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We study surfaces defined as graph of the function 𝑧 = 𝑓(𝑥, 𝑦) in the product space H2 × R. In particular, we completely classify
flat or minimal surfaces given by 𝑓(𝑥, 𝑦) = 𝑢(𝑥) + V(𝑦), where 𝑢(𝑥) and V(𝑦) are smooth functions.

1. Introduction

Homogenous geometries have main roles in the modern
theory of manifolds. Homogenous spaces are, in a sense,
the nicest examples of Riemannian manifolds and have
applications in physics [1]. To underline their importance
from the mathematical point of view we roughly cite the
famous Thurston conjecture. This conjecture asserts that
every compact orientable 3-dimensional manifold has a
canonical decomposition into pieces, each of which admits a
canonical geometric structure from among the eightmaximal
simple connected homogenous Riemannian 3-dimensional
geometries [2]. The Riemannian product space H2 ×R is one
of the eight model spaces.

Constant mean curvature and constant Gaussian curva-
ture surfaces are one of the main objects which have drawn
geometers’ interest for a very long time. Recently, the study of
the geometry of surfaces in H2 × R is growing very rapidly,
and the interest is mainly focused on minimal and constant
mean curvature surfaces [3–9].

The purpose of this paper is to study surfaces defined as
graph of the function 𝑧 = 𝑓(𝑥, 𝑦) in the product space H2 ×
R. In Sections 4 and 5 we classify minimal and flat surfaces
defined as 𝑓(𝑥, 𝑦) = 𝑢(𝑥) + V(𝑦), where 𝑢(𝑥) and V(𝑦) are
smooth functions.

2. Preliminaries

Let H2 = {(𝑥, 𝑦) ∈ R2 | 𝑦 > 0} be the upper half plane model
of the hyperbolic plane endowed with the metric, of constant

Gaussian curvature −1, given by

𝑔H =

(𝑑𝑥
2
+ 𝑑𝑦
2
)

𝑦
2

. (1)

The hyperbolic spaceH2, with the group structure derived by
the composition of proper affine maps, is a Lie group and the
metric𝑔H is left invariant.Therefore, the product spaceH2×R
is a Lie group with the left invariant product metric

𝑔 =
𝑑𝑥
2
+ 𝑑𝑦
2

𝑦
2

+ 𝑑𝑧
2
. (2)

On the other hand, an orthonormal basis of left invariant
vector fields on H2 ×R is

𝐸
1
= 𝑦
𝜕

𝜕𝑥
, 𝐸

2
= 𝑦
𝜕

𝜕𝑦
, 𝐸

3
=
𝜕

𝜕𝑧
(3)

with the only nontrivial commutator relation [𝐸
1
, 𝐸
2
] = −𝐸

1
.

It follows that the Levi-Civita connection ∇̃ of H2 × R is
expressed as

∇̃
𝐸
1

𝐸
1
= 𝐸
2
, ∇̃

𝐸
1

𝐸
2
= −𝐸
1
, ∇̃

𝐸
1

𝐸
3
= 0,

∇̃
𝐸
2

𝐸
1
= 0, ∇̃

𝐸
2

𝐸
2
= 0, ∇̃

𝐸
2

𝐸
3
= 0,

∇̃
𝐸
3

𝐸
1
= 0, ∇̃

𝐸
3

𝐸
2
= 0, ∇̃

𝐸
3

𝐸
3
= 0.

(4)

For any vectors 𝑋 = 𝑥
1
𝐸
1
+ 𝑦
1
𝐸
2
+ 𝑧
1
𝐸
3
and 𝑌 = 𝑥

2
𝐸
1
+

𝑦
2
𝐸
2
+ 𝑧
2
𝐸
3
in H2 ×R the cross-product × is defined by

𝑋 × 𝑌 = (𝑦
1
𝑧
2
− 𝑦
2
𝑧
1
) 𝐸
1
+ (𝑥
2
𝑧
1
− 𝑥
1
𝑧
2
) 𝐸
2

+ (𝑥
1
𝑦
2
− 𝑥
2
𝑦
1
) 𝐸
3
.

(5)
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3. Graphs in H2 ×R

Let us consider a surface Σ parametrized by

𝜙 (𝑥, 𝑦) = (𝑥, 𝑦, 𝑓 (𝑥, 𝑦)) , (𝑥, 𝑦) ∈ Ω, (6)

where Ω is a domain in H2 and 𝑓 : Ω → R is a smooth
function.Then Σ is a surface defined as graph of the function
𝑓 defined on Ω ⊂ H2. In this case, we have

𝑒
1
:= 𝜙
𝑥
= (1, 0, 𝑓

𝑥
) =
1

𝑦
𝐸
1
+ 𝑓
𝑥
𝐸
3
,

𝑒
2
:= 𝜙
𝑦
= (0, 1, 𝑓

𝑦
) =
1

𝑦
𝐸
2
+ 𝑓
𝑦
𝐸
3
.

