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We study the existence of solutions and optimal controls for some fractional impulsive equations of order 1 < 𝛼 < 2. By means of
Gronwall’s inequality and Leray-Schauder’s fixed point theorem, the sufficient condition for the existence of solutions and optimal
controls is presented. Finally, an example is given to illustrate our main results.

1. Introduction

In this paper, we study some fractional evolution equation
with finite impulsive:

𝑐

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵 (𝑡) 𝑢 (𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼

𝑘
(𝑥 (𝑡

−

𝑘
)) , Δ𝑥

󸀠

(𝑡
𝑘
) = 𝐼

∗

𝑘
(𝑥 (𝑡

−

𝑘
)) ,

𝑘 = 1, 2, 3, . . . , 𝑚,

𝑥 (0) = 𝑥
0
, 𝑥

󸀠

(0) = 𝑥
1
,

(1)

where 𝑐

𝐷
𝛼

𝑡
is the standard Caputo fractional derivative of

order 𝛼, 𝑏 > 0, 1 < 𝛼 < 2, and𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a secto-
rial operator of type (𝑀, 𝜃, 𝛼, 𝜇) defined on a complex Banach
space 𝑋. Let 𝑓 : 𝐽 × 𝑋 → 𝑋 be a given function satisfying
some assumptions that will be specified later. The function
𝐼
𝑘
: 𝑋 → 𝑋 is continuous and 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
<

⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑇; Δ𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
), where

𝑥(𝑡
+

𝑘
) and 𝑥(𝑡

−

𝑘
) denote the right and the left limits of 𝑥(𝑡)

at 𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑛), and respectively, Δ𝑥󸀠(𝑡

𝑘
) has the

similarmeaning for𝑥󸀠(𝑡
𝑘
).The control function𝑢 is given in a

suitable admissible control set𝑈ad; 𝐵 is a linear operator from

a separable reflexive Banach space 𝑌 into 𝑋. The associated
cost functions to be minimized over the family of admissible
state control pairs (𝑥, 𝑢) are given by

J (𝑥, 𝑢) = ∫

𝐽

L (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡. (2)

For the last decades, fractional differential equations have
been receiving intensive attention because they provide an
excellent tool for the description of memory and hereditary
properties of variousmaterials and processes, such as physics,
mechanics, chemistry, and engineering. For more details on
fractional calculus theory, one can see the monographs of
Miller and Ross [1], Podlubny [2], and Kilbas et al. [3] and
the references therein.

Recently, impulsive differential equations have been
proved to be valuable tools in the modelling of many phe-
nomena in various fields of engineering, physics, and eco-
nomics. The reason for the interest in the study of them is
that the impulsive differential systems can be used to model
processes which are subjected to abrupt changes and which
cannot be described by the classical differential problem. For
example, Liu and Li [4] utilized the well-known fixed point
theorems to investigate the existence and uniqueness of solu-
tions for the nonlinear impulsive fractional differential equa-
tions. Shu and Wang [5] studied the existence of mild
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solutions for fractional differential equations with nonlocal
conditions of order 1 < 𝛼 < 2:

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) + ∫

𝑡

0

𝑞 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑢 (0) + 𝑚 (𝑢) = 𝑢
0
, 𝑢

󸀠

(0) + 𝑛 (𝑢) = 𝑢
1
∈ 𝑋,

(3)

where 𝐷𝛼
𝑡
is Caputo’s fractional derivative of order 1 < 𝛼 < 2

and 𝐴 is a sectorial operator of type (𝑀, 𝜃, 𝛼, 𝜇).
In [6], Dabas and Chauhan researched the existence and

uniqueness of mild solution which is expressed by Mittag-
Leffler functions for an impulsive neutral fractional integro-
differential equation with infinite delay:

𝑐

𝐷
𝛼

𝑡
[𝑥 (𝑡) + 𝑔 (𝑡, 𝑥

𝑡
)]

= 𝐴 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥
𝑡
)] + 𝐽

1−𝛼

𝑡
𝑓 (𝑡, 𝑥

𝑡
, 𝐵𝑥 (𝑡)) ,

𝑡 ∈ 𝐼 = [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥
0
= 𝜙 ∈ B

ℎ
,

(4)

where 𝑐

𝐷
𝛼 denotes the Caputo fractional derivative of order

0 < 𝛼 ≤ 1. Bazhlekova [7], Li and Peng [8] were concerned
with the controllability of nonlocal fractional differential
systems of order 1 < 𝛼 ≤ 2 in Banach spaces. Wang et al. [9]
discussed the new concept of solutions and existence results
for impulsive fractional evolution equations.

To the best of our knowledge, the system (1) is still
untreated in the literature and it is the motivation for the
present work. The rest of this paper is organized as follows.
In Section 2, some notations and preparations are given. In
Section 3, mainly some results of (1) are obtained. At last, an
example is given to demonstrate our results.

2. Preliminaries

In this section, we will give some definitions and preliminar-
ies which will be used in the paper.

Firstly, we will define 𝑃𝐶(𝐽, 𝑋) and 𝑃𝐶1(𝐽, 𝑋). The norm
of the space 𝑋 will be defined by ‖ ⋅ ‖

𝑋
; let 𝐶(𝐽,𝑋) denote

the Banach space of all 𝑋-value continuous functions from
𝐽 = [0, 𝑇] into 𝑋, the norm ‖ ⋅ ‖

𝑐
= sup{‖ ⋅ ‖

𝑋
}. Let another

Banach space 𝑃𝐶(𝐽, 𝑋) = {𝑥 : 𝐽 → 𝑋, 𝑥 ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑋),
𝑘 = 0, 1, 2, . . . , 𝑛, there exist 𝑥(𝑡−

𝑘
), 𝑥(𝑡+

𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

and 𝑥(𝑡
−

𝑘
) = 𝑥(𝑡

𝑘
)}; the norm ‖𝑥‖

𝑃𝐶
= max{sup ‖𝑥(𝑡 + 0)‖,

sup ‖𝑥(𝑡−0)‖}.𝑃𝐶1(𝐽, 𝑋) = {𝑥 : 𝐽 → 𝑋, 𝑥 ∈ 𝐶
1

((𝑡
𝑘
,𝑡
𝑘+1

], 𝑋),
𝑘 = 0, 1, 2, . . . , 𝑛, there exist 𝑥󸀠(𝑡+

𝑘
), 𝑥󸀠(𝑡−

𝑘
), 𝑘 = 1, 2, . . . , 𝑛, and

𝑥
󸀠

(𝑡
−

𝑘
) = 𝑥

󸀠

(𝑡
𝑘
)}, the norm ‖𝑥‖

𝑃𝐶
1 = sup{‖𝑥(𝑡)‖

𝑃𝐶
, ‖𝑥

󸀠

(𝑡)‖
𝑃𝐶

:

𝑡 ∈ 𝐽}. Obviously 𝑃𝐶(𝐽, 𝑋) and 𝑃𝐶1(𝐽, 𝑋) are Banach spaces.
We denote by 𝐿𝑝(𝐽, 𝑅) the Banach space of all Lebesgue

measurable functions from 𝐽 to 𝑅 with ||𝑓||
𝐿
𝑝
(𝐽,𝑅)

=

(∫
𝐽

|𝑓(𝑡)|
𝑝

𝑑𝑡)
1/𝑝.

