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Computing the average shortest-path length (ASPL) of a large scale-free network needs much memory space and computation
time. Based on the feature of scale-free network, we present a simplification algorithm by cutting the suspension points and the
connected edges; the ASPL of the original network can be computed through that of the simplified network. We also present a
multilevel simplification algorithm to get ASPL of the original network directly from that of the multisimplified network. Our
experiment shows that these algorithms require less memory space and time in computing the ASPL of scale-free network, which
makes it possible to analyze large networks that were previously impossible due to memory limitations.

1. Introduction

The research on complex network is developing very fast
and significant achievements have been made in the past
decade [1–4]. Two well-known and much studied classes of
complex networks are scale-free networks [5, 6] and small-
world networks. A scale-free network is a complex network
or a connected graph with the property that the number of
links originating from a given node exhibits a power law
distribution. In a scale-free network, very few vertices have
a huge number of connections, while a large proportion
of vertices have only one input edge. Many networks are
conjectured to be scale-free, including World Wide Web
links, biological networks, and social networks.

Like other networks, specific structural features can char-
acterize a scale-free network. The most important 3 features
are degree distribution, clustering coefficient, and average
shortest-path length (ASPL). Average shortest-path length is
a concept in network topology that is defined as the average
number of steps along the shortest paths for all possible
pairs of network nodes. It is a measure of the efficiency of
information or mass transport on a network. Some examples
are the average number of clicks which will lead you from
one website to another or the number of people you will have

to communicate through on average, to contact a complete
stranger.

The average shortest-path length is defined as follows.
Consider an unweighted network 𝐺 with the set of vertices
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where 𝑁 is the number of vertices in 𝐺, ∑𝑁
𝑖,𝑗
dist(V
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) is

the value of all-pairs-shortest-path length of graph 𝐺, and
∑
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, V
𝑗
) is the number of shortest paths that exist

in graph 𝐺.
For unweighted directed network, the time is 𝑂(𝑁 ∗
(𝑁 + 𝐸)) for computing the all-pairs-shortest-path length
using breadth-first-search algorithm [7]. If the network is
represented by an adjacency list, then it occupies 𝑂(𝑁 + 𝐸)
space in memory, while an adjacency matrix representation
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occupies 𝑂(𝑁2), where 𝐸 is the number of edges in 𝐺. If the
network has millions of nodes or edges, then the time needed
in computing will be unbearable; the memory requirement is
also beyond the limit of most computers.

For the accurate computation of ASPL of large-scale
network, people used to seek help from parallel computing
[8, 9]. For example, from (1), we know that all-pairs-shortest-
path length is the sum of single-source-shortest-path length
(SSSPL) of each node in G; suppose there are 𝑁 nodes
in 𝐺 and P processors available for computing; then one
processor is responsible for the computing of SSSPL of 𝑁/𝑃
nodes. However, the parallel computing of SSSPL means that
all nodes in 𝐺 should be considered as source nodes or
target nodes and the computation has to be done on the
full network. In other words, 𝐺 has to be fully loaded into
the memory of each computing processor, which means that
parallel computing cannot be applied if the network is too big
to be fitted into memory.

In this paper, we describe how the computation of ASPL
of a scale-free network can be done using only the simplified
network. In our approach, the original network can be
simplified multiple times to reduce the scale of network,
which makes it possible to analyze large networks that were
previously impossible due to memory limitations.

The remainder of this paper is organized as follows.
The idea of the simplification algorithm is discussed in
Section 2 followed by the implementation of the simplifi-
cation algorithm in Section 3. In Section 4, we discuss the
multilevel simplification algorithm followed by the analysis of
the simplification algorithm in Section 5. Finally, in Section 6,
we summarize our findings and the main contributions.