(7)

It follows that the coefficients of the first fundamental form
of Σ are given by

𝐸 = 𝑔 (𝜙
𝑥
, 𝜙
𝑥
) = 𝑓
2

𝑥
+
1

𝑦
2
,

𝐹 = 𝑔 (𝜙
𝑥
, 𝜙
𝑦
) = 𝑓
𝑥
𝑓
𝑦
,

𝐺 = 𝑔 (𝜙
𝑦
, 𝜙
𝑦
) = 𝑓
2

𝑦
+
1

𝑦
2
.

(8)

Also, the unit normal vector field 𝑈 to Σ is given by

𝑈 (𝑥, 𝑦) = −
𝑓
𝑥

𝜔𝑦
𝐸
1
−

𝑓
𝑦

𝜔𝑦
𝐸
2
+
1

𝜔𝑦
2
𝐸
3
, (9)

where

𝜔 =
1

𝑦
2
√𝑦
2
(𝑓
2

𝑥
+ 𝑓
2

𝑦
) + 1. (10)

By a straightforward calculation, we obtain

∇̃
𝑒
1

𝑒
1
=
1

𝑦
2
𝐸
2
+ 𝑓
𝑥𝑥
𝐸
3
,

∇̃
𝑒
1

𝑒
2
= −
1

𝑦
2
𝐸
1
+ 𝑓
𝑥𝑥
𝐸
3
,

∇̃
𝑒
2

𝑒
2
= −
1

𝑦
2
𝐸
2
+ 𝑓
𝑦𝑦
𝐸
3
,

(11)

which imply that the coefficients of the second fundamental
form of Σ are

𝐿 = 𝑔 (∇̃
𝑒
1

𝑒
1
, 𝑈) =

𝑦𝑓
𝑥𝑥
− 𝑓
𝑦

𝜔𝑦
3
,

𝑀 = 𝑔 (∇̃
𝑒
1

𝑒
2
, 𝑈) =

𝑦𝑓
𝑥𝑦
+ 𝑓
𝑥

𝜔𝑦
3
,

𝑁 = 𝑔 (∇̃
𝑒
2

𝑒
2
, 𝑈) =

𝑦𝑓
𝑦𝑦
+ 𝑓
𝑦

𝜔𝑦
3
.

(12)

Thus, from (8) and (12) the Gaussian curvature 𝐾 and the
mean curvature𝐻 are, respectively,

𝐾 =
1

𝜔
4
𝑦
6
((𝑦𝑓
𝑥𝑥
− 𝑓
𝑦
) (𝑦𝑓
𝑦𝑦
+ 𝑓
𝑦
) − (𝑦𝑓

𝑥𝑦
+ 𝑓
𝑥
)
2

) ,

𝐻 =
1

2𝜔
3
𝑦
4
((1 + 𝑦

2
𝑓
2

𝑦
) 𝑓
𝑥𝑥
− 𝑦 (𝑓

2

𝑥
+ 𝑓
2

𝑦
) 𝑓
𝑦

−2𝑦
2
𝑓
𝑥
𝑓
𝑦
𝑓
𝑥𝑦
+ (1 + 𝑦

2
𝑓
2

𝑥
) 𝑓
𝑦𝑦
) .

(13)

Proposition 1. Let Σ be a surface defined as graph of the
function 𝑓 : Ω ⊂ H2 → R. Then Σ is a minimal surface if
and only if

(1 + 𝑦
2
𝑓
2

𝑦
) 𝑓
𝑥𝑥
− 𝑦 (𝑓

2

𝑥
+ 𝑓
2

𝑦
) 𝑓
𝑦
− 2𝑦
2
𝑓
𝑥
𝑓
𝑦
𝑓
𝑥𝑦

+ (1 + 𝑦
2
𝑓
2

𝑥
) 𝑓
𝑦𝑦
= 0.

(14)

Proposition 2. Let Σ be a surface defined as graph of the
function 𝑓 : Ω ⊂ H2 → R. Then Σ is flat if and only if

(𝑦𝑓
𝑥𝑥
− 𝑓
𝑦
) (𝑦𝑓
𝑦𝑦
+ 𝑓
𝑦
) − (𝑦𝑓

𝑥𝑦
+ 𝑓
𝑥
)
2

= 0. (15)

Remark 3. Some examples are satisfying the ODE (14) stud-
ied in [7]. Also, examples in Lorentz product space H2 × R

1

can be found in [10].