Let us recall some known definitions of fractional calcu-
lus; for more details, see [1–3, 10].

Let 𝛼, 𝛽 > 0; then 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 − 1 < 𝛽 < 𝑛, and 𝑓 is a
suitable function.

Definition 1 (Riemann-Liouville fractional integral and deriv-
ative operators). The integral operator 𝐼

𝛼

𝑎
is defined on

𝐿
1
[𝑎, 𝑏] by

𝐼
𝛼

𝑎
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, (𝑎 ≤ 𝑥 ≤ 𝑏) . (5)

Thederivative operator is defined as𝐷𝛼
𝑎
𝑓(𝑥) = 𝐷

𝑛

𝑎
(𝐼
𝑛−𝛼

𝑎
)𝑓(𝑥),

where𝐷𝑛
𝑎
= 𝑑

𝑛

/𝑑𝑡
𝑛 and

𝐼
𝛼

𝑎
𝐼
𝛽

𝑎
𝑓 (𝑥) = 𝐼

𝛼+𝛽

𝑎
𝑓 (𝑥) . (6)

Definition 2. Caputo’s fractional derivative of 𝑓(𝑥) of order 𝛼
is defined as

𝑐

𝐷
𝛼

𝑎
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑡) 𝑑𝑡. (7)

If 𝑎 = 0, we can write the Caputo derivative of the function
𝑓(𝑡) ∈ 𝐶

𝑛

[0,∞), 𝑓 : [0,∞) → 𝑅 via the above Riemann-
Liouville fractional derivative as

𝑐

𝐷
𝛼

0
𝑓 (𝑥) =

𝐿

𝐷
𝛼

[𝑓 (𝑥) −

𝑛−1

∑

𝑘=0

𝑥
𝑘

𝑘!
𝑓
(𝑘)

(0)] . (8)

Definition 3 (see [11]). Let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a sectorial
operator of type (𝑀, 𝜃, 𝛼, 𝜇) if there exists 0 < 𝜃 < 𝜋/2,𝑀 >

0, 𝜇 ∈ 𝑅, such that the 𝛼-resolvent of 𝐴 exists outside the
sector:

𝜇 + 𝑆
𝜃
= {𝜇 + 𝜆 : 𝜆 ∈ 𝐶,

󵄨󵄨󵄨󵄨Arg (−𝜆)
󵄨󵄨󵄨󵄨 < 𝜃} ,

󵄩󵄩󵄩󵄩󵄩
(𝜆 − 𝐴)

−1
󵄩󵄩󵄩󵄩󵄩
≤

𝑀

𝜆 − 𝜇
, 𝜆 ∉ 𝑆

𝜃
.

(9)

Theorem 4. According to Lemma 2.6 in [4], one can get that
if 𝑢(𝑡) ∈ 𝑃𝐶2(𝐽, 𝑋), then

𝐼
𝑞 𝑐

𝐷
𝑞

𝑢 (𝑡)

=

{{{{{{

{{{{{{

{

𝑢 (𝑡) − 𝑡𝑢
󸀠

(0) − 𝑢 (0) , 𝑡 ∈ [0, 𝑡
1
] ,

𝑢 (𝑡) −

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑢 (𝑡

𝑖
))

−

𝑘

∑

𝑖=1

(𝑡 − 𝑡
𝑖
) 𝐼
∗

𝑖
(𝑢 (𝑡

𝑖
)) − 𝑡𝑢

󸀠

(0) − 𝑢 (0) , 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] .

(10)

Proof. If 𝑡 ∈ [0, 𝑡
1
], then

𝐼
𝑞 𝑐

𝐷
𝑞

𝑢 (𝑡)

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

1

Γ (2 − 𝑞)
∫

𝑠

0

(𝑠 − 𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏 𝑑𝑠

=
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡

0

𝑢
󸀠󸀠

(𝜏) ∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠 𝑑𝜏

= ∫

𝑡

0

𝑢
󸀠󸀠

(𝜏) (𝑡 − 𝜏) 𝑑𝜏 = 𝑢 (𝑡) − 𝑡𝑢
󸀠

(0) − 𝑢 (0) .

(11)
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If 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 ≥ 1, then

𝐼
𝑞 𝑐

𝐷
𝑞

𝑢 (𝑡)

=
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

∫

𝑠

0

(𝑠 − 𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏 𝑑𝑠

=
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
1

0

(𝑡 − 𝑠)
𝑞−1

∫

𝑠

0

(𝑠 − 𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏 𝑑𝑠

+

𝑘−1

∑

𝑖=1

1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

× ∫

𝑠

0

(𝑠 − 𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏 𝑑𝑠

+
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝑞−1

∫

𝑠

0

(𝑠 − 𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏 𝑑𝑠

=
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
1

0

(𝑡 − 𝑠)
𝑞−1

∫

𝑠

0

(𝑠 − 𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏 𝑑𝑠

+

𝑘−1

∑

𝑖=1

1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

×[

[

𝑖−1

∑

𝑗=0

∫

𝑡
𝑗+1

𝑡
𝑗

(𝑠−𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏+∫

𝑠

𝑡
𝑖

(𝑠−𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏]

]

𝑑𝑠

+
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝑞−1

× [

[

𝑘−1

∑

𝑗=0

∫

𝑡
𝑗+1

𝑡
𝑗

(𝑠−𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏+∫

𝑠

𝑡
𝑘

(𝑠−𝜏)
1−𝑞

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏]

]

𝑑𝑠

=
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
1

0

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏∫

𝑡
1

𝜏

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠

+

𝑘−1

∑

𝑖=1

𝑖−1

∑

𝑗=1

1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
𝑗+1

𝑡
𝑗

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏

× ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠

+

𝑘−1

∑

𝑖=1

1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
𝑖+1

𝑡
𝑖

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏

× ∫

𝑡
𝑖+1

𝜏

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠

+

𝑘−1

∑

𝑗=0

1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡
𝑗+1

𝑡
𝑗

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏

× ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠

+
1

Γ (𝑞) Γ (2 − 𝑞)
∫

𝑡

𝑡
𝑘

𝑢
󸀠󸀠

(𝜏) 𝑑𝜏∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠

= 𝑢 (𝑡) −

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑢 (𝑡

𝑖
)) −

𝑘

∑

𝑖=1

(𝑡 − 𝑡
𝑖
) 𝐼
∗

𝑖
(𝑢 (𝑡

𝑖
))