2. Idea of Simplification

As mentioned in the previous section, the scale-free network
has the feature that very few vertices have a huge number
of connections, while a large proportion of vertices have
only one input edge and no output edge. These vertices are
called suspension vertices or suspension nodes. For example,
the China Research and Education Network (CERNET) is a
scale-free network; it has 366406 nodes and 540750 edges
in 2005 [10, 11]; among them 308958 nodes are suspension
nodes, accounting for about 84% of the total number of
nodes. If all these suspension nodes and the edges connecting
them are removed, then there are only 57448 nodes and
231792 edges left; the network will be significantly simplified.
If we can get theASPL of the original network from that of the
simplified network, then thememory requirement to load the
network will be significantly reduced.

Let us illustrate the idea of the simplification algorithm
using Figure 1 and Table 1. In Figure 1, node 5, node 6, and
node 8 are suspension nodes; node 2 is the only node that
connects node 5 and node 6. Node 7 is the only node that
connects node 8. The SSSPL of each node is listed in Table 1.
There is a shortest path that starts from node 𝑖 to node 𝑗 if
the shortest path length from node 𝑖 to node 𝑗 is bigger than
0. The ASPL of the whole network is the sum of the SSSPL of
each node divided by the sum of the number of the shortest
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Figure 1: A simple directed network with 3 suspension nodes and 2
connectors.

paths started from each node. For example, the sum of SSSPL
of each node in the original network 𝐺 is 63; the sum of the
shortest paths starting fromeachnode in the original network
is 29.

We name the nodes that connect the suspension nodes as
connectors. If all 3 suspension nodes in Figure 1 are removed,
then the 3 edges starting from the connector to these nodes
are also removed which means the shortest paths starting
from other nodes to these suspension nodes are removed.
The 6th, 7th, and the 9th columns are deleted from Table 1
if the corresponding node 5, node 6, and node 8 are removed.
The all-pairs-shortest path is changed into 30 and the number
of shortest paths is changed into 16 as shown in the right 2
columns in Table 1.

For each connector 𝑐, if the suspension node that it
connects and the edge starting from the connector to the
suspension node are deleted, then the all-pairs-shortest-path
length will be reduced by

∑

(𝑘∈𝐺
󸀠
,𝑘<>𝑐)

(length (𝑘, 𝑐) + 𝑖) + 1, (2)

where 𝑖 = 1 if length(𝑘, 𝑐) > 0, 𝑖 = 0 if length(𝑘, 𝑐) = 0, and
length(𝑘, 𝑐) is the shortest path length between 𝑘 and 𝑐. 𝐺󸀠 is
the simplified network.

Suppose there are𝑀 suspension nodes in𝐺 and the value
of 𝑘 is𝑁−𝑀− 1, which means all suspension nodes and the
connector 𝑐 are not used as the start node, because there is no
shortest path from one node to itself and there is no shortest
path originated from the suspension nodes.

Formula (2) can be explained as follows. For one sus-
pension node, the shortest paths that lead to it must pass
through a connector. If there is a shortest path that leads to
this connector, then there must be a shortest path that leads
to this suspension node. Therefore, the length of the shortest
path that leads to a suspension node is the length from the
connector to this suspension node, which is 1, plus the sum
of length that started from the other nodes that belong to 𝐺󸀠
to this suspension node.The length to a connector plus 1 is the
length to the suspension node if a shortest path exists between
the node in 𝐺󸀠 and this connector, because one further step
is needed to get to the suspension node from this connector;
the length is 0 if there is no path existing between the node in
𝐺
󸀠 and the connector.
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Table 1: The SSSPL of each node and the ASPL of the original and simplified networks.

Node 1 2 3 4 5 6 7 8 SSSPL of node
in 𝐺

Number of
shortest paths in
𝐺

SSSPL of node
in 𝐺󸀠

Number of
shortest paths in
𝐺
󸀠

1 — 1 1 2 2 2 2 3 13 7 6 4
2 3 — 2 1 1 1 3 4 15 7 9 4
3 1 2 — 3 3 3 1 2 15 7 7 4
4 2 3 1 — 4 4 2 3 19 7 8 4
5 0 0 0 0 — 0 0 0 0 0 —
6 0 0 0 0 0 — 0 0 0 0 —
7 0 0 0 0 0 0 — 1 1 1 0
8 0 0 0 0 0 0 — 0 0 —
Sum Shortest path between nodes 63 29 30 16

Table 2: Length and number of shortest path reduced in simplifica-
tion.

