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By using the concept of differential equations with piecewise constant argument of generalized type, a model of stochastic cellular
neural networks with piecewise constant argument is developed. Sufficient conditions are obtained for the existence and uniqueness
of the equilibrium point for the addressed neural networks. 𝑝th moment exponential stability is investigated bymeans of Lyapunov
functional, stochastic analysis, and inequality technique. The results in this paper improve and generalize some of the previous
ones. An example with numerical simulations is given to illustrate our results.

1. Introduction

Since Chua and Yang introduced cellular neural networks
(CNNs) [1, 2] in 1988, delayed cellular neural networks
(DCNNs) were proposed by Chua and Roska [3] in 1990; the
dynamics of CNNs and DCNNs have received great attention
due to their wide applications in classification of patterns,
associative memories, optimization problems, and so forth.
As is well known, such applications depend on the existence
of an equilibrium point and its stability. Up to now, many
results on stability of delayed neural networks have been
developed [3–25].

In real nervous systems, there aremany stochastic pertur-
bations that affect the stability of neural networks.The results
in [26] suggested that one neural network could be stabi-
lized or destabilized by certain stochastic inputs. It implies
that the stability analysis of stochastic neural networks has
primary significance in the design and applications of neural
networks, such as [13–26], but only fewworks have been done
on the𝑝thmoment exponentially stable for stochastic cellular
neural networks [22–25].

The theory of differential equations with piecewise con-
stant argument was initiated in Cooke and Wiener [27] and
Shah and Wiener [28]. These equations represent a hybrid of
continuous and discrete dynamical systems and combine the
properties of both the differential and difference equations. It

is well known that the reduction of differential equations with
piecewise constant argument to discrete equations has been
the main and possibly a unique way of stability analysis for
these equations [27–32]. Particularly, one cannot investigate
the problem of stability completely, as only elements of a
countable set are allowed to be discussed for initial moments.
By introducing arbitrary piecewise constant functions as
arguments, the concept of differential equations with a
piecewise constant argument has been generalized in [12, 33–
38], where an integral representation formula was proposed
as another approach to meet the challenges discussed above.

To the best of our knowledge, the equations with piece-
wise constant arguments were not considered as models
of neural networks, except possibly in [12, 36–38]. In [12],
the authors assume CNNs may “memorize” values of the
phase variable at certain moments of time to utilize the
values during middle process till the next moment. Thus,
they arrive at differential equations with a piecewise constant
argument.Obviously, the distances between the “memorized”
momentsmay be very variative. Consequently, the concept of
generalized type of piecewise constant argument is fruitful.
But these systems are deterministic; the dynamical behavior
of stochastic neural networks with piecewise constant argu-
ments has never been tackled.

Motivated by the discussion above, our paper attempts to
fill the gap by considering stochastic cellular neural networks
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with piecewise constant arguments. In this paper, criteria
on the 𝑝th moment exponential stability of equilibrium
point can be derived by constructing a suitable Lyapunov
functional; the results obtained in this paper generalize and
improve some of the existing results in [12, 38].

The remainder of this paper is organized as follows. In
Section 2, we introduce some notations and assumptions. In
Section 3, a sufficient condition for the existence and unique-
ness of the solution is obtained. In Section 4, we establish
our main results on 𝑝th moment exponentially stable. A
numerical example is given in Section 5 to demonstrate the
theoretical results of this paper. Finally, some conclusions are
given in Section 6.

2. Preliminaries

In this paper, let R+ = [0,∞), L𝑝(R+,R𝑛) be the family of
R𝑛-valued F

𝑡
-adapted process {𝑓(𝑡)}

𝑡≥0
such that, for every

𝑇 > 0, ∫𝑇
0
|𝑓(𝑡)|
𝑝
𝑑𝑡 < ∞, M𝑝([𝑡

0
,∞),R𝑛) be the family of

R𝑛-valuedF
𝑡
-adapted process {𝑓(𝑡)}

𝑡≥𝑡0

such that, for every
𝑇 > 𝑡
0
, 𝐸∫𝑇
𝑡0

|𝑓(𝑡)|
𝑝
𝑑𝑡 < ∞. N = {0, 1, 2, . . .}, R𝑛 denotes the

𝑛-dimensional real space, 𝑛 ∈ N.Wefix real-valued sequences
𝜃
𝑖
such that 0 = 𝜃

0
< 𝜃
1
< ⋅ ⋅ ⋅ < 𝜃

𝑖
< 𝜃
𝑖+1

< ⋅ ⋅ ⋅ with 𝜃
𝑖
→ ∞

as 𝑖 → ∞.
We study stochastic cellular neural networks with piece-

wise constant arguments described by the differential equa-
tions:

𝑑𝑥
𝑖
(𝑡) = [

[

−𝑎
𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑡))) + 𝐼

𝑖

]

]

𝑑𝑡

+

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝛽 (𝑡))) 𝑑𝑤

𝑙
(𝑡) ,

𝑖 ∈ Λ = {1, 2, . . . , 𝑛} .

(1)

If 𝑡 ∈ [𝜃
𝑘
, 𝜃
𝑘+1

), 𝛽(𝑡) = 𝜃
𝑘
, 𝑘 ∈ N. 𝑛 corresponds to

the number of units in a neural network, 𝑥
𝑖
(𝑡) stands for

the potential (or voltage) of cell 𝑖 at time 𝑡, 𝑓
𝑗
(⋅), 𝑔
𝑗
(⋅) are

activation functions, 𝑎
𝑖
> 0 denotes the rate with which

cell 𝑖 resets its potential to the resting state when isolated
from the other cells and inputs, and 𝑏

𝑖𝑗
and 𝑐
𝑖𝑗
denote the

strengths of connectivity between cells 𝑖 and 𝑗 at times 𝑡
and 𝛽(𝑡), respectively. 𝐼

𝑖
denotes the external bias on the 𝑖th

unit. Moreover, 𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑛
(𝑡))
𝑇 is 𝑛-dimensional

Brownian motion defined on a complete probability space
(Ω,F, 𝑃)with a natural filtration {F

𝑡
}
𝑡≥0

generated by {𝑤(𝑠) :
0 ≤ 𝑠 ≤ 𝑡}, where we associate Ω with the canonical
space generated by 𝑤(𝑡), and denote by F the associated 𝜎-
algebra generated by 𝑤(𝑡) with the probability measure 𝑃.
Let 𝐿𝑝(Ω,R𝑛) be the family of R𝑛-valued random variables
𝜉with 𝐸|𝜉|𝑝 < ∞, 𝜎(𝑡, 𝑥, 𝑦) = (𝜎

𝑖𝑙
(𝑡, 𝑥
𝑖
, 𝑦
𝑖
))
𝑛×𝑛

∈ R𝑛×𝑛 and let
𝜎
𝑖
(𝑡, 𝑥
𝑖
, 𝑦
𝑖
) be the 𝑖th row vector of 𝜎(𝑡, 𝑥, 𝑦).

Throughout this paper, the following standard hypotheses
are needed.