− 𝑡𝑢
󸀠

(0) − 𝑢 (0) ,

(12)
where

∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

(𝑠 − 𝜏)
1−𝑞

𝑑𝑠

= (𝑡 − 𝜏) ∫

1

0

(1 − 𝑧)
𝑞−1

𝑧
1−𝑞

𝑑𝑧

= (𝑡 − 𝜏) 𝐵 (2 − 𝑞, 𝑞) = (𝑡 − 𝜏)
Γ (2 − 𝑞) Γ (𝑞)

Γ (2 − 𝑞 + 𝑞)

= (𝑡 − 𝜏)
Γ (2 − 𝑞) Γ (𝑞)

Γ (2)
= (𝑡 − 𝜏) Γ (2 − 𝑞) Γ (𝑞) ;

(13)

with the help of the substitution 𝑠 = 𝑧(𝑡 − 𝜏) + 𝜏, the proof is
completed.

Lemma 5 (see [12]). Let 𝑥 ∈ 𝑃𝐶(𝐽, 𝑋) satisfy the following
inequality:

‖𝑥 (𝑡)‖ ≤ 𝑐
1
+ 𝑐

2
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

‖𝑥 (𝑠)‖ 𝑑𝑠 + ∑

0<𝑡
𝑘
<𝑡

ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 ,

(14)
where 𝑐

1
, 𝑐
2
, and ℎ

𝑘
≥ 0 are constants. Then

‖𝑥 (𝑡)‖ ≤ 𝑐
1
(1 + 𝐻

∗

𝐸
𝛽
(𝑐
2
Γ (𝛽) 𝑡

𝛽

))
𝑘

𝐸
𝛽
(𝑐
2
Γ (𝛽) 𝑡

𝛽

)

for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

] ,

(15)

where𝐻∗

= max{ℎ
𝑘
: 𝑘 = 1, 2, . . . , 𝑚}.

Theorem 6 (Hölder’s inequality). Assume that 𝑝 > 0, 𝑞 > 0,
and 1/𝑝 + 1/𝑞 = 1; if 𝑓 ∈ 𝐿

𝑝

(Ω) and 𝑔 ∈ 𝐿
𝑞

(Ω), then 𝑓 ⋅ 𝑔 ∈

𝐿
1

(Ω) and ‖𝑓𝑔‖
𝐿
1
(Ω)

≤ ‖𝑓‖
𝐿
𝑝
(Ω)
‖𝑔‖

𝐿
𝑞
(Ω)

.

Theorem 7 (Arzela-Ascoli theorem). If a sequence (𝑓
𝑛
) in

𝐶(𝑋) is bounded and equicontinuous, then it has a uniformly
convergent subsequence.

Remark 8. A subset 𝐹 of 𝐶(𝑋) is compact if and only if it is
closed, bounded, and equicontinuous.

Theorem 9 (Leray-Schauder’s fixed point theorem). If 𝐶 is a
closed bounded and convex subset of Banach space 𝑋 and 𝐹 :

𝐶 → 𝐶 is completely continuous, then𝐹 has a fixed point in𝐶.

3. Existence and Uniqueness of Mild Solution

In this section, we will investigate the existence and unique-
ness for impulsive fractional differential equations with the
help of Schauder’s fixed point theorem and someone else.

Firstly, we will make the following assumptions.
𝐻(1) The function 𝑓 : 𝐽 × 𝑋 → 𝑋 satisfies the following.

(i) 𝑓 is measurable for all 𝑡 ∈ 𝐽.
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(ii) There exists a constant 𝐿
𝑓

> 0 such that
‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤ 𝐿

𝑓
‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝑋.

(iii) There exist a real function𝜙(𝑡) ∈ 𝐿1/𝛾(𝐽, 𝑅+), 𝛾 ∈
(0, 𝛼), and a constant 𝜃 > 0, such that ‖𝑓(𝑡, 𝑥)‖ ≤
𝜙(𝑡) + 𝜃‖𝑥‖, for a.e. 𝑡 ∈ 𝐽 and all 𝑥 ∈ 𝑋.

𝐻(2) 𝐼
𝑘
, 𝐼
∗

𝑘
: 𝑋 → 𝑋 (𝑘 = 1, 2, . . . , 𝑚) satisfies the follow-

ing.

(i) 𝐼
𝑘
and 𝐼∗

𝑘
are continuous andmap a bounded set

to a bounded set.
(ii) There exist constants ℎ

𝑘
> 0, ℎ

∗

𝑘
> 0 (𝑘 = 1, 2,

. . . , 𝑚) such that
󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥) − 𝐼𝑘 (𝑦)

󵄩󵄩󵄩󵄩 ≤ ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝐼
∗

𝑘
(𝑥) − 𝐼

∗

𝑘
(𝑦)

󵄩󵄩󵄩󵄩 ≤ ℎ
∗

𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋.

(16)

Specially, if 𝑦 = 0,

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥) − 𝐼𝑘 (0)
󵄩󵄩󵄩󵄩 ≤ ℎ

𝑘
‖𝑥‖ , 𝑥 ∈ 𝑋.

󵄩󵄩󵄩󵄩𝐼
∗

𝑘
(𝑥) − 𝐼

∗

𝑘
(0)

󵄩󵄩󵄩󵄩 ≤ ℎ
∗

𝑘
‖𝑥‖ , 𝑥 ∈ 𝑋.

(17)

We can make ‖𝐼(0)‖ = sup{‖𝐼
𝑘
(0)‖, 𝑘 = 1, 2, . . . , 𝑚},

‖𝐼
∗

(0)‖ = sup{𝐼∗
𝑘
(0), 𝑘 = 1, 2, . . . , 𝑚}.

𝐻(3) Operator 𝐵 ∈ 𝐿
∞

(𝐽, 𝐿(𝑌,𝑋)) and bounded, so there
exists𝑀

𝐵
> 0, ‖𝐵‖ ≤ 𝑀

𝐵
.

𝐻(4) The multivalued maps 𝑈 : 𝐽 → 𝑃
𝑓
(𝑌) (where 𝑃

𝑓
(𝑌)

is a class of nonempty closed and convex subsets of𝑌)
are measurable and 𝑈(⋅) ⊆ Ω, where Ω is a bounded
set of 𝑌.

