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We study fractional-order derivatives of left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 to detect and locate singularities
in theory. The widely used four types of ideal singularities are analyzed by deducing their fractional derivative formula. The local
extrema of fractional derivatives are used to locate the singularities. Theory analysis indicates that fractional-order derivatives of
left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 can detect and locate four types of ideal singularities correctly, which
shows better performance than classical 1-order derivatives in theory.

1. Introduction

How to preserve singularities in image and signal process-
ing is a very important problem [1–5]. Recently, fractional
derivatives become very important tools in the field [6–17].
All of the methods based on fractional derivatives reported
good processing results by modifying some classical partial
differential equations (PDEs) to fully or partial fractional-
order derivative PDEs. Just as the recent theory analysis
efforts in fractional derivatives bymathematicians [18–20], all
theory analyses focus on how to approach the PDEs and how
to find their exact solutions.

However, we think fractional derivatives should be stud-
ied differently. It is well known that one powerful method
to preserve singularities in signal processing is to detect and
locate singularities correctly and then to protect them in sig-
nal processing. Thus, we think the most important problem
in theory analysis should be if the fractional derivatives can
detect and locate singularities well.

In this paper, we study fractional-order derivatives of
left-handed Grünwald-Letnikov formula with 0 < 𝛼 < 1

to detect and locate the widely used four types of ideal
singularities in theory. Theory analysis is from deducing
the fractional derivatives of four types of ideal singularities

with an indicated singularity in each case. The differen-
ces of these fractional derivative values are studied to
find the local extrema. The extrema are considered as
the singularities.

The rest of this paper is as follows. Section 2 introduces
some basic theory backgrounds in fractional derivatives; we
also deduce some useful results based on these theory back-
grounds. In Section 3, we introduce the 1-order differential
method used in singularity detection and location, and the
detected and located results of four types of ideal singularities
are also presented. Section 4 discusses the steps in singular-
ities detection and location using fractional derivatives, and
then they are used to detect and locate the four types of ideal
singularities.We also give conclusions and acknowledgments
finally.

2. Fractional Derivatives

In contrast to integer-order differentials 𝑑𝑛/𝑑𝑡𝑛, fractional-
order derivatives are defined as operators whose orders
have been extended to noninteger numbers. There are
a number of definitions of fractional derivatives. The
usual way of representing the fractional derivatives is by
the left-handed Riemann-Liouville formula (R-L formula).
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The left-handed R-L formula of order 𝛼, for 𝑥 ∈ [𝑎, 𝑏], is
defined by [21, 22]

𝐷
𝛼

RL𝑢 (𝑥) =
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

𝑎

𝑢 (𝜏) (𝑥 − 𝜏)
𝑛−𝛼−1

𝑑𝜏, (1)

where 𝑛 − 1 < 𝛼 < 𝑛 and 𝑛 = [𝛼] + 1, with [𝛼] denoting the
integer part of 𝛼, and Γ(⋅) is the Gamma function defined as

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡. (2)

Another way to represent the fractional derivatives is by
the Grünwald-Letnikov (G-L) formula, which is a generaliza-
tion of the ordinary discretization formulas for integer-order
derivatives. For 𝛼 > 0, the left-handed G-L formula is

𝐷
𝛼

GL𝑢 (𝑥) = lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥) , (3)

where Δ𝑥 denotes the uniform space step and 𝜔
(𝛼)

𝑘
=

(−1)
𝑘

(
𝛼

𝑘
) represents the normalized G-L weights that are

given by

𝜔
(𝛼)

0
= 1,

𝜔
(𝛼)

𝑘
= (−1)

𝑘
𝛼 (𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑘 + 1)

𝑘!

=
Γ (𝑘 − 𝛼)

Γ (−𝛼) Γ (𝑘 + 1)
, for 𝑘 = 1, 2, 3, . . . .

(4)

The above two definitions have different forms. However,
by requiring a reasonable behavior of the function 𝑢(𝑥) and
their derivatives, we can relate the two definitions with the
following proposition [21, 23].