4. Minimal Surfaces Defined
by 𝑓(𝑥,𝑦) = 𝑢(𝑥) + V(𝑦)

Let Σ be a surface in H2 ×R parametrized by

𝜙 (𝑥, 𝑦) = (𝑥, 𝑦, 𝑢 (𝑥) + V (𝑦)) (16)

for all 𝑦 > 0, where 𝑢(𝑥) and V(𝑦) are smooth functions. We
suppose that Σ is a minimal surface. Then, from (14) we have
the following minimal surface equation:

(1 + 𝑦
2
(V󸀠)
2

) 𝑢
󸀠󸀠
− 𝑦 ((𝑢

󸀠
)
2

+ (V󸀠)
2

) V󸀠

+ (1 + 𝑦
2
(𝑢
󸀠
)
2

) V󸀠󸀠 = 0.
(17)

In order to solve it, divide first by 1 + 𝑦2(V󸀠)2 ̸= 0; then we get

𝑢
󸀠󸀠
−

𝑦 ((𝑢
󸀠
)
2

+ (V󸀠)
2

)

1 + 𝑦
2
(V󸀠)2

V󸀠 +
1 + 𝑦
2
(𝑢
󸀠
)
2

1 + 𝑦
2
(V󸀠)2

V󸀠󸀠 = 0, (18)

for all 𝑥, 𝑦 ∈ Ω. Differentiating with respect to 𝑥, we obtain

𝑢
󸀠󸀠󸀠
+ 2(

𝑦
2V󸀠󸀠 − 𝑦V󸀠

1 + 𝑦
2
(V󸀠)2

)𝑢
󸀠
𝑢
󸀠󸀠
= 0. (19)

First of all, we suppose that 𝑢󸀠󸀠 = 0 on an open interval; that
is, 𝑢(𝑥) = 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ R. In this case, from (17) we obtain

V󸀠󸀠 −
𝑎
2
𝑦

1 + 𝑎
2
𝑦
2
V󸀠 −

𝑦

1 + 𝑎
2
𝑦
2
(V󸀠)
3

= 0. (20)
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We put V󸀠(𝑦) = 𝑝(𝑦). Then the last equation can be written as

𝑝
󸀠
−

𝑦

1 + 𝑎
2
𝑦
2
(𝑎
2
𝑝 + 𝑝
3
) = 0. (21)

Its general solution is given by

𝑝 = ±

𝑐
1
𝑎√1 + 𝑎

2
𝑦
2

√1 − 𝑐
2

1
(1 + 𝑎

2
𝑦
2
)

. (22)

From this, we thus have

V (𝑦) = ±∫
𝑐
1
𝑎√1 + 𝑎

2
𝑦
2

√1 − 𝑐
2

1
(1 + 𝑎

2
𝑦
2
)

𝑑𝑦, (23)

where 𝑐
1
∈ R.

Now, we assume that 𝑢󸀠󸀠 ̸= 0 on an open interval, and
divide (19) by 𝑢󸀠𝑢󸀠󸀠. It follows that

𝑢
󸀠󸀠󸀠

𝑢
󸀠
𝑢
󸀠󸀠
+ 2
𝑦
2V󸀠󸀠 − 𝑦V󸀠

1 + 𝑦
2
(V󸀠)2

= 0. (24)

Hence we deduce the existence of a real number 𝑘 ∈ R such
that

𝑢
󸀠󸀠󸀠
= 2𝑘𝑢

󸀠
𝑢
󸀠󸀠
, 𝑦

2V󸀠󸀠 − 𝑦V󸀠 = −𝑘 (1 + 𝑦2(V󸀠)
2

) . (25)

Let us distinguish the following cases according to 𝑘.

Case 1. If 𝑘 = 0, then 𝑢󸀠󸀠󸀠 = 0 and 𝑦V󸀠󸀠 − V󸀠 = 0. It follows
that 𝑢(𝑥) = 𝑎

1
𝑥
2
+ 𝑏
1
𝑥 + 𝑐
1
(𝑎
1
̸= 0, 𝑏
1
, 𝑐
1
∈ R). If V󸀠 = 0, then

V(𝑦) = 𝑎
2
(𝑎
2
∈ R). In this case, from (17) we obtain 𝑎

1
= 0;

it is a contradiction. If V󸀠 ̸= 0, then we get V(𝑦) = (1/2)𝑏
2
𝑦
2
+

𝑐
2
(𝑏
2
̸= 0, 𝑐
2
∈ R). In such case, (17) is polynomial equation

on 𝑥 and 𝑦. From the coefficients of 𝑦4 and the constant term
we have 2𝑎

1
− 𝑏
2
= 0 and 2𝑎

1
+ 𝑏
2
= 0, which imply 𝑎

1
= 0

and 𝑏
2
= 0. It is a contradiction.

