧(𝑛) is a nonnegative and
monotone nondecreasing function defined on N

0
. We have

𝑧 (𝑛
0
) = 𝑐
2
, 𝑢 (𝑛) ≤ √𝑧 (𝑛), ∀𝑛 ∈ N. (25)
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Using the definitions of the operator Δ and 𝑧, we obtain

Δ𝑧 (𝑛)

= 𝑓 (𝑛) (𝑢 (𝑛 + 1) + 𝑢 (𝑛))

× [(𝑢 (𝑛) +

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢
𝛼
(𝜏)) + 𝑤 (𝑛, 𝑢 (𝑛))]

≤ 𝑓 (𝑛) (√𝑧 (𝑛 + 1) + √𝑧 (𝑛))

× [(√𝑧 (𝑛) +

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) (√𝑧 (𝜏))

𝛼

)

+ 𝑤(𝑛,√𝑧 (𝑛)) ] , ∀𝑛 ∈ N.

(26)

From (26), we have

Δ (√𝑧 (𝑛))

=

Δ𝑧 (𝑛)

√𝑧 (𝑛 + 1) + √𝑧 (𝑛)

≤ 𝑓 (𝑛) [(√𝑧 (𝑛) +

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) (√𝑧 (𝜏))

𝛼

) + 𝑤(𝑛,√𝑧 (𝑛))] ,

∀𝑛 ∈ N.

(27)

Setting 𝑛 = 𝑠 in (27) and substituting 𝑠 = 𝑛
0
, 𝑛
0
+ 1, 𝑛

0
+

2, . . . , 𝑛 − 1, successively, we get

√𝑧 (𝑛) ≤ 𝑐 +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

× [(√𝑧 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) (√𝑧 (𝜏))

𝛼

)

+ 𝑤(𝑠, √𝑧 (𝑠)) ] , ∀𝑛 ∈ N.

(28)

Define a function 𝑧
1
(𝑛) by

𝑧
1 (

𝑛) = 𝑐 +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑤 (𝑠, √𝑧 (𝑠)) , ∀𝑛 ∈ N. (29)

Then 𝑧
1
(𝑛
0
) = 𝑐 and

Δ𝑧
1
(𝑛) = 𝑓 (𝑛)𝑤 (𝑛,√𝑧 (𝑛)) , ∀𝑛 ∈ N. (30)

Using (29), inequality (28) can be written as

√𝑧 (𝑛) ≤ 𝑧
1
(𝑛)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)(√𝑧 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)

×(√𝑧 (𝜏))

𝛼

) , ∀𝑛 ∈ N,

(31)

since 𝑧
1
(𝑛) is positive andmonotone nondecreasing for 𝑛 ∈ N

and 𝑓(𝑠), 𝑔(𝑠), and ℎ(𝑠) satisfy the conditions in Theorem 3.
Now an application of Theorem 3 to (31) yields

√𝑧 (𝑛) ≤ 𝑊
1
(𝑧
1
(𝑛) , 𝑛) , ∀𝑛 ∈ N, (32)

where 𝑊
1
(𝑧
1
(𝑛), 𝑛) is defined by (20) in Theorem 3. Since

𝑤(𝑛, 𝑟) is monotone nondecreasing with respect to 𝑟 for any
fixed 𝑛 ∈ N, from (30) and (32), we have

Δ𝑧
1
(𝑛) ≤ 𝑓 (𝑛)𝑤 (𝑛,𝑊

1
(𝑧
1
(𝑛) , 𝑛)) , ∀𝑛 ∈ N. (33)

Now with a suitable application of Lemma 2, we obtain

𝑧
1
(𝑛) ≤ V (𝑛) , ∀𝑛 ∈ N, (34)

where V(𝑛) is a solution of (24). Using (25), (32), and (34), we
obtain our required estimation (23).