(H1) Functions 𝑓
𝑗
, 𝑔
𝑗
are Lipschitz-continuous on R with

Lipschitz constants 𝐿𝑓
𝑗
> 0, 𝐿𝑔

𝑗
> 0, respectively. That

is,
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿
𝑓

𝑗
|𝑢 − V| ,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿
𝑔

𝑗
|𝑢 − V| ,

(2)

for all 𝑢, V ∈ R, 𝑖 ∈ Λ.
(H2) There exists a positive number 𝜃 such that 𝜃

𝑖+1
−𝜃
𝑖
≤ 𝜃,

𝑖 ∈ N.
(H3) Assume that 𝑓(0) = 0, 𝑔(0) = 0, 𝜎(𝑡, 0, 0) = 0.
(H4) There exist nonnegative constants 𝑒

𝑖
, 𝑙
𝑖
such that

[𝜎
𝑖
(𝑡, 𝑢
󸀠

, V󸀠) − 𝜎
𝑖
(𝑡, 𝑢, V)] [𝜎

𝑖
(𝑡, 𝑢
󸀠

, V󸀠) − 𝜎
𝑖
(𝑡, 𝑢, V)]

𝑇

≤ 𝑒
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

− 𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑙
𝑖

󵄨󵄨󵄨󵄨󵄨
V󸀠 − V

󵄨󵄨󵄨󵄨󵄨

2

,

(3)

for all 𝑢, V, 𝑢󸀠, V󸀠 ∈ R, 𝑖 ∈ Λ.

In the following, for further study, we give the following
definitions and lemmas.

‖𝑥‖ denotes a vector norm defined by

‖𝑥‖ = (

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖(𝑡)
󵄨󵄨󵄨󵄨
𝑝

)

1/𝑝

. (4)

Definition 1 (see [26]). The equilibrium point 𝑥∗ = (𝑥
∗

1
, 𝑥
∗

2
,

. . . , 𝑥
∗

𝑛
)
𝑇 of system (1) is said to be the 𝑝th moment exponen-

tially stable if there exist 𝜆 > 0 and𝑀 ≥ 1 such that ∀𝑡 ≥ 𝑡
0
,

𝐸
󵄩󵄩󵄩󵄩𝑥(𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩
𝑝

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩
𝑝

𝑒
−𝜆(𝑡−𝑡0), (5)

where 𝑥(𝑡) is a solution of system (1) with initial value 𝑥(𝑡
0
) =

𝑥
0
∈ R𝑛.
In such a case,

lim sup
𝑡→∞

1

𝑡
ln𝐸 (󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥

∗󵄩󵄩󵄩󵄩
𝑝

) ≤ −𝜆. (6)

The right hand of (6) is commonly known as the𝑝thmoment
Lyapunov exponent of this solution.

When 𝑝 = 2, it is usually said to be exponentially stable
in mean square.

Lemma 2 (see [26], (Burkholder-Davis-Gundy inequality)).
Let 𝑔 ∈ L2(R+,R𝑛). Define, for 𝑡 ≥ 0,

𝑥 (𝑡) = ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑤 (𝑠) , 𝐴 (𝑡) = ∫

𝑡

0

|𝑔(𝑡)|
2

𝑑𝑠. (7)

Then, for every 𝑝 > 0, there exist universal positive constants
𝐶
𝑝
(depending only on 𝑝), such that

𝐸( sup
0≤𝑠≤𝑡

|𝑥(𝑠)|
𝑝

) ≤ 𝐶
𝑝
𝐸|𝐴(𝑡)|

𝑝/2

, (8)

for all 𝑡 ≥ 0.
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In particular, one may take

if 0 < 𝑝 < 2, 𝐶
𝑝
= (32/𝑝)

𝑝/2,

if 𝑝 = 2, 𝐶
𝑝
= 4,

if 𝑝 > 2,𝐶
𝑝
= [𝑝
𝑃+1

/2(𝑝 − 1)
𝑝−1

]
𝑝/2.

Lemma 3 (see [39]). If 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑝) denote 𝑝 nonnega-

tive real numbers, then

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑝
≤
𝑎
𝑝

1
+ 𝑎
𝑝

2
+ ⋅ ⋅ ⋅ + 𝑎

𝑝

𝑝

𝑝
, (9)

where 𝑝 ≥ 1 denotes an integer.
A particular form of (9) is, namely,

𝑎
𝑝−1

1
𝑎
2
≤
(𝑝 − 1) 𝑎

𝑝

1

𝑝
+
𝑎
𝑝

2

𝑝
, 𝑓𝑜𝑟 𝑝 = 1, 2, 3, . . . . (10)

Lemma 4 (see [39]). Assuming that there exists constant 𝑎
𝑘
≥

0, 𝑘 = 1, 2, . . . , 𝑛, if 𝑝 > 1, then the following inequality holds:

(

𝑛

∑

𝑘=1

𝑎
𝑘
)

𝑝

≤ 𝑛
𝑝−1

𝑛

∑

𝑘=1

𝑎
𝑝

𝑘
. (11)

3. Existence and Uniqueness of Solutions

In this section, we will study the existence and uniqueness of
the equilibrium point of neural networks (1).

Theorem 5. Assume that (H1)–(H4) are fulfilled. Then, for
every (𝑡

0
, 𝑥
0
) ∈ R+ × R𝑛, there exists a unique solution

𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
), 𝑡 ≥ 𝑡

0
of (1) such that 𝑥(𝑡

0
) = 𝑥

0 and
𝑥(𝑡) ∈ M𝑝([𝑡

0
,∞);R𝑛); 𝑥

𝑖
(𝑡) is a solution of the following

integral equation:

𝑥
𝑖
(𝑡) = 𝑥

0

𝑖
+ ∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑠))) + 𝐼

𝑖

]

]

𝑑𝑠

+ ∫

𝑡

𝑡0

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑠, 𝑥
𝑖
(𝑠) , 𝑥
𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠) .

(12)

Proof. Existence. Fix 𝑡
0
∈ R+; then there exists 𝑘 ∈ N, such

that 𝜃
𝑘
≤ 𝑡
0
< 𝜃
𝑘+1

. Without loss of generality, we assume
that 𝜃
𝑘
≤ 𝑡
0
≤ 𝑡 ≤ 𝜃

𝑘+1
. We will prove that, for every (𝑡

0
, 𝑥
0
) ∈

[𝜃
𝑘
, 𝜃
𝑘+1

) ×R𝑛, there exists a solution 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
) of (1)

such that 𝑥(𝑡
0
) = 𝑥
0, 𝑡 ≥ 𝑡

0
.

For each 𝑚 = 1, 2, . . ., set 𝑥0(𝑡) = 𝑥
0 and define, by the

Picard iterations,

𝑥
𝑚

𝑖
(𝑡) = 𝑥

0

𝑖
+ ∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
𝑚−1

𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑚−1

𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑚−1

𝑗
(𝛽 (𝑠))) + 𝐼

𝑖

]

]

𝑑𝑠

+ ∫

𝑡

𝑡0

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑠, 𝑥
𝑚−1

𝑖
(𝑠) , 𝑥
𝑚−1

𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠) .

(13)

Obviously, 𝑥0(⋅) ∈ M𝑝([𝜃
𝑘
, 𝜃
𝑘+1

];R𝑛). Moreover, for 𝑚 ≥ 1,
it is easy to see by induction that 𝑥𝑚(⋅) ∈ M𝑝([𝜃

𝑘
, 𝜃
𝑘+1

];R𝑛).
For simpleness, we let

𝜁 = max
1≤𝑖≤𝑛

(𝑎
𝑖
+

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑖
)) ,

𝑒 = max
1≤𝑖≤𝑛

(𝑒
𝑖
) , 𝑙 = max

1≤𝑖≤𝑛

(𝑙
𝑖
) .