Proposition 1. Let us assume that the function 𝑢(𝑥) is (𝑛 − 1)
times differential in [𝑎, 𝑏] and that the 𝑛th derivative of 𝑢(𝑥) is
integrable in [𝑎, 𝑏]. Then, for every 𝑛 − 1 < 𝛼 < 𝑛, one has

𝐷
𝛼

GL𝑢 (𝑥) = 𝐷
𝛼

RL𝑢 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏. (5)

Generally, the analytic definition given by (1) is used in
the formulation of the fractional partial differential equations
(PDEs), while G-L definitions in (3) are maybe used to
discretize the fractional PDEs to obtain a numerical solution.
Since the problem in this paper has discrete form, G-L
formula defined in (3) will be adopted in our following
discussion.

Remark 2. For 𝛼 = 1, (1) and (3) become the classical first
derivative, and, for any 𝛼 = 𝑛, 𝑛 ∈ ℵ is a positive integer;
they are classical 𝑛th derivatives of 𝑢(𝑥) if the function 𝑢(𝑥)
is (𝑛 − 1) times differentiable. Note that, for 𝛼 is a positive
integer, the equations are with limit support whose support
length is 𝛼 + 1. However, for 𝛼 is not an integer, fractional
derivatives defined above are nonlocal operators. That is, the
value of the fractional derivative at a point 𝑥 depends on the
function values at all the points to the left of the point 𝑥.

Therefore, in order to handle fractional derivative numer-
ically, it is necessary to compute the coefficients 𝜔(𝛼)

𝑘
, where 𝛼

is the order of the fractional derivative. For that, we can use
the recurrence relationships presented in Lemma 3.

Lemma 3. The recurrence relationship of the coefficients of G-
L formula 𝜔(𝛼)

𝑘
defined in (3) is

𝜔
0
(𝛼) = 1; 𝜔

(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
, 𝑘 = 1, 2, 3, . . . .

(6)
Proof. For 𝑘 = 0, 𝜔

0
(𝛼) = 1.

Assume that when 𝑛 = 𝑘 − 1, we have

𝜔
(𝛼)

𝑘−1
= (1 −

𝛼 + 1

𝑘 − 1
)𝜔
(𝛼)

𝑘−2
. (7)

For 𝑛 = 𝑘,

𝜔
(𝛼)

𝑘
=

Γ (𝑘 − 𝛼)

Γ (−𝛼) Γ (𝑘 + 1)
=
(𝑘 − 1 − 𝛼) Γ (𝑘 − 1 − 𝛼)

𝑘Γ (−𝛼) Γ (𝑘)

= (1 −
𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
.

(8)

Therefore, for all 𝑘 = 1, 2, 3, . . ., we have

𝜔
(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
)𝜔
(𝛼)

𝑘−1
.

(9)

Lemma 4. The nonlocal operator defined in (3) is a linear
operator.

Proof. 𝑢(𝑥) and V(𝑥) are two functions, and 𝑥 ∈ [𝑎, 𝑏], 𝜆, is a
real number, since

(1)

𝐷
𝛼

GL [𝑢 (𝑥) + V (𝑥)] = lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘

× [𝑢 (𝑥 − 𝑘Δ𝑥) + V (𝑥 − 𝑘Δ𝑥)]

= lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘Δ𝑥)

+ lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
V (𝑥 − 𝑘Δ𝑥)

= 𝐷
𝛼

GL𝑢 (𝑥) + 𝐷
𝛼

GLV (𝑥) ,
(10)

(2)

𝐷
𝛼

GL [𝜆𝑢 (𝑥)] = lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
[𝜆𝑢 (𝑥)]

= 𝜆 lim
Δ𝑥→0

1

Δ𝑥𝛼

[(𝑥−𝑎)/Δ𝑥]

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑢 (𝑥)

= 𝜆𝐷
𝛼

GL𝑢 (𝑥) .

(11)
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Lemma 5. Consider ∑∞
𝑘=0

𝜔
(𝛼)

𝑘
= 0.

Proof. Since (1 − 𝑧)𝛼 = ∑∞
𝑘=0

𝜔
(𝛼)

𝑘
𝑧
𝑘, let 𝑘 = 1, and we have

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
= (1 − 1)

𝛼

= 0.
(12)

Lemma 6. For 0 < 𝛼 < 1, 𝑡 is a positive integer, 𝑚 ≥ 𝑡, and
one has

𝜔
(𝛼)

𝑘
< 0, 𝑘 = 1, 2, 3, . . . , (13)

and ∑∞
𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0, ∑𝑚

𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0.