Node 2 2 7
1 1 1 2
2 — — 3
3 2 2 1
4 3 3 2
7 0 0 —
∑

(𝑘∈𝐺
󸀠
,𝑘<>𝑐)

length(𝑘, 𝑐) 6 6 8

∑

(𝑘∈𝐺
󸀠
,𝑘<>𝑐)

𝑖 3 3 4

∑

(𝑘∈𝐺
󸀠
,𝑘<>𝑐)

(length(𝑘, 𝑐) + 𝑖) + 1 10 10 13

∑

(𝑘∈𝐺
󸀠
,𝑘<>𝑐)

(𝑖) + 1 4 4 5

For each connector 𝑐, if the suspension node that it
connects and the edge starting from the connector to the
suspension node are deleted, the number of all-pairs-shortest
paths will be reduced by

∑

(𝑘∈𝐺
󸀠
,𝑘<>𝑐)

(𝑖) + 1, (3)

where 𝑖 = 1 if length(𝑘, 𝑐) > 0, 𝑖 = 0 if length(𝑘, 𝑐) = 0, and
length(𝑘, 𝑐) is the shortest path length between 𝑘 and 𝑐.

Formula (3) can be explained similar to formula (2). The
only difference between these 2 formulas is that if there is a
shortest path that starts from node 𝑘 in 𝐺󸀠 to connector 𝑐,
which means length(𝑘, 𝑐) > 0, then the number of shortest
paths between these 2 nodes is 1 and the number of shortest
paths between 𝑘 and the suspension node is also 1, as there
is always a path between the connector 𝑐 and the suspension
node it connects.Therefore, the number of shortest paths that
start from 𝑐 to the suspension node is always 1.

From formulas (2) and (3) we can get the all-pairs-
shortest-path length and the number of shortest paths.
Figure 2 is the network with all suspension nodes removed
from Figure 1; the all-pairs-shortest-path length of 𝐺󸀠 is 30;
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Figure 2: The network simplified from Figure 1.

the number of shortest paths is 16. The reduced length
and number of shortest paths by cutting the suspension
nodes connected to each connector (2, 2, 7) are illustrated in
Table 2.

From Table 2 we can see that the length of shortest paths
that are reduced in simplification is 33(10 + 10 + 13), the
number of shortest paths that are reduced is 13(4 + 4 + 5),
and connector 2 is calculated twice as it connects 2 suspension
nodes.Hence, the all-pairs-shortest-path length of𝐺 is 63; the
number of shortest paths of 𝐺 is 29.

3. Simplification Algorithm

Following the idea in Section 2, we simplify the original
network 𝐺 into 𝐺󸀠 by removing all the suspension nodes and
edges, as listed in Algorithm 1.

In Algorithm 1, Length of G is the all-pairs-shortest-
path length of 𝐺 and Length of 𝐺󸀠 is the all-pairs-shortest-
path length of 𝐺󸀠. Number of path of 𝐺 is the number of
shortest paths of 𝐺, Number of Path of 𝐺󸀠 is the number of
shortest paths of 𝐺󸀠, and Number of 𝑠 nodes is the number
of suspension nodes in 𝐺. For the network as shown in
Figure 1, the number is 3. Number of suspension edges is the
number of suspension edges that connect a connector and the
suspension nodes. For connector 2, the number is 2.
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(1) for 𝑖 in 𝐺󸀠
(2) for 𝑗 in 𝐺󸀠:
(3) if (𝑖 <> 𝑗):
(4) Number of Path of 𝐺󸀠++
(5) Length = Shortest Path Length(𝑖, 𝑗)
(6) Length of 𝐺󸀠 += Length
(7) if is connector(𝑗):
(8) Number of Path to Connector += Number of suspension edges of(𝑗)
(9) Length to Connector += Length ∗ Number of suspension edges of(𝑗)
(10) Length of 𝐺 = Length of 𝐺󸀠 + Length to Connector + Number of Path to Connector + Number of 𝑠 nodes
(11) Number of path of 𝐺 = Number of Path of 𝐺󸀠 + Number of Path to Connector + Number of 𝑠 nodes

