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We formulate a three-dimensional deterministic model of amphibian larvae population to investigate the cause of extinction due
to the infectious disease. The larvae population of the model is subdivided into two classes, exposed and unexposed, depending on
their vulnerability to disease. Reproduction ratioR

0
has been calculated and we have shown that ifR

0
< 1, the whole population

will be extinct. For the case of R
0
> 1, we discussed different scenarios under which an infected population can survive or be

eliminated using stability and persistence analysis. Finally, we also used Hopf bifurcation analysis to study the stability of periodic
solutions.

1. Introduction

Worldwide catastrophic declines in the amphibian popula-
tion are perhaps one of the most pressing and discussed
problems among the ecologists during the last two decades.
Although many of these are attributable due to the habitat
loss (see, e.g., [1, 2]), the majority have remained enigmatic
till today. Many hypotheses responsible for this decline have
been documented in the literature, such as adverse weather
patterns [3, 4], acid precipitation [5], environmental pollution
[3], increased ultraviolet (UV-B) radiation [6], introduction
of predators or competitors [7], infectious disease [3, 8, 9], or
a combination of these.

Recently, infectious diseases have become one of the
emergent factors behind rapid amphibian decline which
often results in extinction of species, for example, the recent
extinction of the golden toad in Costa Rica and some
species of gastric-brooding frogs in Australia. Investiga-
tions reveal that the main cause behind the mass death
of these species is two infectious diseases, chytridiomy-
cosis in the rain forest of Australia and Central America
and some parts of North America and iridoviral infec-
tions in United Kingdom, United States, and Canada
[3, 10, 11].

The larval stage of the amphibian is considered to be
the most vulnerable towards the spread of infectious disease.
Most of the larva population of tropical amphibian species
remain alive for 12 to 18 months but some temperate species
may also survive as long as 3 years before metamorphosing.
Recently it has been observed, both in Australia and Central
America, that larval amphibians infected with chytridiomy-
cosis may exhibit disfigurement of their keratinized mouth
parts and demonstrate a significant reduction in their growth
and development which may eventually cause the complete
extinction sometimes [3]. Further, in the case of reduced
amphibian population, this infection causes prolonging of the
existence of Batrachochytrium [12] and implicates the life-
cycle stage as a reservoir host for the pathogen. This kind
of larval infection enhancing pathogen-mediated host pop-
ulation extinction has also been reported for invertebrates
[13]. Therefore in this work, we keep our focus on the larval
stage and investigate the dynamics of spread of disease among
them.

This work has been motivated by the recent work of [9],
in which only susceptible and infected classes are considered.
Since, as discussed earlier, larvae are the key players in the
case of density-dependent disease incidencewhich eventually
leads to the host extinction, therefore, it is imperative to
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keep this component intact while studying the disease based
amphibian decline. Since the main focus of the model is
the disease based larvae extinction, therefore, in order to
look at the complete scenario, we assume that, at the early
stage of their lives, the larvae are surrounded by a safe
environment which is free of disease, like in a closed shell or
some protected holes. For our model, we denote this class by
𝐿. At the later stage once these unexposed larvae enter into
free environment they become vulnerable to disease and we
call them susceptibles (denoted by 𝑆). These susceptibles can
be infected with the disease and enter into the infective class,
denoted by 𝐼. Further, these infected larvae can also recover
from the disease and return to the susceptible class. The
model is formulated in a way that the number of new infected
larvae depends on the present number of susceptible and
infective larvae in the sense that the more larvae (susceptible
or infective) we have, the more chance of spreading the
infections among the healthy or susceptible larvae will there
be; that is, the disease can be transferred from one to another.

We organize this paper as follows. First we describe the
mathematical model along with its underlying assumptions.
Then we introduce many threshold quantities, for example,
the reproduction ratios and the critical host density for
the disease establishments. We also derive the number of
endemic equilibriums and discuss their stabilities. Next we
also elaborate our findings using numerical simulations.
Finally, we give the conclusion and discuss the potential
limitations and impact of our results.

2. Formulation of Mathematical Model

In this mathematical model we assume that the disease only
affects the larval population. So we divide the larvae 𝐿 into
two categories, the susceptibles larvae 𝑆 and the infected
larvae 𝐼. Although this disease is transferable from one to
another, the recovery is also possible and on recovering from
the disease, an infected larva will reenter into the class of
susceptible larvae. Further, for ourmodel we also assume that
only susceptibles can contribute to the reproduction process.
Thus once the disease is spread, the whole population will go
towards extinctions not only due to the illness but also due to
the lack of reproduction process.

The model is as follows:

𝐿
󸀠
= 𝛽𝑆 − 𝜋 (𝐿) 𝐿 − 𝜇𝐿,

𝑆
󸀠
= 𝜋 (𝐿) 𝐿 − ]𝑆 + 𝜌𝐼 − 𝜎𝑆𝐼,

𝐼
󸀠
= 𝜎𝑆𝐼 − ]𝐼 − 𝛼𝐼 − 𝜌𝐼.

(1)

Here𝐿 represents the unexposed class of the larval population
which is not yet entered into the susceptible class 𝑆. Here we
assume that the transition from stage 𝐿 to stage 𝑆 requires
a certain minimum size. This assumption is valid for many
species, for example, Daphnia magna, a water flea, where the
individuals typically have a length of 0.8mm at birth and a
length of 2.5mm once they enter into the exposed class [14].
Further, in the case of some amphibians, the body size at
metamorphosis is quite flexible (see, e.g., [15]); therefore, a
certainminimum size still seems to be required in these cases.

Table 1: Description of parameters in model (1).

Variables Description
𝛽 Per capita birth rate of susceptibles.
𝜇 Per capita (natural) mortality rate of the larvae.

] Per capita (natural) mortality rate of the
susceptible and infected larvae.

𝛼
Per capita mortality rate of the infected larvae due
to disease.

𝜌 Recovery rate from disease.

𝜋 (𝐿)
Per capita transition rate. This is the rate at which
the susceptible larva matures.

𝜎

Rate at which the disease is transferred from
infected to susceptible class, when the contact
between susceptible and infected individuals
occurs.

Thus based on these evidences, it is reasonable to assume
that the scarcity of resources will prolong the length of the
larval stage 𝐿. So, if there are more larvae in stage 𝐿 and less
resources, then it will take longer for a single larva in stage
𝐿 to complete the transition into stage 𝑆. Therefore, in our
model, we assume that 𝜋(𝐿)𝐿 is nondecreasing in 𝐿 in order
to represent a strong negative feedback from the number of
larval population 𝐿. It is clear from the model that this class
will enter into the exposed susceptible class 𝑆 with the rate
𝜇 which further can become infected with a rate ]. Since, in
the case of closed population, the disease can transfer from
one individual to the other, therefore by using the law of mass
action, we express this by𝜎𝑆𝐼, where𝜎 is disease transmission
rate. Finally the last term in the third equation represents the
recovery from disease with the rate 𝜌.

The detailed description of parameters of our model is
given in Table 1.

Assumption 1. All the parameters are positive except 𝛼, which
can also be zero. 𝜋(𝐿) is a strictly decreasing nonnegative
function of 𝐿 such that 𝜋(𝐿) → 0 as 𝐿 → ∞.

3. Existence, Positivity,
and Boundedness of the Solution

Theorem 2. Assume that Assumption 1 is satisfied; then for
nonnegative initial data, there are unique nonnegative solu-
tions of the system which are defined for all nonnegative times.
Further all the solutions to the system are uniformly eventually
bounded.

Proof. Let 𝐹 = (𝑓
1
, 𝑓
2
, 𝑓
3
) and 𝑋 = (𝑥

1
, 𝑥
2
, 𝑥
3
) = (𝐿, 𝑆, 𝐼),

where

𝑓
1
= 𝛽𝑆 − 𝜋 (𝐿) 𝐿 − 𝜇𝐿,

𝑓
2
= 𝜋 (𝐿) 𝐿 − ]𝑆 + 𝜌𝐼 − 𝜎𝑆𝐼,

𝑓
3
= 𝜎𝑆𝐼 − ]𝐼 − 𝛼𝐼 − 𝜌𝐼.

(2)
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Notice that all the partial derivatives 𝜕𝑓
𝑖
/𝜕𝑥
𝑗
, 𝑖, 𝑗 = 1, 2, 3, are

continuous. Further

𝐿 = 0 󳨐⇒ 𝑓
1
= 𝛽𝑆 ≥ 0,

𝑆 = 0 󳨐⇒ 𝑓
2
= 𝜋 (𝐿) 𝐿 + 𝜌𝐼 ≥ 0,

𝐼 = 0 󳨐⇒ 𝑓
3
= 0.

(3)

So 𝑋(𝑡) = (𝐿(𝑡), 𝑆(𝑡), 𝐼(𝑡)) ∈ 𝐵
3, where 𝐵 = [0,∞) for all

𝑡 ≥ 𝑡
0
≥ 0 for which it is defined and whenever 𝑋(𝑡

0
) ∈ 𝐵
3.