(14)

Then

𝐸( sup
𝑡0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑥
𝑚

(𝑠)
󵄩󵄩󵄩󵄩
𝑝

)

= 𝐸[

[

sup
𝑡0≤𝑠≤𝑡

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
0

𝑖
+ ∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
𝑚−1

𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑚−1

𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑚−1

𝑗
(𝛽 (𝑠))) + 𝐼

𝑖

]

]

𝑑𝑠

+ ∫

𝑡

𝑡0

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑠, 𝑥
𝑚−1

𝑖
(𝑠) ,

𝑥
𝑚−1

𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

]

]

≤ 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

+ (3𝜃)
𝑝−1

×

𝑛

∑

𝑖=1

𝐸∫

𝑡

𝑡0

((𝑎
𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖
)
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚−1

𝑖
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚−1

𝑖
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨
+ 𝐼
𝑖
)

𝑝

𝑑𝑠

+ 3
𝑝−1

𝐶
𝑝
𝐸

×

𝑛

∑

𝑖=1

(∫

𝑡

𝑡0

(𝑒
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚−1

𝑖
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑙
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚−1

𝑖
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨

2

))

𝑝/2

≤ 𝐶
1
+ 𝐶
2
∫

𝑡

𝑡0

𝐸( sup
𝑡0≤𝑟≤𝑠

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚−1

(𝑟)
󵄩󵄩󵄩󵄩󵄩

𝑝

)𝑑𝑠,

(15)
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where

𝐶
1
= 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

+ (9𝜃)
𝑝−1

𝜃

𝑛

∑

𝑖=1

𝐼
𝑝

𝑖
,

𝐶
2
= 2𝜁
𝑝

(9𝜃)
𝑝−1

+ 3
𝑝−1

𝐶
𝑝
(2𝜃)
𝑝/2−1

(𝑒
𝑝/2

+ 𝑙
𝑝/2

) .

(16)

For any𝐾 ≥ 1,

max
1≤𝑚≤𝐾

𝐸( sup
𝑡0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑥
𝑚

(𝑠)
󵄩󵄩󵄩󵄩
𝑝

)

≤ 𝐶
1
+ 𝐶
2
∫

𝑡

𝑡0

max
1≤𝑚≤𝐾

𝐸( sup
𝑡0≤𝑟≤𝑠

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚−1

(𝑟)
󵄩󵄩󵄩󵄩󵄩

𝑝

)𝑑𝑠

≤ 𝐶
1
+ 𝐶
2
𝜃𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

+ 𝐶
2
∫

𝑡

𝑡0

max
1≤𝑚≤𝐾

𝐸( sup
𝑡0≤𝑟≤𝑠

󵄩󵄩󵄩󵄩𝑥
𝑚

(𝑟)
󵄩󵄩󵄩󵄩
𝑝

)𝑑𝑠

= 𝐶
3
+ 𝐶
2
∫

𝑡

𝑡0

max
1≤𝑚≤𝐾

𝐸( sup
𝑡0≤𝑟≤𝑠

󵄩󵄩󵄩󵄩𝑥
𝑚

(𝑟)
󵄩󵄩󵄩󵄩
𝑝

)𝑑𝑠,

(17)

where 𝐶
3
= 𝐶
1
+ 𝐶
2
𝜃𝐸‖𝑥
0
‖
𝑝.

The Gronwall inequality implies

max
1≤𝑚≤𝐾

𝐸( sup
𝑡0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑥
𝑚

(𝑠)
󵄩󵄩󵄩󵄩
𝑝

) ≤ 𝐶
3
𝑒
𝐶2(𝑡−𝑡0) ≤ 𝐶

3
𝑒
𝐶2𝜃. (18)

Since𝐾 is arbitrary, for 𝜃
𝑘
≤ 𝑡
0
≤ 𝑡 ≤ 𝜃

𝑘+1
, we must have

𝐸( sup
𝑡0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑥
𝑚

(𝑠)
󵄩󵄩󵄩󵄩
𝑝

) ≤ 𝐶
3
𝑒
𝐶2𝜃. (19)

Therefore {𝑥𝑚(𝑡)} ∈ M𝑝([𝜃
𝑘
, 𝜃
𝑘+1

];R𝑛).
Now we claim that, for all𝑚 ≥ 0,

𝐸( sup
𝜃𝑘≤𝑡0≤𝑠<𝑡

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚+1

(𝑠) − 𝑥
𝑚

(𝑠)
󵄩󵄩󵄩󵄩󵄩

𝑝

) ≤
𝐶[𝑀(𝑡 − 𝜃

𝑘
)]
𝑚

𝑚!
, (20)

where𝑀 = 2𝜁
𝑝
(4𝜃)
𝑝−1

+ 2
𝑝−1

𝐶
𝑝
(2𝜃)
𝑝/2−1

(𝑒
𝑝/2

+ 𝑙
𝑝/2
) and 𝐶

will be defined below.

Firstly, we compute

𝐸( sup
𝑡0≤𝑠<𝑡

󵄩󵄩󵄩󵄩󵄩
𝑥
1

(𝑠) − 𝑥
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩

𝑝

)

≤ 2
𝑝−1

𝐸

𝑛

∑

𝑖=1

(∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
0

𝑖
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
0

𝑗
)

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
0

𝑗
) + 𝐼
𝑖

]

]

𝑑𝑠)

𝑝

+ 2
𝑝−1

𝐸

𝑛

∑

𝑖=1

( sup
𝑡0≤𝑠<𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑠

𝑡0

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑟, 𝑥
0

𝑖
, 𝑥
0

𝑖
) 𝑑𝑤
𝑙
(𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

≤ (2𝜃)
𝑝−1

𝐸

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
0

𝑖
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
0

𝑗
)

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
0

𝑗
) + 𝐼
𝑖

]

]

𝑝

𝑑𝑠

+ 2
𝑝−1

𝐶
𝑝
𝐸

𝑛

∑

𝑖=1

(∫

𝑡

𝑡0

(𝑒
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
0

𝑖

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑙
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
0

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑠)

𝑝/2

≤ (2𝜃)
𝑝−1

𝐸

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

[

[

(𝑎
𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑖
)
󵄨󵄨󵄨󵄨󵄨
𝑥
0

𝑖

󵄨󵄨󵄨󵄨󵄨
+ 𝐼
𝑖

]

]

𝑝

𝑑𝑠

+ 2
𝑝−1

𝐶
𝑝
((𝑒 + 𝑙) 𝜃)

𝑝/2

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

≤ (4𝜃)
𝑝−1

(𝜁
𝑝

𝜃𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

+ 𝜃

𝑛

∑

𝑖=1

𝐼
𝑝

𝑖
)

+ 2
𝑝−1

𝐶
𝑝
((𝑒 + 𝑙) 𝜃)

𝑝/2

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

= [(4𝜃)
𝑝−1

𝜁
𝑝

𝜃 + 2
𝑝−1

𝐶
𝑝
((𝑒 + 𝑙) 𝜃)

𝑝/2

] 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

+ (4𝜃)
𝑝−1

𝜃

𝑛

∑

𝑖=1

𝐼
𝑝

𝑖
:= 𝐶,

(21)

where Lemma 4 is used in the first inequality and Lemma 2
and Hölder inequality are used in the second inequality. So
(20) holds for𝑚 = 0.
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Next, assume (20) holds for𝑚 ≥ 0; then

𝐸( sup
𝜃𝑘≤𝑡0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚+2

(𝑠) − 𝑥
𝑚+1

(𝑠)
󵄩󵄩󵄩󵄩󵄩

𝑝

)

≤ (2𝜃)
𝑝−1

𝐸

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

[

[

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑖
(𝑠) − 𝑥

𝑚

𝑖
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑗
(𝑠) − 𝑥

𝑚

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑗
(𝛽 (𝑠))

−𝑥
𝑚

𝑗
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨
]

]

𝑝

𝑑𝑠

+ 2
𝑝−1

𝐸

×

𝑛

∑

𝑖=1

( sup
𝜃𝑘≤𝑡0≤𝑠≤𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑠

𝜃𝑘

𝑛

∑

𝑙=1

(𝜎
𝑖𝑙
(𝑟, 𝑥
𝑚+1

𝑖
(𝑟) , 𝑥
𝑚+1

𝑖
(𝛽 (𝑟)))