Proof. For 𝑘 = 1, 𝜔(𝛼)
1
= −𝛼 < 0.

Assume that 𝜔(𝛼)
𝑘
< 0.

According to Lemma 3, we have 𝜔(𝛼)
𝑘+1

= (1 − ((𝛼 + 1)/(𝑘 +

1)))𝜔
(𝛼)

𝑘
. Since 0 < 𝛼 < 1 and 𝑘+1 ≥ 2, (1−((𝛼+1)/(𝑘+1))) >

0. Thus, sgn(𝜔(𝛼)
𝑘+1
) = sgn(𝜔(𝛼)

𝑘
) < 0. Here,

sgn (𝑥) = {
1, 𝑥 ≥ 0,

−1, 𝑥 < 0.
(14)

Then we have 𝜔(𝛼)
𝑘+1

< 0. Thus ∑∞
𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0, ∑𝑚

𝑘=𝑡
𝜔
(𝛼)

𝑘
< 0.

Lemma 7. For 0 < 𝛼 < 1, 𝑡 ≥ 0 is an integer,

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
> 0. (15)

Proof. According to Lemma 5, we have

0 =

∞

∑

𝑘=0

𝜔
(𝛼)

𝑘
=

𝑡

∑

𝑘=0

𝜔
(𝛼)

𝑘
+

∞

∑

𝑘=𝑡+1

𝜔
(𝛼)

𝑘
. (16)

According to Lemma 6, ∑∞
𝑘=𝑡+1

𝜔
(𝛼)

𝑘
< 0. Therefore,

∑
𝑡

𝑘=0
𝜔
(𝛼)

𝑘
> 0.

Lemma8. For 0 < 𝛼 < 1,𝑚 ≥ 0 is an integer and 𝑡 is a positive
integer

𝑡

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0,

∞

∑

𝑘=𝑚

𝜔
(𝛼)

𝑘
(−𝑘) > 0.

(17)

Proof. FromLemma 6, for 0 < 𝛼 < 1,𝜔(𝛼)
𝑘
< 0, 𝑘 = 1, 2, 3, . . . .

Thus, 𝜔(𝛼)
𝑘
(−𝑘) > 0 for 𝑘 = 1, 2, 3, . . ., and 𝑡 > 0. We have

∑
∞

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 1, and ∑𝑡

𝑘=𝑚
𝜔
(𝛼)

𝑘
(−𝑘) > 0, 𝑚 ≥ 1,

𝑡 ≥ 1.

3. Classical Singularity Detection and Location

Singularity detection is the name for a set of mathematical
methods which aim at identifying points in a digital signal at
which the signal value changes sharply or, more formally, has
discontinuities.

3.1. Singularity Types. We can categorize singularities as step,
roof, jump, and ramp. They can be represented as

(1) ideal step

𝑠 (𝑥) = {
1, 𝑥 ≥ 𝑥

0
,

0, 𝑥 < 𝑥
0
,

(18)

(2) ideal roof

𝑠 (𝑥) = {
𝑚 (𝑥 − 𝑥

0
) + 𝑐
0
, 𝑥
0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑛 (𝑥 − 𝑥
0
) + 𝑐
0
, 𝑥
0
< 𝑥 < 𝑥

0
+ ℎ
2
,

(19)

(3) ideal impulse

𝑠 (𝑥) = {
𝑏, 𝑥 = 𝑥

0
,

0, 𝑥 ̸= 𝑥
0
,

(20)

(4) ideal ramp

𝑠 (𝑥) = {
𝑚 (𝑥 − 𝑥

0
) + 𝑐
0
, 𝑥
0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑐
0
, 𝑥 > 𝑥

0
.

(21)

4. Singularity Detection by 1-Order Derivatives

Singularity detection is the name for a set of mathematical
methods which aim at identifying points in a digital signal at
which the signal value changes sharply or, more formally, has
discontinuities.