Algorithm 1: Calculate the ASPL of 𝐺 from the simplified graph 𝐺󸀠.

(1) depth = 1
(2) if is connector(𝑗):
(3) Length Reduced += Length to Connector + Number of Path to Connector + 1
(4) Number of Path Reduced += Number of Path to Connector + 1
(5) if (connector → next == leaf) return
(6) else
(7) while (connector → next <> leaf)
(8) depth++
(9) Length Reduced += Length to Connector + depth ∗ Number of Path to Connector + depth + 1
(10) Number of Path Reduced += Number of Path to Connector + depth
(11) connector = connector → next

Algorithm 2: Restore the ASPL of 𝐺 from the multisimplified graph.

4. Multilevel Simplification

It is necessary to simplify 𝐺󸀠 again if there is still a lot of
suspension nodes in 𝐺󸀠. For example, node 7 is a suspension
node in𝐺󸀠, as shown in Figure 2.We can get𝐺󸀠󸀠 if we simplify
𝐺
󸀠. There are no suspension nodes in 𝐺󸀠󸀠. There are two ways

to get ASPL(𝐺) from 𝐺󸀠󸀠. One way is to work on 𝐺󸀠󸀠 to get
ASPL(𝐺󸀠) from ASPL(𝐺󸀠󸀠) first and then work on 𝐺󸀠 to get
ASPL(𝐺) fromASPL(𝐺󸀠); the other way is to work on𝐺󸀠󸀠 only
to get ASPL(𝐺) directly fromASPL(𝐺󸀠󸀠). Obviously, the latter
computation method is more efficient both in time and in
space because𝐺󸀠󸀠 has less nodes and edges than𝐺󸀠.Therefore,
we use the second method for simplification.

After the simplification of the first round, new suspension
nodes will appear. Obviously, only the connectors can be the
suspension nodes after the previous simplification, because
we only remove the suspension nodes and the edges starting
from the connectors to them.This implies that if a connector
becomes a suspension node after simplification, then there
is no shortest path that starts from this connector to other
nodes before simplification, except the suspension node it
connects. For example, node 7will become a suspension node
after the simplification of the first round; it has no shortest
path to other nodes except node 8, which is a suspension
node it connects. With this regular pattern, we can use the
multisimplified network to get ASPL of the original network.

Let us still use the network shown in Figure 1 as an
example. Node 5, node 6, and node 8 are removed in the

first round of simplification; only node 7 is removed in the
second round of simplification. We should remember that all
connectors are in𝐺󸀠󸀠 now, because only𝐺󸀠󸀠 can be used in the
secondmethod.Therefore, node 3 is the only connector in the
second round of simplification. If the suspension node that
node 3 connects is removed, then the length of the shortest
path is reduced by

Length Reduced(2)

= Length to Connector

+Number of Path to Connector + 1,

(4)

where Length Reduced(2) is the length of shortest path
reduced in the second round.

Node 7 is the suspension node in the second round; it is a
connector in the first round. If the suspension node that node
7 connects is removed in the first round, then the length is
reduced by Length Reduced(1), where

Length Reduced(1) = Length Reduced(2)

+Number of Path to Connector

+ 1 + 1.

(5)
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If we replace Length Reduced(2) with formula (4), we get

Length Reduced(1)

= Length to Connector

+ 2 ∗Number of Path to Connector + 3.