− 𝜎
𝑖𝑙
(𝑟, 𝑥
𝑚

𝑖
(𝑟) ,

𝑥
𝑚

𝑖
(𝛽 (𝑟)))) 𝑑𝑤

𝑙
(𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

≤ (4𝜃)
𝑝−1

𝐸

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

(𝜁
𝑝󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑖
(𝑠) − 𝑥

𝑚

𝑖
(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

+𝜁
𝑝 󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑖
(𝛽 (𝑠)) − 𝑥

𝑚

𝑖
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨

𝑝

) 𝑑𝑠

+ 2𝐶
𝑝
(8𝜃)
𝑝/2−1

𝐸

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

(𝑒
𝑝/2

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑖
(𝑠) − 𝑥

𝑚

𝑖
(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

) 𝑑𝑠

+ 2𝐶
𝑝
(8𝜃)
𝑝/2−1

𝐸

×

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

(𝑙
𝑝/2

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑚+1

𝑖
(𝛽 (𝑠)) − 𝑥

𝑚

𝑖
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨

𝑝

) 𝑑𝑠

≤ [2𝜁
𝑝

(4 (𝑡 − 𝜃
𝑘
))
𝑝−1

+ 2𝐶
𝑝
(8𝜃)
𝑝/2−1

(𝑒
𝑝/2

+ 𝑙
𝑝/2

)]

⋅ ∫

𝑡

𝜃𝑘

𝐸( sup
𝜃𝑘≤𝑟≤𝑠

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚+1

(𝑟) − 𝑥
𝑚

(𝑟)
󵄩󵄩󵄩󵄩󵄩

𝑝

)𝑑𝑠

≤ 𝑀∫

𝑡

𝜃𝑘

𝐶 [𝑀(𝑠 − 𝜃
𝑘
)]
𝑚

𝑚!
𝑑𝑠 ≤

𝐶[𝑀(𝑡 − 𝜃
𝑘
)]
𝑚+1

(𝑚 + 1)!
,

(22)

where𝑀 = 2𝜁
𝑝
(4𝜃)
𝑝−1

+ 2
𝑝−1

𝐶
𝑝
(2𝜃)
𝑝/2−1

(𝑒
𝑝/2

+ 𝑙
𝑝/2
).

That is, (20) holds for 𝑚 + 1. Hence, by induction, (20)
holds for all𝑚 ≥ 0.

One can see from (20) that, for every 𝑡, {𝑥𝑚(𝑡)} is a Cauchy
sequence in 𝐿𝑝. Hence we have 𝑥𝑚(𝑡) → 𝑥(𝑡) as𝑚 → ∞ in
𝐿
𝑝. Letting𝑚 → ∞ in (19) gives

𝐸( sup
𝑡0≤𝑠≤𝑡

‖𝑥 (𝑠)‖
𝑝

) ≤ 𝐶
3
𝑒
𝐶2𝜃. (23)

Therefore, 𝑥(𝑡) ∈ M𝑝([𝜃
𝑘
, 𝜃
𝑘+1

];R𝑛).
It remains to show that 𝑥(𝑡) is a solution of system (1)

satisfying (𝑡
0
, 𝑥
0
) ∈ [𝜃

𝑘
, 𝜃
𝑘+1

) ×R𝑛. Note that

𝐸

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑠))) + 𝐼

𝑖

]

]

𝑑𝑠

− ∫

𝑡

𝑡0

[

[

−𝑎
𝑖
𝑥
𝑚−1

𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑚−1

𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑚−1

𝑗
(𝛽 (𝑠))) + 𝐼

𝑖

]

]

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 2𝜃
𝑝−1

𝜁
𝑝

∫

𝑡

𝑡0

𝐸 sup
𝜃𝑘≤𝑟≤𝑠

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑟) − 𝑥

𝑚−1

(𝑟)
󵄩󵄩󵄩󵄩󵄩

𝑃

𝑑𝑠 󳨀→ 0,

𝑚 󳨀→ ∞,

𝐸

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑠, 𝑥
𝑖
(𝑠) , 𝑥
𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠)

− ∫

𝑡

𝑡0

𝑛

∑

𝑙=1

𝜎
𝑖𝑙
(𝑠, 𝑥
𝑚−1

𝑖
(𝑠) , 𝑥
𝑚−1

𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

󳨀→ 0, 𝑚 󳨀→ ∞.

(24)

Hence, we can let𝑚 → ∞ in (13), and (12) is derived. Again,
using the same argument, we can continue 𝑥(𝑡) from 𝑡 = 𝜃

𝑘+1

to 𝑡 = 𝜃
𝑘+2

. Hence, themathematical induction completes the
proof.

Uniqueness. Let 𝑥(𝑡) and 𝑥(𝑡) be the two solutions, 𝑖 ∈ Λ. By
noting

𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

= ∫

𝑡

𝑡0

[

[

− 𝑎
𝑖
(𝑥
𝑖
(𝑠) − 𝑥

𝑖
(𝑠))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑠))) − 𝑔

𝑗
(𝑥
𝑗
(𝛽 (𝑠))))]

]

𝑑𝑠
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+ ∫

𝑡

𝑡0

𝑛

∑

𝑙=1

(𝜎
𝑖𝑙
(𝑠, 𝑥
𝑖
(𝑠) , 𝑥
𝑖
(𝛽 (𝑠)))

−𝜎
𝑖𝑙
(𝑠, 𝑥
𝑖
(𝑠) , 𝑥
𝑖
(𝛽 (𝑠)))) 𝑑𝑤

𝑙
(𝑠) ,

(25)

we can easily show that

𝐸( sup
𝜃𝑘≤𝑡0≤𝑠≤𝑡

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
𝑝

)

≤ 𝑀∫

𝑡

𝜃𝑘

𝐸( sup
𝜃𝑘≤𝑟≤𝑠

‖𝑥(𝑟) − 𝑥(𝑟)‖
𝑝

)𝑑𝑠.

(26)

The Gronwall inequality then yields that

𝐸( sup
𝜃𝑘≤𝑡≤𝜃𝑘+1

‖𝑥 (𝑡) − 𝑥 (𝑡)‖
𝑝

) = 0. (27)

This implies that 𝑥(𝑡) = 𝑥(𝑡) for 𝜃
𝑘
≤ 𝑡
0
≤ 𝑡 ≤ 𝜃

𝑘+1
.

The uniqueness has been proved for 𝑡 ∈ [𝜃
𝑘
, 𝜃
𝑘+1

]. For
every 𝑇 > 𝑡

0
, we can prove the uniqueness by mathematical

induction on [𝑡
0
, 𝑇]. As the assumptions of the existence-and-

uniqueness theorem hold on every finite subinterval [𝑡
0
, 𝑇]

of [𝑡
0
,∞), then (1) has a unique solution 𝑥(𝑡) on the entire

interval [𝑡
0
,∞) (see [26]). Hence, the theorem is proved.

From the proof of Theorem 5, we easily obtain the
following theorem.

Theorem 6. Assume that (H1)–(H3) are fulfilled. Then, for
every (𝑡

0
, 𝑥
0
) ∈ R+ × R𝑛, there exists a unique solution 𝑥(𝑡) =

𝑥(𝑡, 𝑡
0
, 𝑥
0
) of the following system such that 𝑥(𝑡

0
) = 𝑥
0, 𝑡 ≥ 𝑡

0
:

𝑥̇
𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑡))) + 𝐼

𝑖
, 𝑖 ∈ Λ.

(28)

Remark 7. When the system (1) neglects stochastic pertur-
bations, it becomes the system (28) which is studied in [12,
38]. In order to obtain the existence and uniqueness, more
restrictions on coefficients are needed in [12, 38], whichmight
greatly restrict the application domain of the neural networks.
Clearly, our results in this paper contain the results given in
[12, 38], and the conditions are less restrictive compared with
[12, 38].