4.1. The First-Order Derivatives for Singularities. The singu-
larity detection by 1-order derivatives detects singularities by
first computing a measure of singularity strength, usually
a first-order derivative expression, and then searching for
local absolute maxima as the locations of singularities. The
simplest approach to compute first-order derivatives is to use
left-handed differences

𝐷𝑢 (𝑥) = 𝑢 (𝑥) − 𝑢 (𝑥 − 1) . (22)

Therefore, first-order derivatives of the four types of singular-
ities are

(1) ideal step

𝐷𝑠 (𝑥) =

{{

{{

{

0, 𝑥 < 𝑥
0
,

1, 𝑥 = 𝑥
0
,

0, 𝑥 > 𝑥
0
,

(23)

(2) ideal roof

𝐷𝑠 (𝑥) = {
𝑚, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑛, 𝑥
0
< 𝑥 < 𝑥

0
+ ℎ
2
,

(24)
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(3) ideal impulse

𝐷𝑠 (𝑥) =

{{

{{

{

𝑏, 𝑥 = 𝑥
0

−𝑏, 𝑥 = 𝑥
0
+ 1

0, otherwise,
(25)

(4) ideal ramp

𝐷𝑠 (𝑥) = {
𝑚, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

0, 𝑥 > 𝑥
0
.

(26)

Then, find absolute maxima of 𝐷𝑠(𝑥) to locate the positions
of singularities. Here, absolute maxima are the maxima of
absolute values of𝐷𝑠(𝑥).

4.2. Detect and Locate Singularities. Themain steps to locate
singularities are as follows: (1)find all pointswith𝐷(𝑠(𝑥)) ̸= 0;
(2) compute absolute values of 𝐷(𝑠(𝑥)); (3) if 𝐷𝑠(𝑥) > 0,
compare absolute values of 𝐷𝑠([𝑥]) and 𝐷𝑠([𝑥 + 1]), and if
𝑎𝑏𝑠(𝐷𝑠(𝑥)) > 𝑎𝑏𝑠(𝐷𝑠(𝑥+1)),𝑥 is the singularity; if𝐷𝑠(𝑥) < 0,
compare absolute values of 𝐷𝑠([𝑥]) and 𝐷𝑠([𝑥 − 1]), and if
𝑎𝑏𝑠(𝐷𝑠(𝑥)) > 𝑎𝑏𝑠(𝐷𝑠(𝑥 − 1)), 𝑥 is the singularity. Four types
of ideal singularities are discussed as follows. Each one has a
corresponding singularity on 𝑥

0
.

Ideal Step. The absolute values of 𝐷(𝑠(𝑥)) are the same as
𝐷(𝑠(𝑥)).Therefore, the absolute maxima are 1 on the position
𝑥
0
, and then compare absolute values of𝐷𝑠(𝑥

0
) and𝐷𝑠([𝑥

0
+

1]), and we have 𝐷𝑠(𝑥
0
) = 1 > 𝐷𝑠([𝑥

0
+ 1]) = 0. Therefore,

the singularity is detected by 1-order derivative and is located
on 𝑥
0
, which means 1-order derivatives can detect and locate

ideal step singularities correctly.

Ideal Roof.The absolute value of𝐷(𝑠) is

𝑎𝑏𝑠 (𝐷𝑠 (𝑥)) = {
𝑎𝑏𝑠 (𝑚) , 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
,

𝑎𝑏𝑠 (𝑛) , 𝑥
0
< 𝑥 < 𝑥

0
+ ℎ
2
.

(27)

Here, 𝑎𝑏𝑠(⋅) is

𝑎𝑏𝑠 (𝑥) = {
𝑥, 𝑥 ≥ 0,

−𝑥, 𝑥 < 0.
(28)

For 𝐷(𝑠(𝑥)) = 𝑚 > 0, 𝑥
0
− ℎ
1
< 𝑥 < 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥+1))) = 𝑚, all 𝑥 ∈ (𝑥

0
−ℎ
1
, 𝑥
0
) are

not singularities.
For 𝐷(𝑠(𝑥)) = 𝑚 < 0, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥−1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥−1))) = 𝑚, all 𝑥 ∈ (𝑥

0
−ℎ
1
, 𝑥
0
] are

not singularities.
𝐷(𝑠(𝑥

0
)) = 𝑚 > 0, and we should compare the absolute

values of 𝐷(𝑠(𝑥
0
)) and 𝐷(𝑠(𝑥

0
+ 1)). Since 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) =

𝑎𝑏𝑠(𝑚) and 𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+ 1))) = 𝑎𝑏𝑠(𝑛), if 𝑎𝑏𝑠(𝑚) > 𝑎𝑏𝑠(𝑛),

𝑥
0
is the singularity; otherwise, 𝑥

0
is not a singularity.