(6)

Actually, formula (5) is the same as formula (4) because
Length Reduced(2) is the length to the node that will become
the connector in the first round or the length to the new
connector. In Figure 1, this node is node 7. The same reason
can be given to explain Number of Path to Connector + 1,
because one further step is needed from the connector in the
second round to the node that will become the connector in
the first round.

From formula (5) we know if a suspension node is
removed in the second round, then the number of shortest
path is reduced by Number of path Reduced(2), where

Number of path Reduced(2)

= Number of path to connector + 1.
(7)

The number of shortest paths is reduced by Number of path
Reduced(1) in the first round if the suspension node con-
nected by the suspension node in the second round is
removed, where

Number of path Reduced(1)

= Number of path Reduced(2) + 1
(8)

or

Number of path Reduced(1)

= Number of path to connector + 2.
(9)

Formula (8) and formula (9) only apply to two-level simplifi-
cation. For multilevel, the formulas are

Length Reduced(1)

= Length to Connector

+ 𝑖 ∗Number of Path to Connector

+ 𝑖 + 1,

Number of path Reduced(1)

= Number of path to connector + 𝑖,

(10)

where 𝑖 is the number of simplification levels.
The implementation of the multilevel simplification is

done on the network after multiple simplifications; the
connectors of different levels should be saved and processed
separately.While in one-level simplification, only the connec-
tors of the upper level are saved. We use an adjacency list to
save multilevel connectors; the connectors of the lowest level
are the start points in the list and they point to the connectors
in the upper level that they connect. Here the lowest level

Leaf 2

3

2

2

Leaf 1

Leaf 37

Figure 3: The adjacency list corresponding to Figure 1.

connectors refer to those connectors that cannot be simplified
again. For the network listed in Figure 1, the adjacency list is
shown in Figure 3. The restore of ASPL of 𝐺 from 𝐺󸀠󸀠 started
from the connectors in the lowest level, which are node 2,
node 2, and node 3.

Suppose we already get the values of Number of Path
to Connector and Length to Connector from the multisim-
plified graph, depth is the number of levels in the adjacency
list and the restore algorithm is listed in Algorithm 2.

5. Analysis of Algorithms

From Algorithms 1 and 2 we can see that the computation of
ASPL can be implemented fully on the simplified network.
Suppose the number of nodes is reduced from𝑁 to 𝑛 and the
number of edges from𝐸 to 𝑒 in the simplification. If adjacency
matrix is used to store the network, then the space complexity
is reduced by

(1 −
𝑁
2
− 𝑛
2

𝑁2
) ∗ 100%. (11)

If adjacency list is used, then the space complexity is reduced
by

(1 −
𝑁 ∗ 𝐸 − 𝑛 ∗ 𝑒

𝑁 ∗ 𝐸
) ∗ 100%. (12)

If 90% of the nodes and 50% of the edges are reduced,
then the space complexity is reduced by 99% for the adjacency
matrix storage format and 95% for the adjacency list storage
format.

The time complexity is reduced from 𝑂(𝑁 ∗ (𝑁 + 𝐸))
to 𝑂(𝑛 ∗ (𝑛 + 𝑒)). Though extra computation is needed to
restore ASPL of 𝐺 from that of 𝐺󸀠 (from line 7 to line 11 in
Algorithm 1), these computations are basic addition ormulti-
plication operations that are negligible in time comparedwith
that of computing the shortest path length between twonodes
(line 5 in Algorithm 1).

6. Conclusion

Themain contribution of this paper is the multilevel simplifi-
cation algorithm to reduce the time and space complexities in
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the computation of ASPL of scale-free networks; the property
of Algorithm 2 can guarantee the efficiency for all scale-free
networks.

In this paper, we presented the reason for network
simplification, analyzed the feature of scale-free network,
and illustrated the relation between the ASPL of the original
network and that of the simplified network; detailed imple-
mentation algorithm is given to compute ASPL directly from
the multiple-simplified networks so that the time and space
complexities are significantly reduced.
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