4. 𝑝th Moment Exponential Stability

In this section, we will establish some sufficient conditions
ensuring the 𝑝th moment exponential stability of the equi-
librium point 𝑥∗ of system (1).

Let 𝑃𝐶1,2([𝜃
𝑘
, 𝜃
𝑘+1

) × R𝑛;R+) denote the family of all
nonnegative functions 𝑉(𝑡, 𝑥) on [𝜃

𝑘
, 𝜃
𝑘+1

) × R𝑛 which are
continuous once differentiable in 𝑡 and twice differentiable in

𝑥. If 𝑉(𝑡, 𝑥) ∈ 𝑃𝐶
1,2
([𝜃
𝑘
, 𝜃
𝑘+1

) × R𝑛;R+), define an operator
L𝑉 associated with (1) as

L𝑉 (𝑡, 𝑥) = 𝑉
𝑡
(𝑡, 𝑥)

+

𝑛

∑

𝑖=1

𝑉
𝑥𝑖
(𝑡, 𝑥) [

[

−𝑎
𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑡))) + 𝐼

𝑖

]

]

+
1

2
trace [𝜎𝑇𝑉

𝑥𝑥
(𝑡, 𝑥) 𝜎] ,

(29)

where

𝑉
𝑡
(𝑡, 𝑥) =

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
,

𝑉
𝑥𝑖
(𝑡, 𝑥) =

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖

,

𝑉
𝑥𝑥
(𝑡, 𝑥) = (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(30)

Let 𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗; then (1) can be written by

𝑑𝑦
𝑖
(𝑡) = [

[

−𝑎
𝑖
𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝛽 (𝑡)))]

]

𝑑𝑡

+

𝑛

∑

𝑙=1

𝜎̃
𝑖𝑙
(𝑡, 𝑦
𝑖
(𝑡) , 𝑦
𝑖
(𝛽 (𝑡))) 𝑑𝑤

𝑙
(𝑡) ,

(31)

where

𝑓
𝑗
(𝑦
𝑗
(𝑡)) = 𝑓

𝑗
(𝑦
𝑗
(𝑡) + 𝑥

∗

𝑗
) − 𝑓
𝑗
(𝑥
∗

𝑗
) ,

𝑔
𝑗
(𝑦
𝑗
(𝛽 (𝑡))) = 𝑔

𝑗
(𝑦
𝑗
(𝛽 (𝑡)) + 𝑥

∗

𝑗
) − 𝑔
𝑗
(𝑥
∗

𝑗
) ,

𝜎̃
𝑖𝑗
(𝑡, 𝑦
𝑖
(𝑡) , 𝑦
𝑖
(𝛽 (𝑡)))

= 𝜎
𝑖𝑗
(𝑡, 𝑦
𝑖
(𝑡) + 𝑥

∗

𝑖
, 𝑦
𝑖
(𝛽 (𝑡)) + 𝑥

∗

𝑖
)

− 𝜎
𝑖𝑗
(𝑡, 𝑥
∗

𝑖
, 𝑥
∗

𝑖
) .

(32)

It is clear that the stability of the zero solution of (31) is
equivalent to that of the equilibrium 𝑥

∗ of (1). Therefore, we
restrict our discussion to the stability of the zero solution of
(31).
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For simplicity of notation, we denote

𝑚
1
= max
1≤𝑖≤𝑛

[

[

𝑎
𝑖
(
𝑎
𝑖

𝑛
)

𝑝−1

+

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖
)
𝑝

]

]

,

𝑚
2
= max
1≤𝑖≤𝑛

[

[

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑖
)
𝑝

]

]

,

𝜆
1
= 𝑚
2
𝜃 (3𝑛𝜃)

𝑝−1

+ 𝜃𝑙𝐶
𝑝
(2𝜃𝑙)
𝑝/2−1

,

𝜆
2
= 3
𝑝−1

((3𝑛𝜃)
𝑝−1

𝑚
1
+ 𝐶
𝑝
(2𝜃)
𝑝/2−1

𝑒
𝑝/2

) .

(33)

In order to obtain our results, the following assumption
and Lemmas are needed:

(H5) 3𝑝−1(𝜆
1
+ 𝜆
2
(1 + 𝜆

1
)𝑒
𝜆2𝜃𝜃) < 1.

Lemma 8. Let 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 be a solution

of (31) and let (H1)–(H5) be satisfied. Then the following
inequality

𝐸
󵄩󵄩󵄩󵄩𝑦(𝛽(𝑡))

󵄩󵄩󵄩󵄩
𝑝

≤ 𝜇𝐸
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝 (34)

holds for all 𝑡 ∈ R+, where

𝜇 = 3
𝑝−1

(1 − 3
𝑝−1

(𝜆
1
+ 𝜆
2
(1 + 𝜆

1
) 𝑒
𝜆2𝜃𝜃))

−1

. (35)

Proof. Fix 𝑡 ∈ R+; there exists 𝑘 ∈ N, such that 𝑡 ∈ [𝜃
𝑘
, 𝜃
𝑘+1

).
Then from Lemma 4, it follows that

𝐸
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

= 𝐸(

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝

)

=

𝑛

∑

𝑖=1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑖
(𝜃
𝑘
) + ∫

𝑡

𝜃𝑘

(−𝑎
𝑖
𝑦
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝛽 (𝑠))))𝑑𝑠

+∫

𝑡

𝜃𝑘

𝑛

∑

𝑙=1

𝜎̃
𝑖𝑙
(𝑠, 𝑦
𝑖
(𝑠) , 𝑦
𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 3
𝑝−1

𝑛

∑

𝑖=1

𝐸[

[

󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝑘)
󵄨󵄨󵄨󵄨
𝑝

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝜃𝑘

𝑛

∑

𝑙=1

𝜎̃
𝑖𝑙
(𝑠, 𝑦
𝑖
(𝑠) , 𝑦
𝑖
(𝛽 (𝑠))) 𝑑𝑤

𝑙
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝜃𝑘

(−𝑎
𝑖
𝑦
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝛽(𝑠))))𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

]

]

= 3
𝑝−1

(𝐸
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

+ 𝐼
1
+ 𝐼
2
) .

(36)

Now we compute 𝐼
1
and 𝐼
2
:

𝐼
1
=

𝑛

∑

𝑖=1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝜃𝑘

(−𝑎
𝑖
𝑦
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝛽 (𝑠))))𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤

𝑛

∑

𝑖=1

𝐸(∫

𝑡

𝜃𝑘

𝑎
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗
∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑗
∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

𝑝

≤ 3
𝑝−1

𝑛

∑

𝑖=1

𝐸[

[

(∫

𝑡

𝜃𝑘

𝑎
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

+ (

𝑛

∑

𝑗=1

|𝑏
𝑖𝑗
|𝐿
𝑓

𝑗
∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

𝑝

+(

𝑛

∑

𝑗=1

|𝑐
𝑖𝑗
|𝐿
𝑔

𝑗
∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

𝑝

]

]

= 3
𝑝−1

𝑛

∑

𝑖=1

[𝐼
11
+ 𝐼
12
+ 𝐼
13
] .

(37)
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The Hölder inequality yields

𝐼
11
= 𝐸(∫

𝑡

𝜃𝑘

𝑎
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

≤ 𝑎
𝑝

𝑖
𝜃
𝑝−1

𝐸∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠,

(38)

𝐼
12
= 𝐸(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗
∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

𝑝

≤ 𝑛
𝑝−1

𝐸[

[

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗
)
𝑝

(∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

𝑝

]

]

≤ 𝑛
𝑝−1

𝜃
𝑝−1

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗
)
𝑝

𝐸∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠,

(39)

𝐼
13
= 𝐸(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑗
∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝛽 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠)

𝑝

≤ 𝑛
𝑝−1

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑗
𝜃)
𝑝

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜃
𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑝

.