𝐷(𝑠(𝑥
0
+ 1)) = 𝑛 < 0, and we should compare

the absolute values of 𝐷(𝑠(𝑥
0
+ 1)) and 𝐷(𝑠(𝑥

0
)). Since

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
))) = 𝑎𝑏𝑠(𝑚) and 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
+ 1))) = 𝑎𝑏𝑠(𝑛), if

𝑎𝑏𝑠(𝑚) < 𝑎𝑏𝑠(𝑛), 𝑥
0
+ 1 is the singularity; otherwise, 𝑥

0
+ 1 is

not a singularity.
For 𝐷(𝑠(𝑥)) = 𝑛 < 0, 𝑥

0
+ 1 < 𝑥 < 𝑥

0
+ ℎ
2
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥−1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥−1))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝑛), 𝑥 ∈ (𝑥

0
+1, 𝑥
0
+ℎ
2
)

are not the singularities.
For 𝐷(𝑠(𝑥)) = 𝑛 > 0, 𝑥

0
+ 1 ≤ 𝑥 < 𝑥

0
+ ℎ
2
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥+1))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝑛), 𝑥 ∈ [𝑥

0
+1, 𝑥
0
+ℎ
2
)

are not the singularities.

Ideal Impulse. (𝐷(𝑠)) has two nonzeros, that is, 𝑥 = 𝑥
0
and

𝑥 = 𝑥
0
+ 1. For 𝐷(𝑠(𝑥

0
)) = 𝑏 > 0, comparing the absolute

values of𝐷(𝑠(𝑥
0
)) and𝐷(𝑠(𝑥

0
+ 1)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) =

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+ 1))) = 𝑎𝑏𝑠(𝑏). Thus, 𝑥

0
is not the singularity.

For 𝐷(𝑠(𝑥
0
)) = 𝑏 < 0, comparing the absolute values of

𝐷(𝑠(𝑥
0
)) and𝐷(𝑠(𝑥

0
− 1)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) = 𝑎𝑏𝑠(𝑏) >

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
− 1))) = 0. Thus, 𝑥

0
is the singularity.

For𝐷(𝑠(𝑥
0
+1)) = −𝑏 < 0, comparing the absolute values

of 𝐷(𝑠(𝑥
0
+ 1)) and 𝐷(𝑠(𝑥

0
)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
+ 1))) =

𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
))) = 𝑎𝑏𝑠(𝑏). Thus, 𝑥

0
+ 1 is not the singularity.

For 𝐷(𝑠(𝑥
0
+ 1)) = −𝑏 > 0, comparing the absolute values of

𝐷(𝑠(𝑥
0
+ 1)) and 𝐷(𝑠(𝑥

0
+ 2)), we have 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
+ 1))) =

𝑎𝑏𝑠(𝑏) > 𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+2))) = 0. Thus, 𝑥

0
+1 is the singularity.

In summary, for 𝑏 > 0, no singularity is detected; for 𝑏 <
0, both 𝑥

0
and 𝑥

0
+ 1 are located as singularities.

Ideal Ramp.The absolute value of𝐷(𝑠) is

𝑎𝑏𝑠 (𝐷𝑠 (𝑥)) = {
𝑚, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

0, 𝑥 > 𝑥
0
.