Case 2. If 𝑘 ̸= 0, then from the first equation in (25) we have

𝑢
󸀠󸀠
= 𝑒
2𝑘𝑢+𝑑

1
, (26)

where 𝑑
1
∈ R. Let

𝑢 =
1

2𝑘
(−𝑑
1
+ ln𝑔) (27)

be any solution of (26), where 𝑔 is a smooth function. Then
(26) can be rewritten as

𝑔𝑔
󸀠󸀠
− (𝑔
󸀠
)
2

= 2𝑘𝑔
3
. (28)

We put 𝑝 = 𝑔󸀠. Then, we have

𝑑𝑝

𝑑𝑔
−
1

𝑔
𝑝 = 2𝑘𝑔

2
𝑝
−1
. (29)

We again put 𝑡 = 𝑝2. In this case the above equation becomes

𝑑𝑡

𝑑𝑔
−
2

𝑔
𝑡 = 4𝑘𝑔

2 (30)

and its general solution is given by

𝑡 = 𝑔
2
(4𝑘𝑔 + 𝑐

1
) . (31)

Thus, we get

𝑑𝑔

𝑑𝑥
= ±𝑔√4𝑘𝑔 + 𝑐

1
. (32)

After an integration, we can find

𝑔 =
𝑐
1

4𝑘
tan2 (8𝑘2√𝑐1 (±𝑥 + 𝑐2)) −

𝑐
1

4𝑘
, (33)

where 𝑐
2
∈ R. By combining (27) and (33), we thus have

𝑢 (𝑥) =
1

2𝑘
[−𝑑
1
+ ln( 𝑐1

4𝑘
tan2 (8𝑘2√𝑐1 (±𝑥 + 𝑐2)) −

𝑐
1

4𝑘
)] .

(34)

Now, we consider the second equation in (25). Since 𝑦 >
0, we yield

V󸀠󸀠 +
𝑘

𝑦
2
−
1

𝑦
V󸀠 + 𝑘(V󸀠)

2

= 0. (35)

We put 𝑝 = V󸀠. Then, the above equation becomes

𝑝
󸀠
+
𝑘

𝑦
2
−
1

𝑦
𝑝 + 𝑘𝑝

2
= 0. (36)

Since 𝑘 ̸= 0, without loss of generality we take 𝑘 = 1 or 𝑘 = −1.

Subcase i. Let 𝑘 = 1. We do the change

𝑝 =
1

𝑦
+
1

ℎ (𝑦)
, (37)

where ℎ is a nonzero smooth function. Then, (36) can be
rewritten as the form

ℎ
󸀠
−
1

𝑦
ℎ = 1. (38)

Thus, its general solution is

ℎ (𝑦) = 𝑦 (ln𝑦 + 𝑐
1
) , (39)

where 𝑐
1
∈ R. So, 𝑝 = (1/𝑦) + (1/𝑦(ln𝑦 + 𝑐

1
)) and from its

integration we can obtain

V (𝑦) = ln (𝑐
2
𝑦 ln (𝑦 + 𝑐

1
)) , (40)

where 𝑐
2
∈ R.

Subcase ii. Let 𝑘 = −1. We put

𝑝 = −
1

𝑦
+
1

ℎ (𝑦)
, (41)
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Figure 1: A minimal surface defined by (34) and (44).

where ℎ is a nonzero smooth function. Then, (36) becomes

ℎ
󸀠
−
1

𝑦
ℎ = −1 (42)

and its general solution is given by

ℎ (𝑦) = −𝑦 (ln𝑦 + 𝑐
1
) , (43)

where 𝑐
1
∈ R. Thus, we have

V (𝑦) = − ln (𝑐
2
𝑦 ln (𝑦 + 𝑐

1
)) , (44)

where 𝑐
2
∈ R. The surface given by (34) and (44) is shown in

Figure 1.
Consequently, we have the following.