(40)

Substituting (38)–(40) into (37) yields that

𝐼
1
≤ (3𝑛𝜃)

𝑝−1

(𝑚
1
𝐸∫

𝑡

𝜃𝑘

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩
𝑝

𝑑𝑠 + 𝜃𝑚
2
𝐸
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

) ,

(41)

where 𝑚
1
= max

1≤𝑖≤𝑛
[𝑎
𝑖
(𝑎
𝑖
/𝑛)
𝑝−1

+ ∑
𝑛

𝑗=1
(|𝑏
𝑗𝑖
|𝐿
𝑓

𝑖
)
𝑝

], 𝑚
2
=

max
1≤𝑖≤𝑛

[∑
𝑛

𝑗=1
(|𝑐
𝑗𝑖
|𝐿
𝑔

𝑖
)
𝑝

].
On the other hand, Lemma 2 and (H3) yield

𝐼
2
= 𝐸(

𝑛

∑

𝑖=1

∫

𝑡

𝜃𝑘

𝑛

∑

𝑙=1

𝜎̃
𝑖𝑙
(𝑠, 𝑦
𝑖
(𝑠) , 𝑦
𝑖
(𝜃
𝑘
)) 𝑑𝑤
𝑙
(𝑠) |
𝑝

)

≤

𝑛

∑

𝑖=1

𝐶
𝑝
𝐸(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝜃𝑘

𝑛

∑

𝑙=1

𝜎̃
2

𝑖𝑙
(𝑠, 𝑦
𝑖
(𝑠) , 𝑦
𝑖
(𝜃
𝑘
)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝/2

)

≤ 𝐶
𝑝

𝑛

∑

𝑖=1

𝐸[∫

𝑡

𝜃𝑘

𝑒
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖(𝑠)
󵄨󵄨󵄨󵄨
2

𝑑𝑠 + 𝑙
𝑖
𝜃
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝑘)

󵄨󵄨󵄨󵄨
2

]

𝑝/2

≤ 𝐶
𝑝
2
𝑝/2−1

𝑛

∑

𝑖=1

𝐸[𝑒
𝑝/2

𝑖
𝜃
𝑝/2−1

∫

𝑡

𝜃𝑘

󵄨󵄨󵄨󵄨𝑦𝑖(𝑠)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠

+(𝑙
𝑖
𝜃)
𝑝/2󵄨󵄨󵄨󵄨𝑦𝑖(𝜃𝑘)

󵄨󵄨󵄨󵄨
𝑝

]

≤ 𝐶
𝑝
(2𝜃)
𝑝/2−1

[𝑒
𝑝/2

∫

𝑡

𝜃𝑘

𝐸
󵄩󵄩󵄩󵄩𝑦(𝑠)

󵄩󵄩󵄩󵄩
𝑝

𝑑𝑠

+𝜃𝑙
𝑝/2

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

] .

(42)

Substituting (41)-(42) into (36), we have

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
𝑝

≤ 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

+3
𝑝−1

(3𝑛𝜃)
𝑝−1

× (𝑚
1
𝐸∫

𝑡

𝜃𝑘

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩
𝑝

𝑑𝑠 + 𝜃𝑚
2
𝐸
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

)

+ 3
𝑝−1

𝐶
𝑝
(2𝜃)
𝑝/2−1

× [𝑒
𝑝/2

∫

𝑡

𝜃𝑘

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩
𝑝

𝑑𝑠 + 𝜃𝑙
𝑝/2

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

]

= 3
𝑝−1

(1 + 𝜆
1
) 𝐸

󵄩󵄩󵄩󵄩𝑦 (𝜃𝑘)
󵄩󵄩󵄩󵄩
𝑝

+ 𝜆
2
∫

𝑡

𝜃𝑘

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝑠)

󵄩󵄩󵄩󵄩
𝑝

𝑑𝑠,

(43)

where 𝜆
1

= 𝑚
2
𝜃(3𝑛𝜃)

𝑝−1

+ 𝜃𝑙𝐶
𝑝
(2𝜃𝑙)
𝑝/2−1, 𝜆

2
=

3
𝑝−1

((3𝑛𝜃)
𝑝−1

𝑚
1
+ 𝐶
𝑝
(2𝜃)
𝑝/2−1

𝑒
𝑝/2
).

By Gronwall inequality

𝐸
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

≤ 3
𝑝−1

(1 + 𝜆
1
) 𝑒
𝜆2𝜃𝐸

󵄩󵄩󵄩󵄩𝑦(𝜃𝑘)
󵄩󵄩󵄩󵄩
𝑝

. (44)

Furthermore, for 𝑡 ∈ [𝜃
𝑘
, 𝜃
𝑘+1

), we have

𝐸
󵄩󵄩󵄩󵄩𝑦(𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

≤ 3
𝑝−1

(𝐸
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

+ 𝜆
1
𝐸
󵄩󵄩󵄩󵄩𝑦(𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

)

+ 𝜆
2
∫

𝑡

𝜃𝑘

𝐸
󵄩󵄩󵄩󵄩𝑦(𝑠)

󵄩󵄩󵄩󵄩
𝑝

𝑑𝑠

≤ 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

+ 3
𝑝−1

𝜆
1
𝐸
󵄩󵄩󵄩󵄩𝑦(𝜃𝑘)

󵄩󵄩󵄩󵄩
𝑝

+ 𝜆
2
3
𝑝−1

(1 + 𝜆
1
) 𝑒
𝜆2𝜃𝐸

󵄩󵄩󵄩󵄩𝑦(𝜃𝑘)
󵄩󵄩󵄩󵄩
𝑝

𝜃.

(45)

Thus, it follows from condition (H5) that

𝐸
󵄩󵄩󵄩󵄩𝑦(𝛽(𝑡))

󵄩󵄩󵄩󵄩
𝑝

≤ 𝜇𝐸
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

. (46)

Therefore, (34) holds for 𝑡 ∈ [𝜃
𝑘
, 𝜃
𝑘+1

); the extension of (34)
for all 𝑡 ∈ R+ is obvious. This proves the theorem.

Lemma 9 (Mao [26]). Assume that there is a function
𝑉(𝑡, 𝑥) ∈ 𝑃𝐶

1,2
([𝑡
0
,∞) × R𝑛;R+) and positive constants 𝑐

1
,

𝑐
2
, and 𝑐

3
, such that

𝑐
1
‖𝑥‖
𝑝

≤ 𝑉 (𝑥, 𝑡) ≤ 𝑐
2
‖𝑥‖
𝑝

, (47)

L𝑉 ≤ −𝑐
3
𝑉 (𝑡, 𝑥) (48)

for all (𝑡, 𝑥) ∈ [𝑡
0
,∞) ×R𝑛. Then

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥(𝑡; 𝑡
0
, 𝑥
0

)
󵄩󵄩󵄩󵄩󵄩

𝑝

≤
𝑐
2

𝑐
1

𝑒
−𝑐3(𝑡−𝑡0)

󵄩󵄩󵄩󵄩󵄩
𝑥
0󵄩󵄩󵄩󵄩󵄩

𝑝

, 𝑡 ≥ 𝑡
0 (49)

for all 𝑥0 ∈ R𝑛.
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For convenience, we adopt the following notation:

𝑘
1
= min
1≤𝑖≤𝑛

{

{

{

𝑝𝑎
𝑖
− (𝑝 − 1)

𝑛

∑

𝑗=1

(𝐿
𝑓

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝐿
𝑔

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
)

−

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖
−
𝑝 (𝑝 − 1)

2
𝑒
𝑖

−
(𝑝 − 1) (𝑝 − 2)

2
𝑙
𝑖

}

}

}

> 0,

𝑘
2
= max
1≤𝑖≤𝑛

{

{

{

𝐿
𝑔

𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
+ (𝑝 − 1) 𝑙

𝑖

}

}

}

.