Thus all the solutions of the given system are nonnegative by
propositionA.1 of [14].We conclude that there exists a unique
solution to the above system with the values in R3

+
and it is

defined in the interval [0, 𝑏), 𝑏 ∈ (0,∞] (Theorem A.4 [14])
and if 𝑏 < ∞ then

sup
0≤𝑡<𝑏

{𝐿 (𝑡) + 𝑆 (𝑡) + 𝐼 (𝑡)} = ∞. (4)

To prove the first part of the theorem, we need to show only
that 𝑏 = ∞. Assume that 𝑏 < ∞; then from model (1) we get

𝐿
󸀠
≤ 𝛽𝑆,

𝑆
󸀠
≤ 𝜋 (𝐿) 𝐿 + 𝜌𝐼 − 𝜎𝑆𝐼 ≤ 𝜋 (0) 𝐿 + 𝜌𝐼 − 𝜎𝑆𝐼,

𝐼
󸀠
≤ 𝜎𝑆𝐼.

(5)

Let 𝜂 = max{𝜋(0), 𝛽, 𝜌}; then we get

𝐿
󸀠
+ 𝑆
󸀠
+ 𝐼
󸀠
≤ 𝜂 (𝐿 + 𝑆 + 𝐼)

󳨐⇒ 𝐿 (𝑡) + 𝑆 (𝑡) + 𝐼 (𝑡) ≤ [𝐿 (0) + 𝑆 (0) + 𝐼 (0)] 𝑒
𝜂𝑡

󳨐⇒ sup
0≤𝑡<𝑏

𝐿 (𝑡) + 𝑆 (𝑡) + 𝐼 (𝑡) ≤ sup
0≤𝑡<𝑏

[𝐿 (0) + 𝑆 (0) + 𝐼 (0)] 𝑒
𝜂𝑡
.

(6)

Since 𝑏 < ∞, therefore

sup
0≤𝑡<𝑏

𝐿 (𝑡) + 𝑆 (𝑡) + 𝐼 (𝑡) ≤ 𝐶 < ∞. (7)

This is a contradiction, so 𝑏 = ∞.
Now we show that the solutions are uniformly eventually

bounded. Let us define 𝑉 = 𝐿 + 𝜉(𝑆 + 𝐼), where 𝜉 is to be
determined later. Then by using the system (1), we have

𝑉
󸀠
= 𝛽𝑆 − 𝜋 (𝐿) 𝐿 − 𝜇𝐿 + 𝜉 (𝜋 (𝐿) 𝐿 − ]𝑆 − ]𝐼 − 𝛼𝐼)

󳨐⇒ 𝑉
󸀠
= (𝛽 − 𝜉]) 𝑆 + [(𝜉 − 1) 𝜋 (𝐿) − 𝜇] 𝐿 − 𝜉 (] + 𝛼) 𝐼.

(8)

By choosing 𝜉 = (𝛽/]) + 1, we get

𝑉
󸀠
= −]𝑆 + (

𝛽

]
𝜋 (𝐿) − 𝜇)𝐿 − 𝜉 (] + 𝛼) 𝐼. (9)

Since we know that 𝜋(𝐿) → 0 as 𝐿 → ∞, therefore for
each 𝜖 > 0 there exist some 𝐿♯ > 0 such that, for all 𝐿 ≥ 𝐿

♯,
𝜋(𝐿) < 𝜖. So we can divide the proof into two cases.

Case 1 (𝐿 ≥ 𝐿
♯
). From (9) we get

𝑉
󸀠
≤ − ]𝑆 + (

𝛽

]
𝜖 − 𝜇)𝐿

≤ − ]𝑆 −

𝜇

2

𝐿 ≤ −

𝜇

2

𝐿
♯
.

(10)

So if we take 𝐿♯ > 2/𝜇, then we get 𝑉󸀠 < −1.

Case 2 (𝐿 < 𝐿
♯
).Using 𝜉 = (𝛽/]) + 1, again from (9), we have

𝑉
󸀠
≤ − ]𝑆 +

𝛽

]
𝜋 (𝐿) 𝐿 − 𝜇𝐿 − 𝜉 (] + 𝛼) 𝐼

≤ − ]𝑆 +

𝛽

]
𝜋 (0) 𝐿

♯
− 𝜉 (] + 𝛼) 𝐼

≤ − ](
1

𝜉

(𝑉 − 𝐿) − 𝐼) +

𝛽

]
𝜋 (0) 𝐿

♯
− 𝜉 (] + 𝛼) 𝐼

≤ −

]
𝜉

𝑉 +

]
𝜉

𝐿 + ]𝐼 +
𝛽

]
𝜋 (0) 𝐿

♯
− (

𝛽

]
+ 1) (] + 𝛼) 𝐼.

(11)

Simplification and neglecting the negative terms (involving
𝐼), yields

󳨐⇒ 𝑉
󸀠
≤ −

]
𝜉

𝑉 + (

]
𝜉

+

𝛽

]
𝜋 (0)) 𝐿

♯
. (12)

We find some 𝑉♯ such that 𝑉󸀠 < −1 whenever 𝑉 ≥ 𝑉
♯.

Therefore in either case 𝑉
󸀠

< −1. This implies that
lim inf

𝑡→∞
𝑉(𝑡) ≤ 𝑉

♯. Otherwise since 𝑉
󸀠
(𝑡) ≤ −1 for all

sufficiently large time and 𝑉 would become negative in finite
time, contradiction. Further since 𝑉 ≥ 𝐿 + 𝑆 + 𝐼 and we have
shown that our system is weakly dissipative, so it is dissipative
by Proposition 3.18 of [14].

4. Existence and Stability of Steady States

In this section we will discuss the existence and stability of
the steady states of our model (1). We will have three steady
states, the trivial steady states (0, 0, 0), the disease-free steady
state of the form (𝐿̂, 𝑆, 0), and the interior steady state of the
form (𝐿

∗
, 𝑆
∗
, 𝐼
∗
).The trivial steady state always exists. To find

the disease-free steady state, we proceed as follows. From the
𝐼
󸀠 equation of our main model (1) we have

(𝜎𝑆 − ] − 𝛼 − 𝜌) 𝐼 = 0. (13)
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From (13) we can say that either 𝐼 = 0 or 𝑆 = (]+𝛼+𝜌)/𝜎. Let
us suppose the disease-free case (𝐿̂, 𝑆, 0) that is, 𝐼 = 0; then
by first and second equations of model (1) we have

𝛽𝑆 − 𝜋 (𝐿̂) 𝐿̂ − 𝜇𝐿̂ = 0

𝜋 (𝐿̂) 𝐿̂ − ]𝑆 = 0.

(14)

Now by adding these two equations we get

𝑆 =

𝜇

(𝛽 − ])
𝐿̂. (15)

To find the value of 𝐿̂, we substitute the value of 𝑆 from (15)
and 𝐼 = 0 in 𝐿

󸀠 equation of model (1). We have

𝛽𝜇

𝛽 − ]
𝐿̂ − 𝜋 (𝐿̂) 𝐿̂ − 𝜇𝐿̂ = 0

[

𝛽𝜇

𝛽 − ]
− 𝜋 (𝐿̂) − 𝜇] 𝐿̂ = 0

󳨐⇒ 𝐿̂ = 0 or
𝛽𝜇

𝛽 − ]
− 𝜇 = 𝜋 (𝐿̂) .

(16)

Notice that 𝐿̂ = 0 will give us trivial state (0, 0, 0). In order to
find the nontrivial state, we will consider the case when 𝐿̂ ̸= 0.
In this case we will have

𝛽𝜇

𝛽 − ]
− 𝜇 = 𝜋 (𝐿̂)

𝜋 (𝐿̂) =

𝜇]
𝛽 − ]

.

(17)

Equivalently

𝐿̂ = 𝜋
−1

(

𝜇]
𝛽 − ]

) . (18)

Thus we have two disease-free steady states, that is, (0, 0, 0)
and (𝐿̂, (𝜇/(𝛽− ]))𝐿̂, 0), where 𝐿̂ > 0 is given by (17). Observe
that there is a threshold condition

𝛽𝜇

𝛽 − ]
− 𝜇 < 𝜋 (0) . (19)

We can rewrite the condition (𝛽 − ])𝜋(0) < ]𝜇 as
(𝛽/])(𝜋(0)/(𝜋(0) + 𝜇)) < 1. We refer this quantity as
reproduction number and it is defined as

R
0
=

𝛽

]
𝜋 (0)

𝜋 (0) + 𝜇

< 1. (20)

Now we find the interior equilibrium (𝐿
∗
, 𝑆
∗
, 𝐼
∗
) with

𝐿
∗
, 𝑆
∗
, 𝐼
∗

̸= 0. From the 𝐼󸀠 equation of model (1), we get 𝑆∗ =
(] + 𝛼 + 𝜌)/𝜎.

