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This paper deals with a research question raised by Jentzen and Rockner (A Milstein scheme for SPDEs, arXiv:1001.2751v4 (2012)),
whether the exponential term in their introduced scheme can be replaced by a simpler mollifier. This replacement can lead to more
simplification and computational reduction in simulation. So, in this paper, we essentially replace the exponential term with a Padé
approximation of order 1 and denote the resulting scheme by simplified Milstein scheme. The convergence analysis for this scheme
is carried out and it is shown that even with this replacement the order of convergence is maintained, while the resulting scheme is
easier to implement and slightly more efficient computationally. Some numerical tests are given that confirm the order of accuracy

and also computational cost reduction.

1. Introduction

Many models in engineering, physics, complex phenomena,
and so forth are described by stochastic partial differential
equations (SPDEs); for example, see [1-6]. Since the exact
solutions of these equations are rarely known, the numerical
analysis of SPDEs has been recently the subject of many
papers; for example, see [7-14], for more detailed discussion
on this topic and many examples in applied sciences. In this
paper, we consider strong approximation (see [4, Section 9.3])
of SPDEs of evolutionary type. To demonstrate the results of
this paper clearly, we focus on the following example of SPDE:

2

/\a—Xt (x) + f (x, X, (x)) | dt

ax, (x) = o2 W

+b(x, X, (x))dW, (x),

with initial condition X(x) = &(x) and Dirichlet boundary
conditions X,(0) = X, (1) = 0 for all x € (0,1)
and t € [0,T], where A € (0,00). Let (), F,P) be a
probability space with a normal filtration (F,),¢(o 17, let H =
L*((0,1), R) be the R-Hilbert space of equivalence classes of
Lebesgue square integrable functions from (0, 1) to R, and let

b (0,1) x R — R be two appropriate smooth and
regular functions with globally bounded derivatives. Let W :
[0,T] xQ) — H be astandard Q-Wiener process with regard
to (F)iefo,r)> With a trace class operator Q : H — H and
£:10,1] —» Rwith&(0) = &(1) = 0 being a smooth function.
The covariance operator Q : H — H has orthonormal basis
gj € H, j € N, of eigenfunctions with summable eigenvalues
u;j € [0,00) j € N. Under the previous assumption, the SPDE
(1) has a unique mild solution. Specifically, there exists an
up to unpredictable unique adapted stochastic process X :
[0, T]xQ — H with continuous sample path which satisfies

t
X, =eME+ J e*IF (X,)ds

0

2)

s

t
+ J AIB(X,) dw,
0

forallt € [0,T], where A : D(A) c H — H is the Laplacian
with Dirichlet boundary conditions times the constant A €
(0,00) and where F: H - Hand B: H — HS(U, H) are
given by (F(v))(x) = f(x,v(x)) and (B(v)u)(x) = b(x, v(x)) -
u(x) forall x € (0,1),v € Hand all u € U, where U, = QY2
with (v, w)U0 = (Q_l/zv, Q_l/zw) forallv,w € U, istheimage
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R-Hilbert space of Q2 (see [15, Appendix C]); note that A
and Q commutate in our example SPDE (2). Now we are
concerned about the strong approximation of the SPDE (1).
More formally we want to compute numerical approximation
Y :Q — H such that

(Bl - Y "
(o[l - veotar) <

holds for a given precision € > 0 with the least possible com-
putational effort. To simulate the numerical approximation
on a computer, one has to discretize both the time interval
[0, T] and the infinite dimensional space H = L*((0,1),R).In
this paper we consider spectral Galerkin for spatial discretiza-
tion and difference method for temporal discretization. A
simple full discretization for (1) is the linear implicit Euler
method combined with spectral Galerkin method which is
given by

(3)

—N T -1
Yig = PN<I - FA>

(T s f (77) (4)

=0,1,...,N°~ 1L, and all N € N, with ¥ = &V and &V =
Py (&), here Py is a bounded linear operator such that Py :
H — H with

PT‘

N 1
(Py (1) (x) = ZZ sin (nmx) L sin(ny)v(y)dy  (5)
n=1

forall x € (0,1),v € H, and N € N, and the finite dimen-
sional Wiener }I)gocesses WY . [0,T] xQ — H,N € N,
are given by W, (w) = Py(W,(w)) for all t € [0,T], w € Q,
and N € N. According to the analysis of [16], for method (4)
with k = N2, there exist real numbers C, > 0 that for small
r € (0,3/2)

2\1/2 -3/2
valy) <CN (6)

(Ellx -

holds for all N € N. This means that the method has overall
convergence 3/8— (for a real number 3 € (0, c0), we write S—
for the convergence order if the convergence order is higher
in order than 8 — € for all arbitrary small ¢ € (0,f)). In
[16] Jentzen and Rockner proposed an infinite dimensional
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analog of Milstein type scheme for (1) given by V' = &Y =