Set the admissible control set:

𝑈ad = 𝑆
𝑝

𝑈
= {𝑢 ∈ 𝐿

2

(𝐽, Ω) : 𝑢 (𝑡) ∈ 𝑈 (𝑡) a.e.} . (18)

Then,𝑈ad ̸= 0 (see Proposition 2.1.7 and Lemma 2.3.2 of [13]).
And it is obvious that 𝐵𝑢 ∈ 𝐿2(𝐽, 𝑋) for all 𝑢 ∈ 𝑈ad.

According toDefinitions 1–2 andTheorem 4, without loss
of generality, let 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] and 1 ≤ 𝑘 ≤ 𝑚−1, by comparson
with the fractional differential equations given in [4, 5, 8, 9,
12]; we will define the concept of mild solution for problem
(1) as follows.

Definition 10. A function 𝑥 ∈ 𝑃𝐶
1

(𝐽, 𝑋) is said to be a
solution (mild solution) of the problem (1) such that

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+ 𝑄

𝛼
(𝑡) 𝑥

1

+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥 (𝑡

−

𝑖
)) +

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
∗

𝑖
(𝑥 (𝑡

−

𝑖
))

+ ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝜏) (𝑓 (𝜏, 𝑥 (𝜏)) + 𝐵 (𝜏) 𝑢 (𝜏)) 𝑑𝜏,

(19)

where

𝑆
𝛼
(𝑡) =

1

2𝜋𝑖
∫

𝑐

𝑒
𝜆𝑡

𝜆
𝛼−1

𝑅 (𝜆
𝛼

, 𝐴) 𝑑𝜆,

𝑄
𝛼
(𝑡) =

1

2𝜋𝑖
∫

𝑐

𝑒
𝜆𝑡

𝜆
𝛼−2

𝑅 (𝜆
𝛼

, 𝐴) 𝑑𝜆,

𝑇
𝛼
(𝑡) =

1

2𝜋𝑖
∫

𝑐

𝑒
𝜆𝑡

𝑅 (𝜆
𝛼

, 𝐴) 𝑑𝜆,

(20)

with 𝑐 being a suitable path such that 𝜆𝛼 ∉ 𝜇 + 𝑆
𝜃
for 𝜆 ∈ 𝑐.

For more details, one can see [5].

Lemma 11 (see [5]). For any fixed 𝑡 ≥ 0, 𝑆
𝛼
(𝑡), 𝑄

𝛼
(𝑡), and

𝑇
𝛼
(𝑡) are compacted and bounded operators; that is, for any

𝑡 ≥ 0,

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀,

󵄩󵄩󵄩󵄩𝑄𝛼 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀,

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀. (21)

Theorem 12. If the assumptions 𝐻(1),𝐻(2),𝐻(3), and 𝐻(4)

are satisfied and Lemma 5 and (1) is mildly solvable on [0,b],
then there exists a constant 𝜔 > 0 such that ‖𝑥(𝑡)‖ ≤ 𝜔, for
all 𝑡 ∈ 𝐽.

Proof. If (1) can be solvable on [0,b], we may suppose 𝑥(𝑡) is
the mild solution of it, so 𝑥(𝑡)must satisfy (19).

FromTheorem 6, we also get that

‖𝑥 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝛼 (𝑡) 𝑥1

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑘
) 𝐼
𝑘
(𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑘
) 𝐼
∗

𝑘
(𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝜏) (𝑓 (𝜏, 𝑥 (𝜏)) + 𝐵 (𝜏) 𝑢 (𝜏))
󵄩󵄩󵄩󵄩 𝑑𝜏

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩) + 𝑀

𝑚

∑

𝑖=1

ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 +𝑀𝑚‖𝐼 (0)‖

+ 𝑀

𝑚

∑

𝑖=1

ℎ
∗

𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 + 𝑀𝑚

󵄩󵄩󵄩󵄩𝐼
∗

(0)
󵄩󵄩󵄩󵄩

+𝑀∫

𝑡

0

[𝜙 (𝑠) + 𝜃 ‖𝑥 (𝜏)‖] 𝑑𝜏 +𝑀𝑀
𝐵
‖𝑢‖

𝐿
2𝑏
2

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩) + 𝑀

𝑚

∑

𝑖=1

(ℎ
𝑘
+ ℎ

∗

𝑘
)
󵄩󵄩󵄩󵄩𝑥 (𝑡

−

𝑘
)
󵄩󵄩󵄩󵄩

+𝑀𝑚(‖𝐼 (0)‖ +
󵄩󵄩󵄩󵄩𝐼
∗

(0)
󵄩󵄩󵄩󵄩) + 𝑀𝑏

1−𝛾󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿1/𝛾

+𝑀𝜃∫

𝑡

0

‖𝑥 (𝜏)‖ 𝑑𝜏 +𝑀𝑀
𝐵
‖𝑢‖

𝐿
2𝑏
2

.

(22)
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Let 𝜌 = 𝑀(‖𝑥
0
‖ + ‖𝑥

1
‖) + 𝑀𝑚(‖𝐼(0)‖ + ‖𝐼

∗

(0)‖) +

𝑀𝑏
1−𝛾

‖𝜙‖
𝐿
1/𝛾 +𝑀𝑀

𝐵
‖𝑢‖

𝐿
2𝑏
2; then

‖𝑥 (𝑡)‖ ≤ 𝜌 +𝑀

𝑚

∑

𝑘=1

(ℎ
𝑘
+ ℎ

∗

𝑘
)
󵄩󵄩󵄩󵄩𝑥 (𝑡

−

𝑘
)
󵄩󵄩󵄩󵄩 +𝑀𝜃∫

𝑡

0

‖𝑥 (𝜏)‖ 𝑑𝜏,

(23)

so it follows from Lemma 5 that

‖𝑥 (𝑡)‖ ≤ 𝜌(1 + 𝐻
∗

𝐸
1
(𝑀𝜃𝑏))

𝑘

𝐸
1
(𝑀𝜃𝑏) = 𝜔, (24)

where

𝐻
∗

= max {𝑀 (ℎ
𝑘
+ ℎ

∗

𝑘
) : 𝑘 = 1, 2, . . . , 𝑚} ; (25)

the proof is completed.

Theorem 13. Assume that the hypotheses 𝐻(1),𝐻(2), and
𝐻(3) are satisfied Theorem 12; then the problem (1) has a
unique mild solution on 𝐽 provided that

(

𝑚

∑

𝑖=1

(ℎ
𝑖
+ ℎ

∗

𝑖
) + 𝜃𝑏)𝑀 < 1. (26)

Proof. Transform problem (1) into a fixed point theorem.
Consider the operator 𝐹 : 𝑃𝐶

1

(𝐽, 𝑋) → 𝑃𝐶
1

(𝐽, 𝑋) defined
by

(𝐹𝑥) (𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+ 𝑄

𝛼
(𝑡) 𝑥

1
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥 (𝑡

−

𝑖
))

+

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
∗

𝑖
(𝑥 (𝑡

−

𝑖
))

+ ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝜏) (𝑓 (𝜏, 𝑥 (𝜏)) + 𝐵 (𝜏) 𝑢 (𝜏)) 𝑑𝜏.