Adding the first two equations of our original model (1)
gives

𝛽𝑆
∗
− 𝜇𝐿
∗
− ]𝑆∗ + 𝜌𝐼

∗
− 𝜎𝑆
∗
𝐼
∗
= 0

󳨐⇒ (𝛽 − ]) 𝑆∗ + (𝜌 − 𝜎𝑆
∗
) 𝐼
∗
− 𝜇𝐿
∗
= 0.

(21)

Now by using the values of 𝑆∗, we get

(𝛽 − ]) (] + 𝛼 + 𝜌)

𝜎

+ (𝜌 − ] − 𝛼 − 𝜌) 𝐼 − 𝜇𝐿 = 0

󳨐⇒ (𝛽 − ]) (] + 𝛼 + 𝜌) + 𝜎 (−] − 𝛼) 𝐼 − 𝜎𝜇𝐿 = 0.

(22)

Therefore we have

𝐼
∗
=

𝜎𝜇𝐿
∗
− (𝛽 − ]) (] + 𝛼 + 𝜌)

𝜎 (−] − 𝛼)

. (23)

Nowweneed to find the value of𝐿∗. By substituting the values
of 𝑆∗ and 𝐼

∗ in the first equation of model (1), we will have

𝛽

𝜎

(] + 𝛼 + 𝜌) − (𝜋 (𝐿
∗
) + 𝜇) 𝐿

∗
= 0

(𝜋 (𝐿
∗
) + 𝜇) 𝐿

∗
=

𝛽

𝜎

(] + 𝛼 + 𝜌) = 𝛽𝑆
∗
.

(24)

Now we need to solve (24) numerically (depending on
the structure of the function 𝜋(𝐿)) to find the value of 𝐿∗.
Therefore, in this case, the interior equilibrium is given by

(𝐿
∗
,

] + 𝛼 + 𝜌

𝜎

,

𝜎𝜇𝐿
∗
− (𝛽 − ]) (] + 𝛼 + 𝜌)

𝜎 (−] − 𝛼)

) . (25)

The 𝐿∗ and 𝑆
∗ are nonzero. From the 𝑆󸀠 equation of model (1)

we get

𝜋 (𝐿
∗
) 𝐿
∗
− ]𝑆∗ + 𝐼

∗
(𝜌 − 𝜎𝑆

∗
) = 0. (26)

If we solve this for 𝐼∗, we get

𝐼
∗
=

𝜋 (𝐿
∗
) 𝐿
∗
− ]𝑆∗

] + 𝛼

. (27)

This implies that 𝐼∗ > 0 if

𝜋 (𝐿
∗
) 𝐿
∗
> ]𝑆∗. (28)

This gives the condition for the existence of infected steady
state. Observe that we can write (24) as

𝜎𝑆
∗

] + 𝛼 + 𝜌

= 1. (29)

Since 1/(] + 𝛼 + 𝜌) is the average time a larva spends in
the infected stage and 𝜎𝑆

∗ is the rate at which one average
infected larva infects a susceptible larva, if they are at density
𝑆
∗, therefore we can express the left side of (29) as the
replacement ratio of the infectious disease from the infected
larvae to the susceptible larvae when they have density 𝑆

∗.
That is,

R
par

(𝑆
∗
) =

𝜎𝑆
∗

] + 𝛼 + 𝜌

. (30)

The replacement ratio at the susceptible larval density is given
by

R
par
0

(𝑆) =

𝜎𝑆

] + 𝛼 + 𝜌

. (31)

From the above results we have the following theorem for
the existence of the steady states.
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Theorem 3. (a) The trivial steady state (0, 0, 0) exists all the
time.

(b) The disease-free state (𝐿̂, 𝑆, 0) exists if and only ifR
0
>

1.
(c)The infected state (𝐿∗, 𝑆∗, 𝐼∗) exists if and only ifR

0
> 1

and 𝜋(𝐿
∗
)𝐿
∗
> ]𝑆∗.

(d) LetRpar
(L̂) > 1. Then there is at least one steady state

with the infected larvae.
(e) Let Rpar

(𝐿̂) < 1; then there is no or two steady states
with the infective larvae.

Proof. Proof of part (b) and part (c) follows directly from the
discussion above this theorem.

(d) The conditionRpar
(𝐿̂) > 1 can be written as

(𝜋 (𝐿̂) 𝐿̂ + 𝜇𝐿̂) > 𝛽

] + 𝛼 + 𝜌

𝜎

. (32)

The intermediate value theorem implies that there is some
𝐿̃
1
∈ (0, 𝐿̂) which satisfies (24).
(e) The conditionRpar

(𝐿̂) < 1 can be written as

(𝜋 (𝐿̂) 𝐿+̂𝜇𝐿̂) < 𝛽

] + 𝛼 + 𝜌

𝜎

. (33)

If 𝜋(𝐿)𝐿 + 𝜇𝐿 is strictly increasing function for 𝐿 ≥ 0,
then there is no steady state in [0, 𝐿̂]. Now assume that
this function is not increasing and that there is at least one
solution 𝐿̌

1
> 0 of (24). We can choose 𝐿̌

1
∈ (0, 𝐿

1
]. If

𝐿̌
1
= 𝐿
1
then we have two solutions counting multiplicities.

They are steady state with the infectives if 𝐿̌
1
> 𝐿̂; otherwise

that steady state does not exist with infectives. If 𝐿̌
1

< 𝐿
1
,

then we can choose some 𝐿 ∈ (𝐿̌
1
, 𝐿
1
). This implies

𝜋 (𝐿
1
) 𝐿
1
+ 𝜇𝐿
1
> 𝜋 (𝐿̌

1
) 𝐿̌
1
+ 𝜇𝐿̌
1
= 𝛽(

] + 𝛼 + 𝜌

𝜎

)

𝜋 (𝐿
1
) 𝐿
1
+ 𝜇𝐿
1
> 𝛽(

] + 𝛼 + 𝜌

𝜎

) .

(34)

Therefore by the intermediate value theorem, there exists a
solution 𝐿̌

2
∈ (𝐿̌
1
, 𝐿) of (20). By the previous theorem, 𝐿̌

1

and 𝐿̌
2
are components of equilibria with positive infective

population.

Theorem 4. Let 𝐿∗ > 0 be a solution of (24); then 𝐿
∗ satisfy

(29) if and only if 𝐿∗ < 𝐿̂ with 𝐿̂ = 𝜋
−1
(𝜇]/(𝛽 − ])).

Proof. Let 𝐿∗ < 𝐿̂. Since 𝜋(𝐿) is strictly decreasing function,
this is equivalent to

𝜋 (𝐿
∗
) > 𝜋 (𝐿̂) . (35)

Since 𝜋(𝐿̂) = ]𝜇/(𝛽−]), so we have the equivalent expression

𝜋 (𝐿
∗
) >

]𝜇
𝛽 − ]

. (36)

Multiplying both sides with 𝐿
∗ and rearranging the terms

imply

(𝛽 − ]) 𝜋 (𝐿
∗
) 𝐿
∗
> ]𝜇𝐿∗. (37)

At infected steady state (𝐿∗, 𝑆∗, 𝐼∗) the 𝐿󸀠 equation of model
(1) can be written as

𝜇𝐿
∗
= 𝛽𝑆
∗
− 𝜋 (𝐿

∗
) 𝐿
∗
. (38)

So we get

(𝛽 − ]) 𝜋 (𝐿
∗
) 𝐿
∗
> ] (𝛽𝑆∗ − 𝜋 (𝐿

∗
) 𝐿
∗
)

𝜋 (𝐿
∗
) 𝐿
∗
> ]𝑆∗.

(39)

Similarly if 𝐿∗ ≥ 𝐿̂ then (31) will not be satisfied.

It is also clear that (24) has one or three solutions
depending on the choice of the parameters ], 𝛼, 𝜌, 𝜎, and 𝛽.

Now we will discuss the stability of the trivial steady state
(0, 0, 0) and the persistence of the population.The persistence
of a population is defined as follows.

Definition 5. The population 𝐿(𝑡), 𝑆(𝑡), 𝐼(𝑡) is called uni-
formly strongly persistent if there exists 𝜖 > 0, independent of
initial data, such that for all solutions of model (1) satisfying
𝐿(0) > 0, 𝑆(0) > 0, and 𝐼(0) > 0 we have 𝐿(𝑡), 𝑆(𝑡), 𝐼(𝑡) > 𝜖

for all sufficiently large 𝑡. It is robust uniform persistence, if
model (1) depends continuously on a parameter 𝜂 ∈ R. If 𝜂

0
is

a parameter and uniform persistence holds with 𝜙(𝑡; , 𝑆, 𝐿, 𝐼)

replaced by 𝜙(𝑡; , 𝑆, 𝐿, 𝐼, 𝜂), where 𝜙(𝑡, 𝑥) is semiflow, for all 𝜂
in the neighborhood of 𝜂

0
, then we say that the system (1) is

robust uniformly persistent.