(29)

For 𝐷(𝑠(𝑥)) = 𝑚 > 0, 𝑥
0
− ℎ
1
< 𝑥 < 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥 + 1))) = 𝑎𝑏𝑠(𝑚), all 𝑥

0
− ℎ
1
< 𝑥 <

𝑥
0
are not singularities.
For 𝐷(𝑠(𝑥)) = 𝑚 < 0, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0
, we should

compare the absolute values of𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥−1)). Since
𝑎𝑏𝑠(𝐷(𝑠(𝑥))) = 𝑎𝑏𝑠(𝐷(𝑠(𝑥 + 1))) = 𝑎𝑏𝑠(𝑚), all 𝑥

0
− ℎ
1
< 𝑥 ≤

𝑥
0
are not singularities.
𝐷(𝑠(𝑥

0
)) = 𝑚 > 0, and we should compare the absolute

values of𝐷(𝑠(𝑥
0
)) and𝐷(𝑠(𝑥

0
+1)). Since 𝑎𝑏𝑠(𝐷(𝑠(𝑥

0
))) = 𝑚

and 𝑎𝑏𝑠(𝐷(𝑠(𝑥
0
+ 1))) = 0, 𝑥

0
is the singularity. Thus, when

𝑚 > 0, ideal ramp singularity can be detected and located
correctly by 1-order derivatives.

Summarizing the above conclusion, we have the follow-
ing.

Theorem 9. The detection and location of four types of ideal
singularities using 1-order derivatives are

(1) ideal step: 1-order derivative can detect and locate ideal
step singularities correctly;

(2) ideal roof: 1-order derivative can detect ideal roof
singularities when 𝑎𝑏𝑠(𝑚) ̸= 𝑎𝑏𝑠(𝑛). But, for 𝑎𝑏𝑠(𝑚) <
𝑎𝑏𝑠(𝑛), a false singularity 𝑥

0
+ 1 is located;

(3) ideal impulse: the singularity can not be detected;
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(4) ideal ramp: 1-order derivative can detect and locate
ideal ramp singularities correctly when 𝑚 > 0, for
𝑚 < 0, and the singularity can not be detected.

5. Singularity Detection by
Fractional-Order Derivatives

The singularity detection by fractional-order derivatives
detects singularities by computing fractional-order derivative
expression firstly and then searching for local extrema as the
locations of singularities.

5.1. Fractional Derivatives of Four Types of Singularities.
Fractional-order derivatives of the four types of singularities
are as follows.

Ideal Step. The fractional-order derivatives of ideal step
singularities are

𝐷
𝛼

GL𝑠 (𝑥) =
{{

{{

{

[𝑥−𝑥0]

∑

0

𝜔
(𝛼)

𝑘
, 𝑥 ≥ 𝑥

0

0, 𝑥 < 𝑥
0
.

(30)

Ideal Roof. The fractional-order derivatives of ideal roof
singularities are

𝐷
𝛼

GL𝑠 (𝑥)

=

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

𝑛

[𝑥−𝑥0]−1

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=[𝑥−𝑥0]

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥

0
< 𝑥 < 𝑥

0
+ ℎ
2
.

(31)

Ideal Impulse. Since there are only 𝑠(𝑥
0
) ̸= 0, we have

𝐷
𝛼

GL𝑠 (𝑥) =
{

{

{

𝜔
(𝛼)

[𝑥−𝑥0]
𝑏, 𝑥 − 𝑥

0
≤ 𝑡

0, otherwise.
(32)

Ideal Ramp. The fractional-order derivatives of ideal ramp
singularities are

𝐷
𝛼

GL𝑠 (𝑥)

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[𝑥−𝑥0+ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥

0
− ℎ
1
< 𝑥 ≤ 𝑥

0

𝑚

[𝑥−𝑥0+ℎ1]

∑

𝑘=[𝑥−𝑥0+1]

𝜔
(𝛼)

𝑘
(−𝑘 + [𝑥 − 𝑥

0
])

+𝑐
0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
, 𝑥 > 𝑥

0
.

(33)

5.2. Find Extremum. The main steps to find extrema of
fractional-order derivatives 𝐷𝛼GL𝑠(𝑥) with 0 < 𝛼 < 1 are as
follows: for all 𝐷𝛼GL𝑠(𝑥) ̸= 0, compare values of 𝐷𝛼GL𝑠(𝑥 − 1),
𝐷
𝛼

GL𝑠(𝑥), and 𝐷
𝛼

GL𝑠(𝑥 + 1). If 𝐷𝛼GL𝑠(𝑥) − 𝐷
𝛼

GL𝑠(𝑥 − 1) >

𝑡
0
and 𝐷

𝛼

GL𝑠(𝑥) − 𝐷
𝛼

GL𝑠(𝑥 + 1) > 𝑡
0
or 𝐷𝛼GL𝑠(𝑥 − 1) −

𝐷
𝛼

GL𝑠(𝑥) > 𝑡
0
and 𝐷𝛼GL𝑠(𝑥 + 1) − 𝐷

𝛼

GL𝑠(𝑥) > 𝑡
0
, where 𝑡

0

is predefined threshold, 𝑥 is the singularity. Four types of
ideal singularities are discussed as follows. Each one has a
corresponding singularity on 𝑥

0
.