(50)

Theorem 10. Assume that (H1)–(H5) hold and, furthermore,
that the following inequality is satisfied:

𝑘
1
> 𝑘
2
𝜇. (51)

Then system (31) is the 𝑝th moment exponentially stable.

Proof. We define a Lyapunov function

𝑉 (𝑡, 𝑦 (𝑡)) =

𝑛

∑

𝑖=1

|𝑦
𝑖
(𝑡) |
𝑝

=
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

. (52)

Obviously, (47) is satisfied with 𝑐
1
= 𝑐
2
= 1. Now we prove

(48) holds.
For 𝑡 ̸= 𝜃

𝑖
, 𝑖 ∈ N, the operator L𝑉 with respect to (12) is

given by

L𝑉 = 𝑝

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝−1 sgn (𝑦

𝑖
(𝑡))

× [

[

−𝑎
𝑖
𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝛽 (𝑡)))]

]

+
𝑝 (𝑝 − 1)

2

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝−2

×

𝑚

∑

𝑙=1

𝜎̃
2

𝑖𝑙
(𝑡, 𝑦
𝑖
(𝑡) , 𝑦
𝑖
(𝛽 (𝑡)))

≤ −𝑝

𝑛

∑

𝑖=1

𝑎
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝

+ 𝑝

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝−1 󵄨󵄨󵄨󵄨󵄨

𝑦
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

+ 𝑝

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑗

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝−1 󵄨󵄨󵄨󵄨󵄨

𝑦
𝑗
(𝛽 (𝑡))

󵄨󵄨󵄨󵄨󵄨

+
𝑝 (𝑝 − 1)

2

𝑛

∑

𝑖=1

|𝑦
𝑖
(𝑡)|
𝑝−2

× (𝑒
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
2

+ 𝑙
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖 (𝛽 (𝑡))
󵄨󵄨󵄨󵄨
2

)

≤ −𝑝

𝑛

∑

𝑖=1

𝑎
𝑖
|𝑦
𝑖
(𝑡) |
𝑝

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑗
((𝑝 − 1)

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝

)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑗
((𝑝 − 1)

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝛽 (𝑡))

󵄨󵄨󵄨󵄨󵄨

𝑝

)

+
𝑝 (𝑝 − 1)

2

𝑛

∑

𝑖=1

𝑒
𝑖
|𝑦
𝑖
(𝑡)|
𝑝

+
(𝑝 − 1)

2

×

𝑛

∑

𝑖=1

𝑙
𝑖
((𝑝 − 2)

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨
𝑝

+ 2
󵄨󵄨󵄨󵄨𝑦𝑖 (𝛽 (𝑡))

󵄨󵄨󵄨󵄨
𝑝

)

= −

𝑛

∑

𝑖=1

[

[

𝑝𝑎
𝑖
− (𝑝 − 1)

𝑛

∑

𝑗=1

(𝐿
𝑓

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝐿
𝑔

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
)

−

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖
−
𝑝 (𝑝 − 1)

2
𝑒
𝑖

]

]

󵄨󵄨󵄨󵄨𝑦𝑖(𝑡)
󵄨󵄨󵄨󵄨
𝑝

−

𝑛

∑

𝑖=1

(𝑝 − 1) (𝑝 − 2)

2
𝑙
𝑖
|𝑦
𝑖
(𝑡)|
𝑝

+

𝑛

∑

𝑖=1

[

[

𝐿
𝑔

𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+ (𝑝 − 1) 𝑙

𝑖

]

]

󵄨󵄨󵄨󵄨𝑦𝑖(𝛽(𝑡))
󵄨󵄨󵄨󵄨
𝑝

≤ −𝑘
1

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩
𝑝

+ 𝑘
2

󵄩󵄩󵄩󵄩𝑦 (𝛽 (𝑡))
󵄩󵄩󵄩󵄩
𝑝

.

(53)

By using Lemma 8, we obtain

L𝑉 ≤ − (𝑘
1
− 𝑘
2
𝜇)
󵄩󵄩󵄩󵄩𝑦(𝑡)

󵄩󵄩󵄩󵄩
𝑝

. (54)

This, together with (51), we get that (48) is true. Now, define
𝛾 for convenience as follows:

𝛾 = 𝑘
1
− 𝑘
2
𝜇 > 0. (55)

By Lemma 9, the equilibrium of (31) is the 𝑝th moment
exponentially stable and the𝑝thmoment Lyapunov exponent
should not be greater than −𝛾.
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Theorem 11 (see [12]). Suppose that (H1)–(H3) and (H5) hold
true. Assume, furthermore, that the following inequality is
satisfied:

min
1≤𝑖≤𝑛

{

{

{

𝑎
𝑖
−

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖

}

}

}

> max
1≤𝑖≤𝑛

{

{

{

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑖

}

}

}

𝜇, (56)

where

𝜇 = (1 − (𝜆
1
+ 𝜆
2
(1 + 𝜆

1
) 𝑒
𝜆2𝜃𝜃))

−1

,

𝜆
1
= max
1≤𝑖≤𝑛

{

{

{

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑔

𝑖

}

}

}

,

𝜆
2
= max
1≤𝑖≤𝑛

{

{

{

𝑎
𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑓

𝑖

}

}

}

;

(57)

then system (28) is globally exponentially stable.

Proof. Let 𝜎
𝑖𝑙
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝛽(𝑡))) = 0, 𝑖, 𝑙 ∈ Λ; the conclusion is

straightforward.

Remark 12. Theorem 10 generalizes the work of Akhmet et al.
[12] and the conditions in the theorem are easy to verify.

5. Illustrative Example

In the following, we will give an example to illustrate our
results.

Example 1. Consider the following model:

𝑑𝑥
𝑖
(𝑡) = [

[

−𝑎
𝑖
𝑥
𝑖
(𝑡) +

2

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝛽 (𝑡))) + 𝐼

𝑖

]

]

𝑑𝑡

+ 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝛽 (𝑡))) 𝑑𝑤 (𝑡) , 𝑖 = 1, 2.

(58)

Suppose the activation function is described by 𝑓
𝑖
(𝑥) =

tanh(𝑥), 𝑔
𝑖
(𝑥) = (1/2)[|𝑥 + 1| − |𝑥 − 1|].

Let 𝜃
𝑘
= 𝑘, when 𝑡 ∈ [𝜃

𝑘
, 𝜃
𝑘+1

), 𝛽(𝑡) = 𝜃
𝑘
. 𝑎
1
= 1.3 × 10

−2,
𝑎
2
= 1.2 × 10

−2, 𝑏
11
= 2 × 10

−3, 𝑏
21
= 3 × 10

−3, 𝑏
𝑖2
= 10
−3, 𝑖 =

1, 2. 𝑐
𝑖𝑗
= 2×10

−3, 𝑖, 𝑗 = 1, 2. 𝜎
1
= 2×10

−2
𝑥
1
(𝑡)+10

−2
𝑥
1
(𝛽(𝑡)),

𝜎
2
= 2 × 10

−2
𝑥
2
(𝑡) + 10

−2
𝑥
2
(𝛽(𝑡)).