Theorem6. (a)The trivial state is locally asymptotically stable
if and only ifR

0
< 1.

(b) Assume thatR
0
> 1 and Â = 𝜋

󸀠
(𝐿̂)𝐿̂ + 𝜋(𝐿̂) + 𝜇 > 0

(or equivalently (𝛽/])𝜋(0) + ] > −𝜋
󸀠
(𝐿̂)𝐿̂). Then the steady

state (𝐿̂, 𝑆, 0) is locally asymptotically stable if and only if 𝑆 <

(] + 𝛼 + 𝜌)/𝜎 or 𝑆 < 𝑆
∗.

(c) Assume thatR
0
> 1 andA = 𝜋

󸀠
(𝐿
∗
)𝐿
∗
+𝜋(𝐿
∗
)+𝜇 > 0

(or equivalently (𝛽/])𝜋(0)+] > −𝜋
󸀠
(𝐿
∗
)𝐿
∗).Then the endemic

equilibrium is locally asymptotically stable.
(d) If R

0
> 1, then the disease is robustly uniformly

persistent: that is, for every parameter vector 𝜂
0
for the system

(1), there exists a neighborhoodN of 𝜂
0
and 𝜖 > 0 such that

lim inf
𝑡→∞

min (𝑆
𝜂
(𝑡) , 𝐼
𝜂
(𝑡)) > 𝜖, 𝜂 ∈ N, (40)

for all solutions (𝐿𝜂(𝑡), 𝑆𝜂(𝑡), 𝐼𝜂(𝑡)) of model (1) corresponding
to 𝜂 with (𝑆

𝜂
(0) + 𝐼

𝜂
(0)) > 0.

Proof. The Jacobian matrix associated with our model (1) is
given by

𝐽 =

[
[
[

[

−𝜋
󸀠
(𝐿) 𝐿 − 𝜋 (𝐿) − 𝜇 𝛽 0

𝜋
󸀠
(𝐿) 𝐿 + 𝜋 (𝐿) −] − 𝜎𝐼 𝜌 − 𝜎𝑆

0 𝜎𝐼 𝜎𝑆 − ] − 𝛼 − 𝜌

]
]
]

]

.

(41)

(a) This Jacobian matrix at steady state (0, 0, 0) is

𝐽
1
= [

[

−𝜋 (0) − 𝜇 𝛽 0

𝜋 (0) −] 𝜌

0 0 −] − 𝛼 − 𝜌

]

]

. (42)
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The three eigenvalues are 𝜆
1

= −(] + 𝛼 + 𝜌), and the
eigenvalues of the matrix

𝐴
1
= [

−𝜋 (0) − 𝜇 𝛽

𝜋 (0) −]] . (43)

The trace and determinant are given by

trace (𝐴
1
) = − (] + 𝜇 + 𝜋 (0)) < 0

det (𝐴
1
) = ]𝜋 (0) + ]𝜇 − 𝛽𝜋 (0) = ]𝜇 − (𝛽 − ]) 𝜋 (0) .

(44)

So the steady state (0, 0, 0) is locally asymptotically stable if
and only if (𝛽 − ])𝜋(0) < ]𝜇.

(b) The Jacobian matrix at (𝐿̂, 𝑆, 0) is

𝐽 =

[
[
[

[

−𝜋
󸀠
(𝐿̂) 𝐿̂ − 𝜋 (𝐿̂) − 𝜇 𝛽 0

𝜋
󸀠
(𝐿̂) 𝐿̂ + 𝜋 (𝐿̂) −] 𝜌 − 𝜎𝑆

0 0 𝜎𝑆 − ] − 𝛼 − 𝜌

]
]
]

]

. (45)

One of the eigenvalues is 𝜆
1
= 𝜎𝑆−]−𝛼−𝜌, which is negative

if 𝑆 < (] + 𝛼 + 𝜌)/𝜎. The other two eigenvalues come from

𝐽
1
= [

[

−𝜋
󸀠
(𝐿̂) 𝐿̂ − 𝜋 (𝐿̂) − 𝜇 𝛽

𝜋
󸀠
(𝐿̂) 𝐿̂ + 𝜋 (𝐿̂) −]

]

]

. (46)

Note that

T = trace (𝐽
1
) = −𝐴 − ]

D = det (𝐽
1
) = (𝜎𝑆 − ] − 𝛼 − 𝜌) [−𝐴 (] + 𝛽) + 𝛽𝜇] ,

(47)

where 𝐴 = 𝜋
󸀠
(𝐿̂)𝐿 + 𝜋(𝐿̂) + 𝜇.

Notice thatD is positive if 𝐴 > 0.
(c) The endemic equilibrium is given by (𝐿

∗
, (] + 𝛼 +

𝜌)/𝜎, (𝜎𝜇𝐿
∗
− (𝛽 − ])(] + 𝛼 + 𝜌))/𝜎(−] − 𝛼)), where 𝐿

∗ is
the solution of (𝜋(𝐿) + 𝜇)𝐿 = (𝛽/𝜎)(] + 𝛼 + 𝜌).

The Jacobian matrix at this steady state is given by

J
∗

=

[
[
[

[

−𝜋
󸀠
(𝐿
∗
) 𝐿
∗
− 𝜋 (𝐿

∗
) − 𝜇 𝛽 0

𝜋
󸀠
(𝐿
∗
) 𝐿
∗
+ 𝜋 (𝐿

∗
) −] − 𝜎𝐼

∗
𝜌 − 𝜎𝑆

∗

0 𝜎𝐼
∗

𝜎𝑆
∗
− ] − 𝛼 − 𝜌

]
]
]

]

.

(48)

Since 𝜎𝑆∗ − ] − 𝛼 − 𝜌 = 0 and 𝜌 − 𝜎𝑆
∗
= −(] + 𝛼), so we get

J
∗
= [

[

−A 𝛽 0

A − 𝜇 −] − 𝜎𝐼
∗

− (] + 𝛼)

0 𝜎𝐼
∗

0

]

]

, (49)

whereA = 𝜋
󸀠
(𝐿
∗
)𝐿
∗
+ 𝜋(𝐿

∗
) + 𝜇.

Now we have

T = trace (J∗) = − (A + ] + 𝜎𝐼
∗
) < 0

D = det (J∗) = −𝜎𝐼
∗
A (] + 𝛼) < 0.

(50)

Further we have

J
∗

11
= 𝜎𝐼
∗
(] + 𝛼)

J
∗

22
= 0

J
∗

33
= A (] + 𝜎𝐼

∗
) − 𝛽 (A − 𝜇) ,

(51)

whereJ
𝑘𝑘
is the determinant of the matrix of size 2 resulting

fromJ∗ by removing the 𝑘th row and the kth column:

󳨐⇒

3

∑

𝑘=1

J
𝑘𝑘

= 𝜎𝐼
∗
(] + 𝛼) +A (] + 𝜎𝐼

∗
) − 𝛽 (A − 𝜇)

T
3

∑

𝑘=1

J
∗

𝑘𝑘
= − (A + 𝜎𝐼

∗
)

× [𝜎𝐼
∗
(] + 𝛼) +A (] + 𝜎𝐼

∗
) − 𝛽 (A − 𝜇)]

= −A𝜎𝐼
∗
(] + 𝛼) −A

2
(] + 𝜎𝐼

∗
) +A𝛽 (A − 𝜇)

− (] + 𝜎𝐼
∗
) 𝜎𝐼
∗
(] + 𝛼)−(] + 𝜎𝐼

∗
)A (] + 𝜎𝐼

∗
)

+ (] + 𝜎𝐼
∗
) 𝛽 (A − 𝜇) .

(52)

Finally

D −T
3

∑

𝑘=1

J
∗

𝑘𝑘
= A
2
(] + 𝜎𝐼

∗
) −A𝛽 (A − 𝜇)

+ (] + 𝜎𝐼
∗
) 𝜎𝐼
∗
(] + 𝛼)

+ (] + 𝜎𝐼
∗
)A (] + 𝜎𝐼

∗
)

− (] + 𝜎𝐼
∗
) 𝛽 (A − 𝜇) .

(53)

Simplifying and rearranging the terms we get

= A
2
(] + 𝜎𝐼

∗
) + (] + 𝜎𝐼

∗
) 𝜎𝐼
∗
(] + 𝛼) +A(] + 𝜎𝐼

∗
)
2

− 𝛽 (A − 𝜇) [A + ] + 𝜎𝐼
∗
]

≥ − 𝛽 (A − 𝜇) [A + ] + 𝜎𝐼
∗
] .