(27)

Clearly, the problemof findingmild solutions of (1) is reduced
to finding the fixed points of the 𝐹. The proof is based on
Theorem 9. Now we prove that the operators 𝐹 satisfy all the
conditions of Theorem 9.

Firstly, choose

𝑀[ (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩) + 𝑚 (‖𝐼 (0)‖ +
󵄩󵄩󵄩󵄩𝐼
∗

(0)
󵄩󵄩󵄩󵄩)

+ 𝑏
1−𝛾󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿1/𝛾
+𝑀

𝐵
‖𝑢‖

𝐿
2𝑏
2

]

× (1 −𝑀

𝑛

∑

𝑘=1

(ℎ
𝑘
+ ℎ

∗

𝑘
) − 𝑀𝑏𝜃)

−1

≤ 𝑟

(28)

and consider the bounded set 𝐵
𝑟
= {𝑥 ∈ 𝑃𝐶

1

: ‖ 𝑥 ‖ ≤ 𝑟}.
Next, we divide the proof into four steps.

Step 1.We prove that 𝐹𝐵
𝑟
⊆ 𝐵

𝑟
:

‖(𝐹𝑥) (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝛼 (𝑡) 𝑥1

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑘
) 𝐼
𝑘
(𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑘
) 𝐼
∗

𝑘
(𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝜏) (𝑓 (𝜏, 𝑥 (𝜏)) + 𝐵 (𝜏) 𝑢 (𝜏))
󵄩󵄩󵄩󵄩 𝑑𝜏

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩) + 𝑀

𝑚

∑

𝑘=1

ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩

+𝑀𝑚‖𝐼 (0)‖ + 𝑀

𝑚

∑

𝑘=1

ℎ
∗

𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 +𝑀𝑛

󵄩󵄩󵄩󵄩𝐼
∗

(0)
󵄩󵄩󵄩󵄩

+𝑀∫

𝑡

0

[𝜙 (𝜏) + 𝜃 ‖𝑥 (𝜏)‖] 𝑑𝜏 +𝑀𝑀
𝐵
‖𝑢‖

𝐿
2𝑏
2

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩) + 𝑀

𝑚

∑

𝑘=1

(ℎ
𝑘
+ ℎ

∗

𝑘
)
󵄩󵄩󵄩󵄩𝑥 (𝑡

−

𝑘
)
󵄩󵄩󵄩󵄩

+𝑀𝑚(‖𝐼 (0)‖ +
󵄩󵄩󵄩󵄩𝐼
∗

(0)
󵄩󵄩󵄩󵄩) + 𝑀𝑏

1−𝛾󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿1/𝛾

+𝑀𝜃∫

𝑡

0

‖𝑥 (𝜏)‖ 𝑑𝜏 +𝑀𝑀
𝐵
‖𝑢‖

𝐿
2𝑏
2

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩) + 𝑀𝑏
1−𝛾󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿1/𝛾

+𝑀𝑚(‖𝐼 (0)‖ +
󵄩󵄩󵄩󵄩𝐼
∗

(0)
󵄩󵄩󵄩󵄩) + 𝑀𝑀

𝐵
‖𝑢‖

𝐿
2𝑏
2

+ (𝑀

𝑚

∑

𝑖=1

(ℎ
𝑖
+ ℎ

∗

𝑖
) + 𝑀𝑏𝜃) 𝑟 ≤ 𝑟.

(29)

Hence, we canmake𝐹𝐵
𝑟
⊆ 𝐵

𝑟
. So𝐹 is a contractionmapping.

Step 2.We show that 𝐹 is continuous.
Let {𝑥

𝑛
} be a sequence such that 𝑥

𝑛
→ 𝑥 in 𝑃𝐶1(𝐽, 𝑋) as

𝑛 → ∞. Then for each 𝑡 ∈ 𝐽, we obtain
󵄩󵄩󵄩󵄩(𝐹𝑥𝑛) (𝑡) − (𝐹𝑥) (𝑡)

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

𝑖
(𝑥
𝑛
(𝑡
−

𝑖
)) − 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

∗

𝑖
(𝑥
𝑛
(𝑡
−

𝑖
)) − 𝐼

∗

𝑖
(𝑥 (𝑡

−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝜏) [𝑓 (𝜏, 𝑥𝑛 (𝜏)) − 𝑓 (𝜏, 𝑥 (𝜏))]
󵄩󵄩󵄩󵄩 𝑑𝜏

≤ 𝑀

𝑚

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 +𝑀

𝑚

∑

𝑖=1

ℎ
∗

𝑖

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

+𝑀𝐿
𝑓
∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑛 (𝜏) − 𝑥 (𝜏)
󵄩󵄩󵄩󵄩 𝑑𝜏

≤ [𝑀

𝑚

∑

𝑖=1

ℎ
𝑖
+𝑀

𝑚

∑

𝑖=1

ℎ
∗

𝑖
+𝑀𝐿

𝑓
𝑏]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 .

(30)
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As 𝑥
𝑛
→ 𝑥, it is easy to see that

󵄩󵄩󵄩󵄩𝐹𝑥𝑛 − 𝐹𝑥
󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (31)

Step 3. 𝐹 is equicontinuous on 𝐵
𝑟
.

Let 0 ≤ 𝜏
1
< 𝜏

2
≤ 𝑏; then for each 𝑥 ∈ 𝐵

𝑟
, we obtain

󵄩󵄩󵄩󵄩(𝐹𝑥) (𝜏2) − (𝐹𝑥) (𝜏1)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩[𝑆𝛼 (𝜏2) − 𝑆𝛼 (𝜏1)] 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑄𝛼 (𝜏2) − 𝑄𝛼 (𝜏1)] 𝑥1

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

𝑘

∑

𝑖=1

𝑆
𝛼
(𝜏
2
− 𝑡

𝑘
) −

𝑘

∑

𝑖=1

𝑆
𝛼
(𝜏
1
− 𝑡

𝑘
)] 𝐼

𝑘
(𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

𝑘

∑

𝑖=1

𝑄
𝛼
(𝜏
2
− 𝑡

𝑘
) −

𝑘

∑

𝑖=1

𝑄
𝛼
(𝜏
1
− 𝑡

𝑘
)] 𝐼

∗

𝑘
(𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
2

0

𝑇
𝛼
(𝜏
2
− 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

−∫

𝜏
1

0

𝑇
𝛼
(𝜏
1
− 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
2

0

𝑇
𝛼
(𝜏
2
− 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

−∫

𝜏
1

0

𝑇
𝛼
(𝜏
1
− 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2) − 𝑆𝛼 (𝜏1)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑄𝛼 (𝜏2) − 𝑄𝛼 (𝜏1)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2 − 𝑡𝑘) − 𝑆𝛼 (𝜏1 − 𝑡𝑘)
󵄩󵄩󵄩󵄩