Theorem 4. Let Σ be a surface defined as graph of the function
𝑓(𝑥, 𝑦) = 𝑢(𝑥) + V(𝑦). If Σ is a minimal surface, then Σ is
parametrized as

𝜙 (𝑥, 𝑦) = (𝑥, 𝑦, 𝑢 (𝑥) + V (𝑦)) , (45)

where

(1) 𝑢(𝑥) = 𝑎𝑥 + 𝑏 and V(𝑦) =

± ∫(𝑐
1
𝑎√1 + 𝑎

2
𝑦
2
/√1 − 𝑐

2

1
(1 + 𝑎

2
𝑦
2
))𝑑𝑦 with

𝑎, 𝑏, 𝑐
1
∈ R, or

(2) 𝑢(𝑥) = (1/2𝑘)[−𝑐
3
+ ln((𝑐

1
/4𝑘)tan2(8𝑘2√𝑐1(±𝑥 +

𝑐
2
)) − (𝑐

1
/4𝑘))] and V(𝑦) = ± ln(𝑑

1
𝑦 ln(𝑦 + 𝑑

2
)) with

𝑘 ̸= 0, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑑
1
, 𝑑
2
∈ R.

5

4

3

2

1

0

−1

1

2

3

4 −1

−2

−3

−4

−5

Figure 2: A flat surface defined by (52) and (55).

5. Flat Surfaces Defined by 𝑓(𝑥,𝑦) = 𝑢(𝑥) + V(𝑦)

Let Σ be a surface defined by (16). Assume that Σ is a flat
surface. Then, from (15) we have the following flat surface
equation:

𝑦 (𝑦V󸀠󸀠 + V󸀠) 𝑢󸀠󸀠 − (𝑦V󸀠󸀠 + V󸀠) V󸀠 − (𝑢󸀠)
2

= 0. (46)

In order to solve it, differentiating with respect to 𝑥, we have

𝑦 (𝑦V󸀠󸀠 + V󸀠)
𝑑

𝑑𝑥
(𝑢
󸀠󸀠
) −
𝑑

𝑑𝑥
((𝑢
󸀠
)
2

) = 0. (47)

Thus, there exists a nonzero real number 𝑘 such that

𝑑

𝑑𝑥
(𝑢
󸀠󸀠
) = 𝑘

𝑑

𝑑𝑥
((𝑢
󸀠
)
2

) , 𝑦 (𝑦V󸀠󸀠 + V󸀠) =
1

𝑘
. (48)

From the first equation in (48), we get

𝑢
󸀠󸀠
= 𝑘(𝑢

󸀠
)
2

+ 𝑐
1
, (49)

where 𝑐
1
∈ R. We put 𝑝 = 𝑢󸀠, and it follows that we yield

𝑑𝑝

𝑑𝑢
=
𝑘𝑝
2
+ 𝑐
1

𝑝
. (50)

From this, the general solution is

𝑝 = ±√
1

𝑘
𝑒
2𝑘(𝑢+𝑐

2
)
−
𝑐
1

𝑘
, (51)

where 𝑐
2
∈ R. We can assume that 𝑐

1
= 0. From the last

equation we can easily obtain (see Figure 2)

𝑢 (𝑥) = ±
1

𝑘
(ln (−√𝑘 (𝑥 + 𝑐

3
)) + 𝑘𝑐

2
) , (52)

where 𝑐
3
∈ R.
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In order to solve the second equation in (48), divide by 𝑦2
and put 𝑞 = V󸀠. Then, we get

𝑞
󸀠
+
1

𝑦
𝑞 =

1

𝑘𝑦
2

(53)

and its general solution is given by

𝑞 =
1

𝑦
(
1

𝑘
ln𝑦 + 𝑑

1
) , (54)

where 𝑑
1
∈ R. From this, we thus obtain (see Figure 2)

V (𝑦) =
1

2𝑘
(ln𝑦)2 + 𝑑

1
ln𝑦 + 𝑑

2
, (55)

where 𝑑
2
∈ R.

As a conclusion, we have the following.

Theorem 5. Let Σ be a surface defined as graph of the function
𝑓(𝑥, 𝑦) = 𝑢(𝑥) + V(𝑦). If Σ is a flat surface, then Σ is
parametrized as

𝜙 (𝑥, 𝑦) = (𝑥, 𝑦, 𝑢 (𝑥) + V (𝑦)) , (56)

where 𝑢(𝑥) = ±(1/𝑘)(ln(−√𝑘(𝑥 + 𝑐
1
)) + 𝑘𝑐

2
) and V(𝑦) =

(1/2𝑘)(ln𝑦)2 + 𝑑
1
ln𝑦 + 𝑑

1
with 𝑘 ̸= 0, 𝑐

1
, 𝑐
2
, 𝑑
1
, 𝑑
2
∈ R.
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