(54)

Since 0 < A = (𝜋(𝐿)𝐿)
󸀠

𝐿=𝐿
∗ + 𝜇, so this implies 𝜇 − A =

−(𝜋(𝐿)𝐿)
󸀠

𝐿=𝐿
∗ > 0 by the assumption of the structure of 𝜋(𝐿)𝐿

(i.e., the casewhenwe have three interior equilibria and this is
the most right one). Thus the endemic equilibrium is locally
asymptotically stable.

(d) Let 𝜂 be a fixed parameter and 𝑋 = {𝑥 ∈ R3𝑆 =

𝐼 = 0}. Define 𝑀 = 𝑉 ∩ 𝑋, where 𝑉 is the same region
defined inTheorem 2 in which all the solutions are uniformly
eventually bounded. Notice that both𝑋 and𝑀 are positively
invariant and 𝐸

0
= (0, 0, 0) ∈ 𝑀 that attracts all the

solutions in 𝑋. Considering 𝐸
0
as a periodic orbit (say, e.g.,

of period 𝑇 = 1), then our results will follow by applying
the theorems discussed in [16] (see, in particular, Corollary
(4.7), Proposition (4.1), and Theorem (3.2) of [16]). Now if
we denote the last two equations of model (1) in the form
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of a 2 × 2 matrix 𝐴(𝑥), then it is clear that 𝐴(𝐸
0
) has a

positive spectral radius provided R
0
> 1. So condition (9)

of Corollary 4.7 in [17] is satisfied. Also, 𝐴(𝐸
0
) is irreducible

which, using Theorem 1.1 in [18], implies that 𝑒𝑡𝐴(𝐸0) has all
positive entries for all 𝑡 > 0. This implies that condition (1) of
the abovementioned corollary is also satisfied.

Theorem 7. 𝐿(𝑡), 𝑆(𝑡), and 𝐼(𝑡) converge to zero as 𝑡 → ∞ if
and only ifR

0
< 1.

Proof. We will use “La Salle’s Invariance Principle” to prove
the theorem.

Case 1 ((𝛽−]) < 0).Consider the Lyapunov function𝑉 = 𝐿+

𝑆+𝐼. Since𝐿, 𝑆, 𝐼 ≥ 0, so𝑉 ≥ 0 is a continuously differentiable
function with 𝑉(0) = 0. Now consider

𝑉
∗
= 𝐿̇ + ̇𝑆 + ̇𝐼

= 𝛽𝑆 − 𝜋 (𝐿) 𝐿 − 𝜇𝐿 + 𝜋 (𝐿) 𝐿 − ]𝑆

+ 𝜌𝐼 − 𝜎𝐼𝑆 + 𝜎𝑆𝐼 − ]𝐼 − 𝛼𝐼 − 𝜌𝐼

= (𝛽 − ]) 𝑆 − 𝜇𝐿 − (] + 𝛼) 𝐼 ≤ 0.

(55)

Now define

𝐸 = {(𝐿, 𝑆, 𝐼) | (𝛽 − ]) 𝑆 − 𝜇𝐿 − (] + 𝛼) 𝐼 = 0} . (56)

Further, as we have

(𝛽 − ]) 𝑆 − 𝜇𝐿 − (] + 𝛼) 𝐼 = 0

󳨐⇒ 𝑆 =

𝜇𝐿 + (] + 𝛼) 𝐼

𝛽 − ]
.

(57)

Since 𝐿 and 𝐼 are nonnegative and also 𝛽 − ] < 0, so we have
𝑆 ≤ 0. But from the condition that 𝑆 should be nonnegative
we get 𝑆 = 0. So we have

𝜇𝐿 + (] + 𝛼) 𝐼 = 0. (58)

As 𝜇 and ]+𝛼 are positive, therefore we must have 𝐿 = 𝐼 = 0.
So (0, 0, 0) is the only subset of 𝐸 which is also one of the

steady states and so it is the largest invariant subset of𝐸. Since
we have shown above that all the solutions of the above system
are bounded, thus, by the above result, all the solutions to the
given system converge to (0, 0, 0).

Case 2 ((𝛽 − ]) = 0). Again consider 𝑉∗ = 𝐿 + 𝑆 + 𝐼. In this
case we have

𝑉
∗
= −𝜇𝐿 − (] + 𝛼) 𝐼 ≤ 0. (59)

Define

𝐸 = {(𝐿, 𝑆, 𝐼) | −𝜇𝐿 − (] + 𝛼) 𝐼 = 0} . (60)

Since we have

−𝜇𝐿 − (] + 𝛼) 𝐼 = 0 󳨐⇒ 𝐿 =

− (] + 𝛼) 𝐼

𝜇

󳨐⇒ 𝐿 ≤ 0.

(61)

Thus from the nonnegativity of 𝐿, we conclude that 𝐿 = 0 and
so we get 𝐼 = 0 and 𝐸 = {(0, 𝑆, 0), 𝑆 ≥ 0}since, at (0, 𝑆, 0), we
get from the first equation of our main model that 𝑆 = 0.

Thus (0, 0, 0) is the only invariant subset of 𝐸; therefore
all the bounded solutions of the given system will converge
to (0, 0, 0).

Case 3 ((𝛽 − ]) > 0). Consider the Lyapunov function 𝑉 =

]𝐿 + 𝛽(𝑆 + 𝐼). Then

𝑉
∗
= ]𝐿̇ + 𝛽 ( ̇𝑆 + ̇𝐼)

= ] (𝛽𝑆 − 𝜋 (𝐿) 𝐿 − 𝜇 (𝐿)) + 𝛽 (𝜋 (𝐿) 𝐿 − ]𝑆 + 𝜌𝐼 − 𝜎𝑆𝐼)

+ 𝛽 (𝜎𝑆𝐼 − ]𝐼 − 𝛼𝐼 − 𝜌𝐼)

= − ]𝜋 (𝐿) 𝐿 − ]𝜇𝐿 + 𝛽𝜋 (𝐿) 𝐿 − 𝛽 (] + 𝛼) 𝐼

= (𝛽 − ]) 𝜋 (𝐿) 𝐿 − ]𝜇𝐿 − 𝛽 (] + 𝛼) 𝐼

≤ (𝛽 − ]) 𝜋 (𝐿) 𝐿 − ]𝜇𝐿

≤ ((𝛽 − ]) 𝜋 (0) − ]𝜇) 𝐿 ≤ 0

= (𝛽 − ]) 𝜋 (𝐿) 𝐿 − ]𝜇𝐿 − 𝛽 (] + 𝛼) 𝐼 ≤ 0.

(62)

Define

𝐸 = {(𝐿, 𝑆, 𝐼) (𝛽 − ]) 𝜋 (𝐿) 𝐿 − ]𝜇𝐿 − 𝛽 (] + 𝛼) 𝐼 = 0} . (63)

Since

(𝛽 − ]) 𝜋 (𝐿) 𝐿 − ]𝜇𝐿 − 𝛽 (] + 𝛼) 𝐼 = 0,

(𝛽 − ]) 𝜋 (𝐿) − ]𝜇 ≤ (𝛽 − ]) 𝜋 (0) − ]𝜇 ≤ 0,

(64)

so we have 𝐼 ≤ 0. Therefore, from the nonnegativity of
𝐼, we conclude that 𝐼 = 0. So we will have either 𝐿 = 0 or
(𝛽 − ])𝜋(𝐿) − ]𝜇 = 0.

Notice that if 𝐿 ̸= 0, then 𝐿 > 0, so from the strictly
decreasing property of 𝜋, 𝜋(𝐿) < 𝜋(0), and therefore

(𝛽 − ]) 𝜋 (𝐿) − ]𝜇 < (𝛽 − ]) 𝜋 (0) − ]𝜇 ≤ 0. (65)

Thus (𝛽 − ])𝜋(𝐿) − ]𝜇 < 0 and the only possibility is 𝐿 = 0

and hence (0, 𝑆, 0) is the only subset of 𝐸. Again from the first
equation of our model (1), 𝐿󸀠 = 𝛽𝑆, which implies 𝐿󸀠 = 0 if
and only if 𝑆 = 0. Hence (0, 0, 0) is the only invariant subset
of 𝐸; therefore all the bounded solutions of the given system
will converge to (0, 0, 0).