Based on the above discussion, we can detect and locate
four types of singularities as follows.
Ideal Step. Since 𝐷(𝑠(𝑥

0
)) = 𝜔

(𝛼)

0
= 1, 𝐷(𝑠(𝑥

0
− 1)) = 0 and

𝐷(𝑠(𝑥
0
+ 1)) = 1 + 𝜔

(𝛼)

1
. According to Lemma 6, 𝜔(𝛼)

1
< 0 for

0 < 𝛼 < 1. Thus,𝐷(𝑠(𝑥
0
)) = 1 > 𝐷(𝑠(𝑥

0
+ 1)) and𝐷(𝑠(𝑥

0
)) =

1 > 𝐷(𝑠(𝑥
0
− 1)) = 0. So, 𝑥

0
is the singularity. When 𝑥 > 𝑥

0
,

𝐷(𝑠(𝑥−1)) ≥ 𝐷(𝑠(𝑥)) and𝐷(𝑠(𝑥+1)) ≤ 𝐷(𝑠(𝑥)), so all 𝑥 > 𝑥
0

are not singularities.
From the summary above, there is only one singularity on

𝑥
0
.

Ideal Roof. Since

𝐷
(𝛼)

GL𝑠 (𝑥0) = 𝑚

[ℎ1]

∑

𝑘=1

𝜔
(𝛼)

𝑘
(−𝑘) + 𝑐

0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 − 1) = 𝑚

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 − 1) + 𝑐

0

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = 𝑛 + 𝑚

[ℎ1+1]

∑

𝑘=2

𝜔
(𝛼)

𝑘
(−𝑘 + 1) + 𝑐

0

[ℎ1+1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

(34)

thus,

𝐷
(𝛼)

GL𝑠 (𝑥0) − 𝐷
(𝛼)

GL𝑠 (𝑥0 − 1) = 𝑚

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
+ 𝑚𝜔
(𝛼)

[ℎ1]
(− [ℎ
1
])

+ 𝑐
0
𝜔
(𝛼)

[ℎ1]
,

(35)
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𝐷
(𝛼)

GL𝑠 (𝑥0) − 𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = −𝑛 − 𝑚

[ℎ1]

∑

𝑘=1

𝜔
(𝛼)

𝑘

+ 𝑚𝜔
(𝛼)

[ℎ1+1]
[ℎ
1
] − 𝑐
0
𝜔
(𝛼)

[ℎ1]+1
.

(36)

The ideal roof implies that when𝑚 > 0, we have 𝑐
0
> 0, 𝑛 < 0,

and when𝑚 < 0, we have 𝑐
0
< 0, 𝑛 > 0.

According to Lemma 6,∑[ℎ1−1]
𝑘=0

𝜔
(𝛼)

𝑘
> 0 and, according to

Lemma 7, 𝜔(𝛼)
[ℎ1]
(−[ℎ
1
]) > 0. Moreover, −𝑚ℎ

1
+ 𝑐
0
= 0, Thus,

the right hand of (35) is 𝑚∑[ℎ1−1]
𝑘=0

𝜔
(𝛼)

𝑘
and it has the same

sign as 𝑚. That is, when 𝑚 > 0, it is a positive number while
when 𝑚 < 0, it is a negative number. The right hand of (36)
can be written as −𝑛 − 𝑚∑[ℎ1]

𝑘=1
𝜔
(𝛼)

𝑘
, which also has the same

sign as 𝑚. Therefore, when 𝑚 > 0, 𝐷(𝛼)GL𝑠(𝑥0) is a maximum
while when 𝑚 < 0, 𝐷(𝛼)GL𝑠(𝑥0) is a minimum. In summary, 𝑥

0

is a singularity.