It is easy to check that 𝜃 = 1, 𝐿𝑓
𝑖
= 𝐿
𝑔

𝑖
= 1, 𝑒

𝑖
= 𝑒 =

4 × 10
−4, 𝑙
𝑖
= 𝑙 = 10

−4, 𝑛 = 2.
When 𝑝 = 2, 𝐶

𝑝
= 4, we compute 𝑚

1
= 9.75 × 10

−5,
𝑚
2
= 8×10

−6, 𝜆
1
= 4.48×10

−4, 𝜆
2
= 6.555×10

−3, 𝜇 = 3.0648,
𝑘
1
= 1.36 × 10

−2, and 𝑘
2
= 4.1 × 10

−3.
It is obvious that 𝑘

1
= 1.36 × 10

−2
> 𝑘
2
𝜇 = 1.31 × 10

−2.
Thus all conditions of Theorem 10 in this paper are satisfied;
the equilibrium solution of (58) is exponentially stable in
mean square.

Remark 13. When 𝑡 ∈ [𝜃
𝑘
, 𝜃
𝑘+1

), let 𝛽(𝑡) = 𝑡 − 𝜏
𝑗
(𝑡) = 𝜃

𝑘
,

𝑗 = {1, 2, . . .}; then system (58) can be viewed as the system
(2) in [22].We can compute 𝜌[𝐶−1(𝑀𝑀

1
𝐾+𝑀𝑀

2
𝐾+𝑁𝑁

1
+

𝑁𝑁
2
)] = 4, where𝜌[𝐶−1(𝑀𝑀

1
𝐾+𝑀𝑀

2
𝐾+𝑁𝑁

1
+𝑁𝑁
2
)]was

defined in [22] and the condition 𝜌[𝐶−1(𝑀𝑀
1
𝐾 +𝑀𝑀

2
𝐾 +

𝑁𝑁
1
+ 𝑁𝑁

2
)] ≤ 1 is not satisfied. Hence results in [22] are

useless to judge the exponential stability of system (58).

6. Conclusion

This is the first time that stochastic cellular neural networks
with piecewise constant argument of generalized type are
considered. Sufficient conditions on existence, uniqueness,
and the 𝑝th moment exponential stability of the equilibrium
point are derived by applying stochastic analysis techniques
and some known inequalities. The obtained results could
be useful in the design and applications of cellular neural
networks. Furthermore, the method given in this paper
may be extended to study more complex systems, such as
stochastic neural networks with piecewise constant argument
and impulsive perturbations.
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[12] M. U. Akhmet, D. Aruğaslan, and E. Yılmaz, “Stability in
cellular neural networks with a piecewise constant argument,”
Journal of Computational and AppliedMathematics, vol. 233, no.
9, pp. 2365–2373, 2010.

[13] S. Wu, C. Li, X. Liao, and S. Duan, “Exponential stability of
impulsive discrete systems with time delay and applications in
stochastic neural networks: A Razumikhin approach,” Neuro-
computing, vol. 82, pp. 29–36, 2012.

[14] L. Chen, R. Wu, and D. Pan, “Mean square exponential stability
of impulsive stochastic fuzzy cellular neural networks with
distributed delays,” Expert Systems with Applications, vol. 38, no.
5, pp. 6294–6299, 2011.

[15] X. Li, “Existence and global exponential stability of periodic
solution for delayed neural networks with impulsive and
stochastic effects,” Neurocomputing, vol. 73, no. 4-6, pp. 749–
758, 2010.

[16] Y.-G. Kao, J.-F. Guo, C.-H. Wang, and X.-Q. Sun, “Delay-
dependent robust exponential stability of Markovian jump-
ing reaction-diffusion Cohen-Grossberg neural networks with
mixed delays,” Journal of the Franklin Institute, vol. 349, no. 6,
pp. 1972–1988, 2012.

[17] Y. Kao and C. Wang, “Global stability analysis for stochastic
coupled reaction-diffusion systems on networks,” Nonlinear
Analysis: Real World Applications, vol. 14, no. 3, pp. 1457–1465,
2013.

[18] G. Yang, Y. Kao, W. Li, and S. Xiqian, “Exponential stability of
impulsive stochastic fuzzy cellular neural networks with mixed
delays and reaction-diffusion terms,” Neural Computing and
Applications, vol. 23, no. 3-4, pp. 1109–1121, 2013.

[19] G. Yang, Y. Kao, and C. Wang, “Exponential stability and
periodicity of fuzzy delayed reaction-diffusion cellular neural
networks with impulsive effect,” Abstract and Applied Analysis,
vol. 2013, Article ID 645262, 9 pages, 2013.

[20] C. Wang, Y. Kao, and G. Yang, “Exponential stability of
impulsive stochastic fuzzy reaction-diffusion Cohen-Grossberg
neural networks with mixed delays,” Neurocomputing, vol. 89,
pp. 55–63, 2012.

[21] X. Li and X. Fu, “Synchronization of chaotic delayed neural
networks with impulsive and stochastic perturbations,” Com-
munications inNonlinear Science andNumerical Simulation, vol.
16, no. 2, pp. 885–894, 2011.

[22] Y. Sun and J. Cao, “𝑝th moment exponential stability of
stochastic recurrent neural networks with time-varying delays,”
Nonlinear Analysis: Real World Applications, vol. 8, no. 4, pp.
1171–1185, 2007.

[23] C. Huang, Y. He, L. Huang, and W. Zhu, “𝑝th moment stability
analysis of stochastic recurrent neural networks with time-
varying delays,” Information Sciences. An International Journal,
vol. 178, no. 9, pp. 2194–2203, 2008.

[24] X. Li, J. Zou, and E. Zhu, “𝑝th moment exponential stability
of impulsive stochastic neural networks with mixed delays,”
Mathematical Problems in Engineering, vol. 2012, Article ID
175934, 20 pages, 2012.

[25] X. Li, J. Zou, and E. Zhu, “The𝑝thmoment exponential stability
of stochastic cellular neural networks with impulses,” Advances
in Difference Equations, vol. 2013, article 6, 2013.

[26] X. Mao, Stochastic differential equations and their applications,
Horwood Publishing, Chichester, UK, 1997.

[27] K. L. Cooke and J.Wiener, “Retarded differential equations with
piecewise constant delays,” Journal of Mathematical Analysis
and Applications, vol. 99, no. 1, pp. 265–297, 1984.

[28] S. M. Shah and J. Wiener, “Advanced differential equations with
piecewise constant argument deviations,” International Journal
ofMathematics andMathematical Sciences, vol. 6, no. 4, pp. 671–
703, 1983.

[29] A. Cabada, J. B. Ferreiro, and J. J. Nieto, “Green’s function
and comparison principles for first order periodic differential
equations with piecewise constant arguments,” Journal of Math-
ematical Analysis and Applications, vol. 291, no. 2, pp. 690–697,
2004.

[30] N. V. Minh and T. T. Dat, “On the almost automorphy of
bounded solutions of differential equations with piecewise
constant argument,” Journal of Mathematical Analysis and
Applications, vol. 326, no. 1, pp. 165–178, 2007.

[31] Y. Muroya, “Persistence, contractivity and global stability in
logistic equations with piecewise constant delays,” Journal of
Mathematical Analysis andApplications, vol. 270, no. 2, pp. 602–
635, 2002.

[32] P. Yang, Y. Liu, and W. Ge, “Green’s function for second order
differential equations with piecewise constant arguments,”Non-
linear Analysis: Theory, Methods & Applications, vol. 64, no. 8,
pp. 1812–1830, 2006.

[33] M. U. Akhmet, “Integral manifolds of differential equations
with piecewise constant argument of generalized type,” Nonlin-
ear Analysis: Theory, Methods & Applications, vol. 66, no. 2, pp.
367–383, 2007.

[34] M.U.Akhmet, “Stability of differential equationswith piecewise
constant arguments of generalized type,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 68, no. 4, pp. 794–803,
2008.
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