5. The Disease Transmission Model
Special Case

In this section we will assume that 𝜋(𝐿) = 𝜉(1 − 𝜓𝐿) with
𝜉, 𝜓 > 0. Also assume that 𝜋(𝐿) = (1 − 𝐿) for 𝐿 ≤ 1. 𝜋(𝐿) is
strictly decreasing as long as it is strictly positive. Let us define
𝐿
∙
= 𝜓𝐿, 𝑆

∙
= 𝜓𝑆, and 𝐼

∙
= 𝜓𝐼. This implies

𝐿 =

𝐿
∙

𝜓

, 𝑆 =

𝑆
∙

𝜓

, 𝐼 =

𝐼
∙

𝜓

. (66)
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Now by using these substitutions, our main model will
become

𝐿
󸀠

∙

𝜓

= 𝛽

𝑆
∙

𝜓

− 𝜉 (1 − 𝐿
∙
)

𝐿
∙

𝜓

−

𝜇

𝜓

𝐿
∙

𝑆
󸀠

∙

𝜓

= 𝜉 (1 − 𝐿
∙
)

𝐿
∙

𝜓

−

]
𝜓

𝑆
∙
+

𝜌

𝜓

𝐼
∙
−

𝜎

𝜓
2
𝑆
∙
𝐼
∙

𝐼
󸀠

∙

𝜓

=

𝜎

𝜓
2
𝑆
∙
𝐼
∙
− (] + 𝛼 + 𝜌)

𝐼
∙

𝜓

.

(67)

On simplifying these equations, we get

𝐿
󸀠

∙
= 𝛽𝑆
∙
− 𝜉 (1 − 𝐿

∙
) 𝐿
∙
− 𝜇𝐿
∙

𝑆
󸀠

∙
= 𝜉 (1 − 𝐿

∙
) 𝐿
∙
− ]𝑆
∙
+ 𝜌𝐼
∙
−

𝜎

𝜓

𝑆
∙
𝐼
∙

𝐼
󸀠

∙
=

𝜎

𝜓

𝑆
∙
𝐼
∙
− (] + 𝛼 + 𝜌) 𝐼

∙
.

(68)

First, we will make this system dimensionless. Assume that
the 𝛽, 𝜉, 𝜇, ], 𝜌, and 𝛼 are measured in 1/time. 𝐿, 𝑆, and 𝐼

are measured in the units of population size, say 𝑝. So 𝜓 is
measured in 1/𝑝. Also 𝜎 is measured in 1/((𝑝)(time)). Now
dividing by 𝜉 both sides our system becomes

1

𝜉

𝐿
󸀠

∙
=

̃
𝛽𝑆
∙
− (1 − 𝐿

∙
) 𝐿
∙
− 𝜇𝐿
∙

1

𝜉

𝑆
󸀠

∙
= (1 − 𝐿

∙
) 𝐿
∙
− ]̃𝑆
∙
+ 𝜌𝐼
∙
−

𝜎̃

𝜓

𝑆
∙
𝐼
∙

1

𝜉

𝐼
󸀠

∙
=

𝜎̃

𝜓

𝑆
∙
𝐼
∙
− (]̃ + 𝛼̃ + 𝜌) 𝐼

∙
,

(69)

where ̃
𝛽 = 𝛽/𝜉 and vice versa. Rewriting the above system

after renaming the parameters, we will have

𝐿
󸀠
= 𝛽𝑆 − (1 − 𝐿) 𝐿 − 𝜇𝐿

𝑆
󸀠
= (1 − 𝐿) 𝐿 − ]𝑆 + 𝜌𝐼 − 𝜎𝑆𝐼

𝐼
󸀠
= 𝜎𝑆𝐼 − (] + 𝛼 + 𝜌) 𝐼.

(70)

Here we measured time in 𝜉
−1 and renamed the parame-

ters ̃
𝛽, 𝜇, ]̃, 𝜌, and 𝛼̃ as 𝛽, 𝜇, ], 𝜌, and 𝛼, 𝜎̃/𝜓 as 𝜎, and 𝐿

∙
, 𝑆
∙
,

and 𝐼
∙
as 𝐿, 𝑆, and 𝐼. The above system (70) is dimensionless.

Note that for the systemR
0
= (𝛽/])(1/(1 + 𝜇)).

Again we will have three types of steady states, that is,
(0, 0, 0), (𝐿̂, 𝑆, 0), and (𝐿

∗
, 𝑆
∗
, 𝐼
∗
).

Theorem 8. (a) The trivial state (0, 0, 0) always exists.
(b) The disease-free steady state of the form (𝐿̂, 𝑆, 0) exists

and is unique if and only ifR
0
> 1.

(c)The infected state (𝐿∗, 𝑆∗, 𝐼∗) exists if and only ifR
0
> 1

and (1 − 𝐿
∗
)𝐿
∗
> ]𝑆∗.

(d) If 𝜇 < 1, then for the system (70) there exist one or more
than one interior steady state.

If 𝜇 > 1 then for the system (70) there exists only one
interior steady state with the 𝐿 component given by 𝑙

1
.

Proof. (b) Since we know that the “𝐿” component of disease-
free steady state comes from

𝜋 (𝐿̂) =

𝜇]
𝛽 − ]

, (71)

this implies

1 − 𝐿̂ =

𝜇]
𝛽 − ]

, (72)

which gives

𝐿̂ = 1 −

𝜇]
𝛽 − ]

, (73)

and the “𝑆” component is given by

𝑆 =

𝜇

𝛽 − ]
𝐿̂

=

𝜇

𝛽 − ]
(1 −

𝜇]
𝛽 − ]

) .

(74)

This steady state will exist if and only if

0 < 𝜇] < 𝛽 − ]. (75)

(c) It directly follows from part (c) of Theorem 3.
(d) From the third equation of the system (70), we have

𝑆
∗
=

] + 𝛼 + 𝜌

𝜎

. (76)

As calculated earlier, the “𝐼” component is given by

𝐼
∗
=

(𝛽 − ]) 𝑆∗ − 𝜇𝐿
∗

] + 𝛼

=

𝜋 (𝐿
∗
) 𝐿
∗
− ]𝑆∗

] + 𝛼

. (77)

It is clear that the feasibility condition for the existence of that
steady state is

𝜋 (𝐿
∗
) 𝐿
∗
> ]𝑆∗, (78)

where 𝐿∗ < 𝐿̂ as proved inTheorem 3. This is equivalent to

(1 − 𝐿
∗
) 𝐿
∗
> ]𝑆∗. (79)

Observe that this holds only if 𝐿∗ < 1, since for 𝐿∗ ≥ 1, we
get ]𝑆∗ < 0, which is not true. So we must have 𝐿

∗
< 1. In

this case we get

𝐿
∗2

− 𝐿
∗
+ ]𝑆∗ < 0. (80)

We can write the left-hand side of (80) as

(𝐿
∗
− 𝐾
1
) (𝐿
∗
− 𝐾
2
) < 0, (81)

where

𝐾
1
=

1 − √1 − 4]𝑆∗

2

𝐾
2
=

1 + √1 − 4]𝑆∗

2

.

(82)
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Notice that 𝐾
1
< 𝐾
2
and both of them will exist only if 𝑆∗ ≤

1/4]. Further from (81) it is clear that 𝐿∗ − 𝐾
1
and 𝐿

∗
− 𝐾
2

have the opposite signs. So we have the following two cases.

Case 1 (𝐿∗ − 𝐾
1
> 0and𝐿∗ − 𝐾

2
< 0). This means 𝐿∗ > 𝐾

1

and 𝐿
∗
< 𝐾
2
or equivalently𝐾

1
< 𝐿
∗
< 𝐾
2
.

Case 2 (𝐿∗ − 𝐾
1
< 0 and 𝐿

∗
− 𝐾
2
> 0). This means 𝐿∗ < 𝐾

1

and 𝐿
∗
> 𝐾
2
. Since𝐾

1
< 𝐾
2
, so this case is not possible. Sowe

can have only one choice for 𝐿∗; that is, 𝐾
1
< 𝐿
∗
< 𝐾
2
(with

𝐾
1
and 𝐾

2
given in (82)) for the existence of 𝐼∗ > 0. The “𝐿”

component of the endemic steady state is the solution of the
equation

𝜋 (𝐿
∗
) 𝐿
∗
+ 𝜇𝐿
∗
= 𝛽𝑆
∗
. (83)

By using the value of 𝜋(𝐿), we get

(1 − 𝐿) 𝐿 + 𝜇𝐿 = 𝛽𝑆
∗
. (84)

This implies that for 𝐿 < 1

𝐿
2
− 𝐿 (𝜇 + 1) + 𝛽𝑆

∗
= 0, (85)

which is a quadratic equation in 𝐿 and the roots of this
equation are given by

𝑙
1
=

(1 + 𝜇) − √(1 + 𝜇)
2
− 4𝛽𝑆

∗

2

(86)

𝑙
2
=

(1 + 𝜇) + √(1 + 𝜇)
2
− 4𝛽𝑆

∗

2

.
(87)

It is clear that 0 < 𝑙
1
< 𝑙
2
. Also 𝑙

1
will exist only if 𝑙

1
< 𝐿̂ =

1 − (𝜇]/(𝛽 − ])) < 1. That is, we have

(1 + 𝜇) − √(1 + 𝜇)
2
− 4𝛽𝑆

∗
< 2. (88)

Simplifying and rearranging the terms yield

(𝜇 − 1) < √(1 + 𝜇)
2
− 4𝛽𝑆

∗
. (89)

We have the following two cases.