× (ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐼𝑘 (0)
󵄩󵄩󵄩󵄩)

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑄𝛼 (𝜏2 − 𝑡𝑘) − 𝑄𝛼 (𝜏1 − 𝑡𝑘)
󵄩󵄩󵄩󵄩

× (ℎ
∗

𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐼
∗

𝑘
(0)

󵄩󵄩󵄩󵄩)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
1

0

(𝑇
𝛼
(𝜏
2
− 𝜏) − 𝑇

𝛼
(𝜏
1
− 𝜏)) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
2

𝜏
1

𝑇
𝛼
(𝜏
2
− 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝑄
1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
1

0

(𝑇
𝛼
(𝜏
2
− 𝜏) − 𝑇

𝛼
(𝜏
1
− 𝜏)) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
2

𝜏
1

𝑇
𝛼
(𝜏
2
− 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝑄
2
.

(32)
Let

Λ =
󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2) − 𝑆𝛼 (𝜏1)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑄𝛼 (𝜏2) − 𝑄𝛼 (𝜏1)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2 − 𝑡𝑘) − 𝑆𝛼 (𝜏1 − 𝑡𝑘)
󵄩󵄩󵄩󵄩

× (ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐼𝑘 (0)
󵄩󵄩󵄩󵄩)

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑄𝛼 (𝜏2 − 𝑡𝑘) − 𝑄𝛼 (𝜏1 − 𝑡𝑘)
󵄩󵄩󵄩󵄩

× (ℎ
∗

𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐼
∗

𝑘
(0)

󵄩󵄩󵄩󵄩)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
1

0

(𝑇
𝛼
(𝜏
2
− 𝜏) − 𝑇

𝛼
(𝜏
1
− 𝜏)) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
1

0

(𝑇
𝛼
(𝜏
2
− 𝜏) − 𝑇

𝛼
(𝜏
1
− 𝜏)) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(33)

By Lemma 11, we have

lim
𝜏
2
→𝜏
1

Λ = 0. (34)

By assumption𝐻(2), we obtain

𝑄
1
≤ 𝑀(

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿1/𝛾

+ 𝜃𝑏
𝛾

𝑟) (𝜏
2
− 𝜏

1
)
1−𝛾

,

𝑄
2
≤ 𝑀𝑀

𝐵
‖𝑢‖

𝐿
2(𝜏

2
− 𝜏

1
)
2

.

(35)

Combining the estimations for Λ,𝑄
1
, and 𝑄

2
, let 𝜏

2
→ 𝜏

1
;

we know that ‖(𝐹𝑥)(𝜏
2
) − (𝐹𝑥)(𝜏

1
)‖ → 0, which implies that

𝐹 is equicontinuous.

Step 4. Now we show that 𝐹 is compact.
Let 𝑡 ∈ 𝐽 be fixed; we show that the set Π(𝑡) = {(𝐹𝑥)(𝑡) :

𝑥 ∈ 𝐵
𝑟
} is relatively compact in 𝑋. From Step 1 and (24), we

know that

‖𝐹𝑥 (𝑡)‖ ≤ 𝜌(1 + 𝐻
∗

𝐸
1
(𝑀𝜃𝑏))

𝑘

𝐸
1
(𝑀𝜃𝑏) = 𝜔 < ∞. (36)

Then the set Π(𝑡) = {(𝐹𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is uniformly bounded.

From Step 3 and Arzela -Ascoli theorem, we know that the
set Π(𝑡) = {(𝐹𝑥)(𝑡) : 𝑥 ∈ 𝐵

𝑟
} is relatively compact in𝑋.

As a result, by the conclusion ofTheorem 9,we obtain that
𝐹 has a fixed point 𝑥 on 𝐵

𝑟
; therefore system (1) has a unique

mild solution on 𝐽. The proof is completed.

4. Optimal Control Results

In the following, we will consider the Lagrange problem (P).
Find a control pair (𝑥0, 𝑢0) ∈ 𝑃𝐶(𝐽, 𝑋) × 𝑈ad such that

J (𝑥
0

, 𝑢
0

) ≤ 𝐽 (𝑥
𝑢

, 𝑢) , ∀ (𝑥, 𝑢) ∈ 𝑃𝐶 (𝐽, 𝑋) × 𝑈ad, (37)

where

J (𝑥
𝑢

, 𝑢) := ∫

𝑏

0

L (𝑡, 𝑥
𝑢

(𝑡) , 𝑢 (𝑡)) 𝑑𝑡, (38)

and 𝑥𝑢 denotes the mild solution of system (1) corresponding
to the control 𝑢 ∈ 𝑈ad.

For the existence of solution for problem (P), we will
introduce the following assumption.

𝐻(5) The functionL : 𝐽 × 𝑋 × 𝑌 → 𝑅 ∪ {∞} satisfies the
following.

(i) The functionL : 𝐽 ×𝑋×𝑌 → 𝑅∪{∞} is Borel
measurable;

(ii) L(𝑡, ⋅, ⋅) is sequentially lower semicontinuous
on𝑋 × 𝑌 for almost all 𝑡 ∈ 𝐽.
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(iii) L(𝑡, 𝑥, ⋅) is convex on 𝑌 for each 𝑥 ∈ 𝑋 and
almost all 𝑡 ∈ 𝐽.

(iv) There exist constants 𝑐 ≥ 0, 𝑑 > 0 and 𝜑 is
nonnegative, and 𝜑 ∈ 𝐿

1

(𝐽, 𝑅) such that

L (𝑡, 𝑥, 𝑢) ≥ 𝜑 (𝑡) + 𝑐‖𝑥‖
𝑋
+ 𝑑‖𝑢‖

𝑝

𝑌
. (39)

Next, we can give the following result on existence of
optimal controls for problem (P).

Theorem 14. Let the assumptions of Theorem 13 and 𝐻(5)

hold. Suppose that 𝐵 is a strongly continuous operator. Then
Lagrange problem (P) admits at least one optimal pair; that is,
there exists an admissible control pair (𝑥0, 𝑢0) ∈ 𝑃𝐶(𝐽, 𝑋) ×

𝑈
𝑎𝑑

such that

J (𝑥
0

, 𝑢
0

) = ∫

𝑏

0

L (𝑡, 𝑥
0

(𝑡) , 𝑢
0

(𝑡)) 𝑑𝑡 ≤ J (𝑥
𝑢

, 𝑢) ,

∀ (𝑥
𝑢

, 𝑢) ∈ 𝑃𝐶 (𝐽, 𝑋) × 𝑈
𝑎𝑑
.