If 𝑐 is nonnegative, we can carry out the above procedure
with 𝑐 + 𝜖 instead of 𝑐, where 𝜖 is an arbitrary small number.
Letting 𝜖 → 0, we obtain (23).

3. Application to Finite Difference Equations

In this section, we apply our result to the following difference
equation:

Δ𝑥 (𝑛) = 𝑓 (𝑛)

× [𝐹(𝑛, 𝑥 (𝑛) ,

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏)))

+ 𝐾 (𝑛, 𝑥 (𝑛)) ] , ∀𝑛 ∈ N,

(35)

where𝐾,𝐻, and 𝐹 are real-valued functions defined, respec-
tively, on N × R, N2 × R, and N × R2 and 𝑓 is as defined in
Theorem 4. We assume that

|𝐾 (𝑛, 𝑥 (𝑛))| ≤ 𝑤 (𝑛, |𝑥 (𝑛)|) ,

|𝐻 (𝑛, 𝑡, 𝑥 (𝑡))| ≤

𝑛−1

∑

𝑡=𝑛0

ℎ (𝑡) |𝑥 (𝑡)|
𝛼
,

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑛, 𝑥 (𝑛) , 𝑦 (𝑛))

󵄨
󵄨
󵄨
󵄨
≤ |𝑥 (𝑛)| +

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑛)

󵄨
󵄨
󵄨
󵄨
,

(36)
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where 𝑔, ℎ, 𝑤, and 𝛼 are as defined in Theorem 4. From (35),
we have

𝑥
2
(𝑛 + 1) − 𝑥

2
(𝑛)

= 𝑓 (𝑛) [𝑥 (𝑛 + 1) +𝑥 (𝑛)]

× [𝐹(𝑛, 𝑥 (𝑛) ,

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏)))

+𝐾 (𝑛, 𝑥 (𝑛)) ] , ∀𝑛 ∈ N.

(37)

From (37), we have

𝑥
2
(𝑛) = 𝑥

2
(𝑛
0
) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) [𝑥 (𝑠 + 1) + 𝑥 (𝑠)]

× [𝐹(𝑠, 𝑥 (𝑠) ,

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏))) + 𝐾 (𝑠, 𝑥 (𝑠))] ,

∀𝑛 ∈ N.

(38)

Using conditions (36), we obtain

|𝑥 (𝑛)|
2
= 𝑥
2
(𝑛
0
) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) [|𝑥 (𝑠 + 1)| + |𝑥 (𝑠)|]

× [|𝑥 (𝑠)| +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) |𝑥 (𝜏)|
𝛼

+𝑤 (𝑠, |𝑥 (𝑠)|) ] , ∀𝑛 ∈ N.

(39)

Now an application ofTheorem 4 to (39) yields the estimation
of the difference equation (35) as follows:

|𝑥 (𝑛)|

≤ V (𝑛)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

{

{

{

V (𝑛)

𝑠−1

∏

𝑡=𝑛0

[1 + 2𝑓 (𝑡) − 𝑔 (𝑡)]

+

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)

𝑠−1

∏

𝜏=𝑡+1

[1 + 2𝑓 (𝜏) − 𝑔 (𝜏)]

×

𝑡−1

∏

𝜏=𝑛0

[1 + 2𝑓 (𝜏) + 𝑔 (𝜏)]

× [V1−𝛼 (𝑛) + (1 − 𝛼)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)

×

𝜏

∏

𝜌=𝑛0

[1 + 2𝑓 (𝜌) + 𝑔 (𝜌)]
𝛼−1

]

1/(1−𝛼)

}

}

}

,

∀𝑛 ∈ N,

(40)

where V(𝑛) is a solution of the difference equation

Δ𝑟 (𝑛) = 𝑓 (𝑛)𝑤 (𝑛,𝑊
1 (

𝑟 (𝑛) , 𝑛)) , 𝑟 (𝑛
0
) =

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑛
0
)
󵄨
󵄨
󵄨
󵄨
,

∀𝑛 ∈ N.

(41)
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