Case i (𝜇 < 1). For this case inequality (89) is automatically
satisfied.

Case ii (𝜇 ≥ 1). This is equivalent to 𝜇 − 1 ≥ 0. Then on
squaring both sides of inequality (89), we get

1 + 𝜇
2
− 2𝜇 < 1 + 𝜇

2
+ 2𝜇 − 4𝛽𝑆

∗
. (90)

This implies that

𝛽𝑆
∗
< 𝜇. (91)

Now consider 𝑙
2
; this will also exist only if 𝑙

2
< 1; from (89),

we get

(1 + 𝜇) + √(1 + 𝜇)
2
− 4𝛽𝑆

∗
< 2 (92)

which can be rewritten as

(𝜇 − 1) < −√(1 + 𝜇)
2
− 4𝛽𝑆

∗
. (93)

From the above equation notice that 𝑙
2
will exist only if 𝜇 < 1.

Taking square of both sides of this equation we get

1 + 𝜇
2
− 2𝜇 > 1 + 𝜇

2
+ 2𝜇 − 4𝛽𝑆

∗ (94)

which implies that 𝜇 < 𝛽𝑆
∗.

Theorem 9. (i)The steady states of the form (𝐿̂, 𝑆, 0) are stable
if and only ifR

0
> 1 and 𝜇 > 2𝐿̂ − 1.

(ii) The endemic state 𝑙
1
is locally stable and 𝑙

2
is unstable

whenever they exist.

Proof. (a)The proof directly follows fromTheorems 3 (b) and
6 (b).

(b) The Jacobian matrix is given by

𝐽 =
[
[

[

− (1 − 2𝐿) − 𝜇 𝛽 0

(1 − 2𝐿) −] − 𝜎𝐼 𝜌 − 𝜎𝑆

0 𝜎𝐼 𝜎𝑆 − (] + 𝛼 + 𝜌)

]
]

]

. (95)

At the steady state (𝐿∗, 𝑆∗, 𝐼∗) we get

𝐽
∗
=
[
[

[

− (1 − 2𝐿
∗
) − 𝜇 𝛽 0

(1 − 2𝐿
∗
) −] − 𝜎𝐼

∗
− (] + 𝛼)

0 𝜎𝐼
∗

0

]
]

]

. (96)

Assume that (𝐿∗) = (1 − 2𝐿
∗
) + 𝜇, so we have

𝐽
∗
=
[
[

[

−𝜙 (𝐿
∗
) 𝛽 0

𝜙 (𝐿
∗
) − 𝜇 −] − 𝜎𝐼

∗
− (] + 𝛼)

0 𝜎𝐼
∗

0

]
]

]

; (97)

the trace and determinant are given by

T = − (𝜙 (𝐿
∗
) + ] + 𝜎𝐼

∗
)

D = −𝜎𝐼
∗
(] + 𝛼) 𝜙 (𝐿

∗
) .

(98)

Observe that

𝜙 (𝑙
1
) = (1 − 2𝑙

1
) + 𝜇

= 1 − [(1 + 𝜇) − √(1 + 𝜇)
2
− 4𝛽𝑆

∗
] + 𝜇.

(99)

This implies

𝜙 (𝑙
1
) = √(1 + 𝜇)

2
− 4𝛽𝑆

∗
> 0. (100)

Similarly

𝜙 (𝑙
2
) = −√(1 + 𝜇)

2
− 4𝛽𝑆

∗
< 0. (101)

Now we evaluate the determinant for 𝑙
1
and 𝑙
2
. At 𝐿∗ = 𝑙

1
,

T < 0 and alsoD < 0.
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At 𝐿
∗

= 𝑙
2
, we have D > 0, so at least one of the

eigenvalues is positive and thus this equilibrium is unstable.
As calculated earlier

D −T
3

∑

𝑘=1

𝐽
𝑘𝑘

= 𝜙
2
(𝐿
∗
) (] + 𝜎𝐼

∗
) + (] + 𝜎𝐼

∗
) 𝜎𝐼
∗
(] + 𝛼)

+ 𝜙 (𝐿
∗
) (] + 𝜎𝐼

∗
)
2
− 𝛽 (𝜙 (𝐿

∗
) − 𝜇)

× [𝜙 (𝐿
∗
) + ] + 𝜎𝐼

∗
] .

(102)

This implies

D −T
3

∑

𝑘=1

𝐽
𝑘𝑘

> 𝜙 (𝐿
∗
) (] + 𝜎𝐼

∗
)
2

− 𝛽 (𝜙 (𝐿
∗
) − 𝜇) [𝜙 (𝐿

∗
) + ] + 𝜎𝐼

∗
] .

(103)

Since the only point of interest here is 𝐿∗ = 𝑙
1
(because 𝑙

2
is

unstable) and 𝜙(𝑙
1
) > 0, therefore we have

D −T
3

∑

𝑘=1

𝐽
𝑘𝑘

> −𝛽 (𝜙 (𝑙
1
) − 𝜇) [𝜙 (𝑙

1
) + ] + 𝜎𝐼

∗
] . (104)

Now for the local asymptotic stability, we want

𝜙 (𝑙
1
) − 𝜇 < 0

󳨐⇒ √(1 + 𝜇)
2
− 4𝛽𝑆

∗
< 𝜇

󳨐⇒ 1 + 𝜇
2
+ 2𝜇 − 4𝛽𝑆

∗
< 𝜇
2
;

(105)

simplification yields

1 + 2𝜇 < 4𝛽𝑆
∗

󳨐⇒ 𝜇 <

4𝛽𝑆
∗
− 1

2

.

(106)

It can be easily shown that we can find such a 𝜇which satisfies
(106). Further this is clear from (101) that

2𝜇 < 4𝛽𝑆
∗
− 1 < (1 + 𝜇)

2
− 1

󳨐⇒ 𝜇
2
> 0.

(107)

Special Case. Here we will discuss the special case when there
is no disease, that is, when 𝐼 = 0. Also assume that 𝜋(𝐿) =

(1 − 𝐿) for 𝐿 ≤ 1. Under this condition our system given by
(70) will be reduced to a two-dimensional system and is given
by

𝐿
󸀠
= 𝛽𝑆 − (1 − 𝐿) 𝐿 − 𝜇𝐿

𝑆
󸀠
= (1 − 𝐿) 𝐿 − ]𝑆.

(108)

Observe that (0, 0) is a steady state for this system. We can
write the steady state form of this system into matrix form as

[
− (1 − 𝐿) − 𝜇 𝛽

(1 − 𝐿) −]] [
𝐿

𝑆
] = 0 (109)

for any nontrivial steady state, 𝐿∗, 𝑆∗ > 0; the determinant of
this matrix should be zero; that is,

] (1 − 𝐿) + 𝜇] − 𝛽 (1 − 𝐿) = 0. (110)

On rearranging the terms, we get

(] − 𝛽) (1 − 𝐿) + 𝜇] = 0. (111)

This implies

𝜇] = (𝛽 − ]) (1 − 𝐿)

𝜇

(1 − 𝐿)

=

𝛽

]
− 1.

(112)

This steady state (𝐿
∗
, 𝑆
∗
) will exist if 𝛽 > ]. Now the

Jacobian matrix at (𝐿∗, 𝑆∗) is given by

𝐽 = [
− (1 − 2𝐿

∗
) − 𝜇 𝛽

(1 − 2𝐿
∗
) −]] . (113)

The trace and determinant are given by

T = − (1 − 2𝐿
∗
) − 𝜇 − ] = − [(1 − 2𝐿

∗
) + 𝜇 + ]]

D = ] (1 − 2𝐿
∗
) + 𝜇] − 𝛽 (1 − 2𝐿

∗
)

= − (𝛽 − ]) (1 − 2𝐿
∗
) + 𝜇]

= − (𝛽 − ]) [(1 − 𝐿
∗
) − 𝐿
∗
] + 𝜇]

= − (𝛽 − ]) (1 − 𝐿
∗
) + 𝜇] + (𝛽 − ]) 𝐿∗.

(114)

Notice that, from (111), (𝛽 − ])(1 − 𝐿
∗
) − 𝜇] = 0. So we get

D = (𝛽 − ]) 𝐿 > 0. (115)

So this internal steady state is locally asymptotically stable if
(1 − 2𝐿

∗
) + 𝜇 + ] > 0, that is, when 𝐿

∗
< (1/2)(1 + 𝜇 + ]),

and unstable if (1 − 2𝐿
∗
) + 𝜇 + ] < 0, that is, when 𝐿

∗
>

(1/2)(1 + 𝜇 + ]). Thus we have that 𝐿⬦ = (1/2)(1 + 𝜇 + ]) is
the point of bifurcation.