(40)

Proof. If inf{J(𝑥𝑢, 𝑢) : (𝑥
𝑢

, 𝑢) ∈ 𝑃𝐶(𝐽, 𝑋) × 𝑈ad} = +∞,
there is nothing to prove.

Without loss of generality, we assume that inf{𝐽(𝑥𝑢, 𝑢) :
(𝑥
𝑢

, 𝑢) ∈ 𝑃𝐶(𝐽, 𝑋) × 𝑈ad} = 𝜌 < +∞. Using 𝐻(5), we have
𝜌 > −∞. By definition of infimum, there exists a minimizing
sequence feasible pair {(𝑥𝑛, 𝑢𝑛)} ⊂ Pad ≡ {(𝑥, 𝑢) : 𝑥 is a
mild solution of system (1) corresponding to 𝑢 ∈ 𝑈ad}, such
that 𝐽(𝑥𝑛, 𝑢𝑛) → 𝜌 as𝑚 → +∞. Since {𝑢𝑛} ⊆ 𝑈ad, 𝑚 = 1, 2,

. . . , {𝑢
𝑛

} is a bounded subset of the separable reflexive Banach
space 𝐿𝑝(𝐽, 𝑌); there exists a subsequence, relabeled as {𝑢𝑛},
and 𝑢0 ∈ 𝐿𝑝(𝐽, 𝑌) such that

𝑢
𝑛

𝑤

󳨀→ 𝑢
0 in 𝐿

𝑝

(𝐽, 𝑌) . (41)

Since 𝑈ad is closed and convex, due to Mazur lemma,
𝑢
0
∈ 𝑈ad. Let {𝑥

𝑛

} denote the sequence of solutions of the
system (1) corresponding to {𝑢

𝑚

}; 𝑥0 is the mild solution
of the system (1) corresponding to 𝑢0. 𝑥𝑛 and 𝑥

0 satisfy the
following integral equation, respectively:

𝑥
𝑛

(𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+ 𝑄

𝛼
(𝑡) 𝑥

1
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥
𝑛

(𝑡
−

𝑖
))

+

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
∗

𝑖
(𝑥
𝑛

(𝑡
−

𝑖
))

+ ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝜏) (𝑓 (𝜏, 𝑥

𝑛

(𝜏)) + 𝐵 (𝜏) 𝑢
𝑛

(𝜏)) 𝑑𝜏,

𝑥
0

(𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+ 𝑄

𝛼
(𝑡) 𝑥

1
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥
0

(𝑡
−

𝑖
))

+

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼
∗

𝑖
(𝑥
0

(𝑡
−

𝑖
))

+ ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝜏) (𝑓 (𝜏, 𝑥

0

(𝜏)) + 𝐵 (𝜏) 𝑢
0

(𝜏)) 𝑑𝜏.

(42)

It follows the boundedness of {𝑢𝑛}, {𝑢0}, andTheorem 12;
one can check that there exists a positive number 𝜔 such that
‖ 𝑥

𝑛

‖ ≤ 𝜔, ‖ 𝑥
0

‖ ≤ 𝜔.
For 𝑡 ∈ 𝐽, we obtain
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

(𝑡) − 𝑥
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

𝑖
(𝑥
𝑛

(𝑡
−

𝑖
)) − 𝐼

𝑖
(𝑥
0

(𝑡
−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝜂
1
(𝑡)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

∗

𝑖
(𝑥
𝑛

(𝑡
−

𝑖
)) − 𝐼

∗

𝑖
(𝑥
0

(𝑡
−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝜂
2
(𝑡)

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛼
(𝑡 − 𝜏) [𝑓 (𝑠, 𝑥

𝑛

(𝜏)) − 𝑓 (𝜏, 𝑥
0

(𝜏))]
󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

denoted by 𝜂
3
(𝑡)

+∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛼
(𝑡−𝜏) [𝐵 (𝜏) 𝑢

𝑛

(𝜏)−𝐵 (𝜏) 𝑢
0

(𝜏)]
󵄩󵄩󵄩󵄩󵄩
𝑑𝜏.

denoted by 𝜂
4
(𝑡) .

(43)
By𝐻(3)(ii), we have

𝜂
1
(𝑡) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

𝑖
(𝑥
𝑛

(𝑡
−

𝑖
)) − 𝐼

𝑖
(𝑥
0

(𝑡
−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀

𝑚

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

− 𝑥
0
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑛 󳨀→ ∞,

𝜂
2
(𝑡) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑄
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

∗

𝑖
(𝑥
𝑛

(𝑡
−

𝑖
)) − 𝐼

∗

𝑖
(𝑥
0

(𝑡
−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀

𝑚

∑

𝑖=1

ℎ
∗

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

− 𝑥
0
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑛 󳨀→ ∞.

(44)

Using Lemma 11 and by𝐻(1)(ii), one can obtain

𝜂
3
(𝑡) = ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛼
(𝑡 − 𝜏) [𝑓 (𝑠, 𝑥

𝑛

(𝜏)) − 𝑓 (𝜏, 𝑥
0

(𝜏))]
󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

≤ 𝑀𝐿
𝑓
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

(𝑠) − 𝑥
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠.

(45)
Similarly, one has

𝜂
4
(𝑡) = ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛼
(𝑡 − 𝜏) [𝐵 (𝜏) 𝑢

𝑛

(𝜏) − 𝐵 (𝜏) 𝑢
0

(𝜏)]
󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

≤ 𝑀𝑏
2

(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝜏) 𝑢

𝑛

(𝜏) − 𝐵 (𝜏) 𝑢
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩

1/2

𝑑𝜏)

2

≤ 𝑀𝑏
2
󵄩󵄩󵄩󵄩󵄩
𝐵𝑢

𝑛

− 𝐵𝑢
0
󵄩󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑌)

.

(46)

Since 𝐵 is strongly continuous, we have
󵄩󵄩󵄩󵄩󵄩
𝐵𝑢

𝑛

− 𝐵𝑢
0
󵄩󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑌)

𝑠

󳨀→ as 𝑛 󳨀→ ∞, (47)
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which implies
𝜂
4
(𝑡) 󳨀→ 0 as 𝑛 󳨀→ ∞. (48)

Thus
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

(𝑡) − 𝑥
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
1
(𝑡) + 𝜂

3
(𝑡) + 𝜂

4
(𝑡) + 𝑀𝐿

𝑓
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

(𝑠) − 𝑥
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠,

(49)

and by virtue of singular version Gronwall inequality (see
Remark 3.2, in [12]), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

(𝑡) − 𝑥
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ [𝜂

1
(𝑡) + 𝜂

3
(𝑡) + 𝜂

4
(𝑡)] 𝐸

1
(𝑀𝐿

𝑓
𝑏) .