Ideal Impulse. For 𝑥 = 𝑥
0
, 𝐷
(𝛼)

GL𝑠(𝑥0) = 𝑏, 𝐷
(𝛼)

GL𝑠(𝑥0 − 1) = 0,

and 𝐷(𝛼)GL𝑠(𝑥0 + 1) = 𝜔
(𝛼)

1
𝑏. According to Lemma 5, 𝜔(𝛼)

1
< 0

and 𝑎𝑏𝑠(𝜔(𝛼)
1
) < 1 for 0 < 𝛼 < 1. Thus, when 𝑏 > 0, we have

𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 − 1) = 𝑏 > 0 and𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 +

1) = 𝑏(1 − 𝜔
(𝛼)

1
) > 0, while when 𝑏 < 0, we have 𝐷(𝛼)GL𝑠(𝑥0) −

𝐷
(𝛼)

GL𝑠(𝑥0 − 1) = 𝑏 < 0 and 𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 + 1) = 𝑏(1 −

𝜔
(𝛼)

1
) < 0. Therefore, 𝑥

0
is the singularity.

Ideal Ramp. Since

𝐷
(𝛼)

GL𝑠 (𝑥0) = 𝑚

[ℎ1]

∑

𝑘=1

𝜔
(𝛼)

𝑘
(−𝑘) + 𝑐

0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 − 1) = 𝑚

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
(−𝑘 − 1) + 𝑐

0

[ℎ1−1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = 𝑚

[ℎ1+1]

∑

𝑘=1

𝜔
(𝛼)

𝑘
(−𝑘 + 1) + 𝑐

0

[ℎ1]

∑

𝑘=0

𝜔
(𝛼)

𝑘
,

(37)

according to the above discussion of ideal roof, we know that
𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 − 1) has the same sign as 𝑚. Thus, we
only discuss𝐷(𝛼)GL𝑠(𝑥0) − 𝐷

(𝛼)

GL𝑠(𝑥0 + 1) as follows:

𝐷
(𝛼)

GL𝑠 (𝑥0) − 𝐷
(𝛼)

GL𝑠 (𝑥0 + 1) = 𝑚

[ℎ1]

∑

𝑘=1

(−𝜔
(𝛼)

𝑘
) + 𝑚𝜔

(𝛼)

[ℎ1]+1
[ℎ
1
]

= 𝑚

[ℎ1]

∑

𝑘=1

(𝜔
(𝛼)

[ℎ1+1]
− 𝜔
(𝛼)

𝑘
) .

(38)

According to Lemma 4, 𝜔(𝛼)
[ℎ1]+1

< 0, and 𝑎𝑏𝑠(𝜔
(𝛼)

[ℎ1]+1
) <

𝑎𝑏𝑠(𝜔
(𝛼)

𝑘
), we have ∑[ℎ1]

𝑘=1
(𝜔
(𝛼)

[ℎ1+1]
− 𝜔
(𝛼)

𝑘
) > 0. Therefore,

𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 + 1) has the same sign as 𝑚. That is,
when 𝑚 > 0, we have 𝐷(𝛼)GL𝑠(𝑥0) − 𝐷

(𝛼)

GL𝑠(𝑥0 − 1) > 0 and

𝐷
(𝛼)

GL𝑠(𝑥0) − 𝐷
(𝛼)

GL𝑠(𝑥0 + 1) > 0, and when 𝑚 < 0, we have
𝐷
(𝛼)

GL𝑠(𝑥0)−𝐷
(𝛼)

GL𝑠(𝑥0−1) < 0 and𝐷
(𝛼)

GL𝑠(𝑥0)−𝐷
(𝛼)

GL𝑠(𝑥0+1) < 0.
Thus, 𝑥

0
is the singularity.

Summarizing the above conclusion, we have the follow-
ing.

Theorem 10. The fractional derivatives can detect and locate
four types of ideal singularities correctly.

6. Conclusions

In this paper, we study fractional-order derivatives of left-
handed Grünwald-Letnikov formula with 0 < 𝛼 < 1 to detect
and locate singularities in theory. Theory analysis indicates
that fractional-order derivatives of left-handed Grünwald-
Letnikov formula with 0 < 𝛼 < 1 can detect and locate the
ideal four types of singularities correctly, which shows better
performance than classical 1-order derivatives in theory.
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