Theorem 10. Assume that the positive parameters 𝜇 and ]
can be chosen such that 𝐿

∗
> (1/2)(1 + 𝜇 + ]); then 𝐿

∗

becomes the first coordinate of a unique nontrivial steady state
that is unstable spiral point. Every solution that does not start
at the nontrivial steady state or the origin converges towards
a periodic orbit. In particular there exists an orbitally stable
periodic orbit.

Proof. Since we have shown earlier that all the solutions are
bounded and we have only one interior steady state for this
limiting system which is also nondegenerate, that is, all the
eigenvalues of the associated Jacobianmatrix evaluated at this
steady state point are nonzero, so by Theorem A-15 of [19],
there exists a locally asymptotically stable periodic orbit.

So far we have shown that, with proper choice of the
values of 𝜇 and ], we can find 𝐿

∗
> 0 which becomes the first

coordinate of an unstable spiral point or in particular there
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exists a periodic solution. Here we will use the approach of
the theory of Hopf bifurcation and in particular the concepts
of supercritical and subcritical bifurcation to discuss the
stability of these periodic orbits. Actually we need to find a
Jacobian matrix of the form

[
0 −𝛾

𝛾 0
] (116)

with 𝛾 > 0.
Again consider the system equation (86). Define 𝑉 = 𝑆 +

(]/𝛽)𝐿. This implies

𝑉
󸀠
= (1 − 𝐿) 𝐿 − ]𝑆 +

]
𝛽

[𝛽𝑆 − (1 − 𝐿) 𝐿 − 𝜇𝐿]

= (1 − 𝐿) 𝐿 − ]𝑆 + ]𝑆 −

]
𝛽

(1 − 𝐿) 𝐿 −

𝜇]
𝛽

𝐿.

(117)

This implies

𝑉
󸀠
=

𝐿

𝛽

[(𝛽 − ]) (1 − 𝐿) − ]𝜇] . (118)

Similarly

𝐿
󸀠
= 𝛽(𝑉 −

]
𝛽

𝐿) − (1 − 𝐿) 𝐿 − 𝜇𝐿

= 𝛽𝑉 − ]𝐿 − (1 − 𝐿) 𝐿 − 𝜇𝐿.

(119)

This implies

𝐿
󸀠
= 𝛽𝑉 − (] + 𝜇) 𝐿 − (1 − 𝐿) 𝐿. (120)

Let 𝑢 = (𝛽/𝛾)𝑉. So we have

𝑢
󸀠
=

𝛽

𝛾

(

𝐿

𝛽

[(𝛽 − ]) (1 − 𝐿) − ]𝜇]) (121)

or

𝑢
󸀠
=

𝐿

𝛾

[(𝛽 − ]) (1 − 𝐿) − ]𝜇]

𝐿
󸀠
= 𝛾𝑢 − (] + 𝜇) 𝐿 − (1 − 𝐿) 𝐿.

(122)

Observe that the 𝐿 component of the interior steady state 𝐿∗
of this system satisfies (𝛽 − ])(1 − 𝐿

∗
) − ]𝜇 = 0. The Jacobian

matrix is given by

𝐽 =
[
[

[

0

1

𝛾

[(𝛽 − ]) (1 − 𝐿) − ]𝜇] +
𝐿

𝛾

[− (𝛽 − ])]

𝛾 − [(] + 𝜇) + (1 − 2𝐿)]

]
]

]

. (123)

Evaluating the Jacobian matrix at the interior steady state
(𝑢
∗
, 𝐿
∗
) we get

𝐽 =
[
[

[

0 −

𝐿
∗

𝛾

(𝛽 − ])

𝛾 − [(] + 𝜇) + (1 − 2𝐿
∗
)]

]
]

]

. (124)

Since we also know that at 𝐿∗ = 𝐿
⬦ (i.e., Hopf bifurcation

point) we have (] + 𝜇) + (1 − 2𝐿
⬦
) = 0, so at this point the

Jacobian matrix will become

𝐽 =
[
[

[

0 −

𝐿
⬦

𝛾

(𝛽 − ])

𝛾 0

]
]

]

. (125)

Nowwe need to choose 𝛾 in such a way that 𝛾 = (𝐿
⬦
/𝛾)(𝛽−])

which gives

𝛾 = √𝐿
⬦
(𝛽 − ]) > 0. (126)

So with this choice of 𝛾, we have Hopf bifurcation. Now
assume that (𝐹1, 𝐹2) is the vector field associated with (122);
that is,

𝐹
1
=

𝐿

𝛾

[(𝛽 − ]) (1 − 𝐿) − ]𝜇]

𝐹
2
= 𝛾𝑢 − (] + 𝜇) 𝐿 − (1 − 𝐿) 𝐿.

(127)

The stability of the bifurcating periodic orbit is determined
by the sign of the following number:

𝑎 = 𝛾 [𝐹
1

𝑢𝑢𝑢
+ 𝐹
1

𝑢𝐿𝐿
+ 𝐹
2

𝑢𝑢𝐿
+ 𝐹
2

𝐿𝐿𝐿
] + 𝐹
1

𝑢𝐿
(𝐹
1

𝑢𝑢
+ 𝐹
1

𝐿𝐿
)

− 𝐹
2

𝑢𝐿
(𝐹
2

𝑢𝑢
+ 𝐹
2

𝐿𝐿
) − 𝐹
1

𝑢𝑢
𝐹
2

𝑢𝑢
+ 𝐹
1

𝐿𝐿
𝐹
2

𝐿𝐿
.

(128)

Now we calculate these partial derivatives:

𝐹
1

𝑢𝑢𝑢
= 0, 𝐹

1

𝑢𝐿𝐿
= 0, 𝐹

2

𝑢𝑢𝐿
= 0, 𝐹

2

𝐿𝐿𝐿
= 0

𝐹
1

𝑢𝐿
= 0, 𝐹

2

𝑢𝐿
= 0, 𝐹

1

𝑢𝑢
= 0

𝐹
1

𝐿
=

1

𝛾

(𝛽 − ]) (1 − 𝐿) − ]𝜇 +

𝐿

𝛾

[− (𝛽 − ])]

󳨐⇒ 𝐹
1

𝐿𝐿
= −

1

𝛾

(𝛽 − ]) −
1

𝛾

(𝛽 − ]) = −

2

𝛾

(𝛽 − ])

󳨐⇒ 𝐹
2

𝐿
= − (] + 𝜇) − (1 − 2𝐿)

󳨐⇒ 𝐹
2

𝐿𝐿
= 2.

(129)

So by substituting these values we get

𝑎 = −

4

𝛾

(𝛽 − ]) . (130)

Since 𝑎 < 0, so the bifurcating periodic orbits are asymp-
totically stable; that is, we have the case of supercritical
bifurcation.

6. Discussion

In this paper, we have introduced and analyzed a model of
disease based amphibian decline. We found basic reproduc-
tion number R

0
, which guarantees the extinction of disease

population in the presence of disease as shown in Figure 1.
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Figure 1: This figure shows the time series of model (1) whenR
0
<

1. It is clear that all the population will extinct in this case. The
parameters used are 𝛽 = 0.002; 𝜇 = 0.05; ] = 0.02; 𝜌 = 0.1; 𝜎 =

0.001; 𝛼 = 0.01.
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Figure 2:The case ofR
0
> 1. It is clear that, under certain parame-

ter values, only larvae and susceptible population will survive while
the infected population will be extinct. All parameter values are the
same except 𝛽 = 0.208.

We proved that only the disease-free steady state (0, 0, 0)

is stable and the stability of the other two steady states
is conditional and depends on some other environmental
factors whenever R

0
> 1. We also have shown that not

only isR
0
the sufficient condition for the survival of infected

population but also for the case when R
0
> 1 disease may

or may not persist depending on certain constraints (see
Figures 1, 2, and 3). In our model we also have considered
a small population size of 𝐿. The large population case will be
relatively easy to handle in terms of the function 𝜋(𝐿). In this
case, since 𝜋(𝐿) is decreasing, therefore for large population
size 𝜋(𝐿∗) ≈ 0 in (24) and this will take the form

𝐿
∗
=

𝛽

𝜎𝜇

(] + 𝛼 + 𝜌) =

𝛽

𝜇

𝑆
∗
. (131)

This is the case when we have large number of suscepti-
bles.
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Figure 3: Phase portrait of 𝐿 versus 𝑆. The existence of a periodic
solution for model (1) is evident. Parameters values are the same as
of Figure 2.

Further, in our model, we just consider the simple case
when only the larvae in stage 𝐿 are subject to intrastage
competition. A future direction for this model is to consider
a rather more complicated case when both secure larvae 𝐿

and exposed larvae 𝑆 will compete for the resources. In this
case, the term 𝜋(𝐿)𝐿 will be replaced by 𝜋(𝐿, 𝑆)𝐿, which may
cause some oscillatory effects due to the density dependent
development rate for both 𝐿 and 𝑆.
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