(50)
This yields that

𝑥
𝑛

𝑠

󳨀→ 𝑥
0 in 𝑃𝐶 (𝐽, 𝑋) as 𝑛 󳨀→ ∞. (51)

Note that 𝐻(5) implies that all of the assumptions of
Balder (see Theorem 2.1, in [11]) are satisfied. Hence, from
Balder’s theorem, we can conclude that (𝑥, 𝑢) → ∫

𝑏

0

L(𝑡,

𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 is sequentially lower semicontinuous in the
strong topology of 𝐿1(𝐽, 𝑋). Since 𝐿𝑝(𝐽, 𝑌) ⊂ 𝐿

1

(𝐽, 𝑌), J
is weakly lower semicontinuous on 𝐿

𝑝

(𝐽, 𝑌), and since, by
𝐻(5)(iv), J > −∞,J attains its infimum at 𝑢

0
∈ 𝑈ad; that

is,

𝜌 = lim
𝑛→∞

∫

𝑏

0

L (𝑡, 𝑥
𝑛

(𝑡) , 𝑢
𝑚

(𝑡)) 𝑑𝑡

≥ ∫

𝑏

0

L (𝑡, 𝑥
0

(𝑡) , 𝑢
0

(𝑡)) 𝑑𝑡 = 𝐽 (𝑥
0

, 𝑢
0

) ≥ 𝜌.

(52)

The proof is completed.

5. An Example

We can consider the following initial-boundary value prob-
lem of fractional impulsive parabolic system:

𝜕
3/2

𝜕𝑡
3/2

𝑥 (𝑡, 𝑦) =
𝜕
2

𝜕𝑦
2
𝑥 (𝑡, 𝑦) + 𝑒

−𝑡

+
1

10
sin𝑥 (𝑡, 𝑦) + ∫

1

0

𝑞 (𝑦, 𝜏) 𝑢 (𝜏, 𝑡) 𝑑𝜏,

𝑡 ∈ 𝐽
󸀠

= [0, 1] \ {
1

2
} , 𝑦 ∈ [0, 𝜋] ,

Δ𝑥 (
1

2
, 𝑦) =

󵄨󵄨󵄨󵄨𝑥 (𝑦)
󵄨󵄨󵄨󵄨

6 +
󵄨󵄨󵄨󵄨𝑥 (𝑦)

󵄨󵄨󵄨󵄨

,

Δ𝑥
󸀠

(
1

2
, 𝑦) =

󵄨󵄨󵄨󵄨𝑥 (𝑦)
󵄨󵄨󵄨󵄨

20 +
󵄨󵄨󵄨󵄨𝑥 (𝑦)

󵄨󵄨󵄨󵄨

, 𝑦 ∈ [0, 𝜋] ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,

𝑥 (0, 𝑦) = 𝑥
0
(𝑦) , 𝑥

󸀠

(0, 𝑦) = 𝑥
1
(𝑦) , 𝑦 ∈ [0, 𝜋] .

(53)

Take𝑋 = 𝑌 = 𝐿
2

[0, 𝜋] and the operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋

is defined by
𝐴𝜔 = 𝜔

󸀠󸀠

, (54)

where the domain𝐷(𝐴) is given by

{𝜔 ∈ 𝑋 : 𝜔, 𝜔
󸀠 are absolutely continuous,

𝜔
󸀠󸀠

∈ 𝑋, 𝜔 (0) = 𝜔 (𝜋) = 0} .

(55)

Then 𝐴 can be written as

𝐴𝜔 =

∞

∑

𝑛=1

𝑛
2

(𝜔, 𝜔
𝑛
) 𝜔

𝑛
, 𝜔 ∈ 𝐷 (𝐴) , (56)

where 𝜔
𝑛
(𝑥) = √2/𝜋 sin 𝑛𝑥(𝑛 = 1, 2, . . .) is an orthonormal

basis of 𝑋. It is well known that 𝐴 is the infinitesimal
generator of a compact semigroup 𝑇(𝑡)(𝑡 > 0) in𝑋 given by

𝑇 (𝑡) 𝑥 =

∞

∑

𝑛=1

exp−𝑛
2
𝑡

(𝑥, 𝑥
𝑛
) 𝑥

𝑛
, 𝑥 ∈ 𝑋,

‖𝑇 (𝑡)‖ ≤ 𝑒
−1

< 1.

(57)

FromTheorems 3.3 and 3.4 of [5], we can easily get𝑀 = 3,

𝑓 (𝑡, 𝑥 (𝑡, 𝑦)) = 𝑒
−𝑡

+
1

10
sin𝑥 (𝑡, 𝑦) ,

𝐼
𝑘
(𝑥 (𝑡, 𝑦)) =

󵄨󵄨󵄨󵄨𝑥 (𝑦)
󵄨󵄨󵄨󵄨

6 +
󵄨󵄨󵄨󵄨𝑥 (𝑦)

󵄨󵄨󵄨󵄨

, 𝐼
∗

𝑘
(𝑥 (𝑡

−

𝑘
)) =

󵄨󵄨󵄨󵄨𝑥 (𝑦)
󵄨󵄨󵄨󵄨

20 +
󵄨󵄨󵄨󵄨𝑥 (𝑦)

󵄨󵄨󵄨󵄨

,

𝐵𝑢 (𝑦) = ∫

1

0

𝑞 (𝑦, 𝜏) 𝑢 (𝜏, 𝑡) 𝑑𝜏.

(58)

Denote 𝑥(𝑡, 𝑦) = 𝑥(𝑡)(𝑦); then it is easy to see that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤ 𝑒

−𝑡

+
1

10
‖𝑥 (𝑡)‖ ,

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤

‖𝑥 (𝑡)‖

6
,

󵄩󵄩󵄩󵄩𝐼
∗

𝑘
(𝑥 (𝑡

−

𝑘
))
󵄩󵄩󵄩󵄩 ≤

‖𝑥 (𝑡)‖

20
,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))
󵄩󵄩󵄩󵄩 ≤

1

10

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥 (𝑡)) − 𝐼𝑘 (𝑦 (𝑡))
󵄩󵄩󵄩󵄩 ≤

1

6

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐼
∗

𝑘
(𝑥 (𝑡)) − 𝐼

∗

𝑘
(𝑦 (𝑡))

󵄩󵄩󵄩󵄩 ≤
1

20

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(59)

Moreover,

(

𝑛

∑

𝑖=1

ℎ
𝑘
+ 𝜃𝑏)𝑀 = (

1

6
+

1

20
+

1

10
× 1) × 3 =

19

20
< 1. (60)

Hence, all the conditions of Theorem 13 are satisfied,
system (53) has a unique mild solution.
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