Py(&) and

SN A(T/N?)
Yii = Pye

x (?kN b/ ()
b (5T) (Wkhnayne = Werne)
w5 (58) CTeCR)
( e~ Wikie) - %imgf ))
=

(7)
for all k € {0, L,...,N* - 1} and N € N. Here we use the
notations v - w : (0,1) — R, : (0,1) — R, and

(P(,))(x) = ¢(x,v(x)) for all x € (0,1) and all functions

w: (0,1) - R, ¢ : (0,1) x R — R. Method (7)
gives a break of complexity of the numerical approximation
of nonlinear SPDE with multiplicative trace class noise. More
precisely, it is shown in [16] that N* time steps in contrast
to N time steps for the linear implicit Euler scheme (4) are
required to achieve (6). That is the Milstein type scheme (7)
with N time steps guarantees that for real numbers C, > 0,
r € (0,3/2), such that

1/2
) scNT ®)

(Bl - vy

holds for all N € N. Thus the scheme has the overall conver-
gence order of 1/2—. Consequently scheme (7) increases the
overall convergence order from 3/8— to 1/2—. As mentioned
before, in this paper essentially the exponential term in
the Milstein type scheme [16] is replaced by a first order
approximation which makes the scheme easier to implement
and slightly more efficient computationally while preserving
the order of convergence. The analysis and implementation
will be carried out as follows. In Section 2 the required
setting and assumptions are formulated. In Section 3 the
simplified Milstein scheme is formulated. In Section 4 we
state and prove the main result of this section concerning
the convergence of the simplified Milstein scheme. Finally
in Section 5 numerical example for a stochastic reaction
diffusion equation is presented to show numerically the
order of convergence and computational costs. The numerical
simulations will be carried out in MATLAB environment on
a PC with CPU 2.66 GHz.

2. Setting and Assumptions

Throughout this paper suppose that the setting and following
assumptions are fulfilled. Fix T € (0, 00). Let (Q, F,P) be a
probability space with a normal filtration {F},¢or) and let
(H, ()l ) and (U, ), |l - [ly) be two separable R-Hilbert
spaces. Moreover, let W: [0,T] x QO — U be a standard Q-
Wiener process with respect to {F,};¢[or}, With a trace class
operator Q: U — U.
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Assumption I (linear operator A). Let A: D(A) c H — H
be a linear operator such that

Av = —Z/\l(ei, V) e )

ieN

for every v € D(A) with D(A) = {w € H | Y, INI
(e w) g < oo,

Here (A;);cy is @ family of real numbers with inf; \A; €
(0,00) and (e;);cy is an orthonormal basis of H. By V, :=
D((-A)") equipped with the norm Ivlly, = [(=A)" V| for all
v € V,, 0 < r, we denote the R-Hilbert space of domains of
fractional powers of the linear operator —A : D(A) — H.

Assumption 2 (drift term F). Let 8 € [0, 1) be a real number
and let F : V; — H be a globally Lipschitz continuous; that
is, sup, yers(IF() = Fw)lp/Iv - wlly) < 00 and [,y <
c(1+ "V”VB)’ ¢ € (0, 00); in addition

SS‘Z”F, (V)”L(H) < 09, w0

52‘2“1::/ (V)“L<2>(v,3,H) < 0.

Assumption 3 (diffusion term B). Let B : Vg — HS(U,,

H) be a globally Lipschitz continuous mapping
and twice continuously Frechet differentiable map-
ping with SUP, v, IB' )] L(HLHS(Uy,H)) < oo and

SUP,cy, IB" W)l o (VpHSUH) < OO In addition & € (0, 00),
6,0 €(0,1/2) with f <6 +1/2,y € [max(6, 8),6 +1/2), and
¢ € (0, 00) is a real number such that B(Vy) ¢ HS(U,, V) and

1B @)l s,y < € (1+ el ) » (1)

|B' ) B() - B (w) B(w)| <clv-wly  (12)

HS® (Uy,H)

[CA" B Q g (141 ). @)

hold forallu € Vs and v, w € V,.. Additionally, let the bilinear

Hilbert-Schmidt operator B'(v)B(v) € HS(Z)(UO, H) be
symmetric for all v € V. Note that the operator B'(v)B(v) :
U, xU, — H, given by

(BMBW)wn)=(BmBOVw)a  (14)

for all u,ii € U, is a bilinear Hilbert-Schmidt operator in
HS®(U,, H) for all v € V.

The assumed symmetry of B'(v)B(v) € HS(Z)(UO, H) thus
reads as [16, Remark 1].

Assumption 4 (initial value &). Let & : Q — v, be an
Fy/ B(Vy)—measurable mapping with E[|& ||‘2/y < 00.

Proposition 5 (existence of the mild solution). Let T > 0.
Then under Assumptions 1-4, there exists an up to modifica-
tions unique predictable stochastic process X : [0, T]xQ — 'V,

which fulfills SuPte[o,T]E"Xf"%’y <00

sup E"B (Xt)“;S(Uo,Vs) < 00,
te[0,T]

t
X, = eME+ J AIF (X,) ds (15)
0

t
+ J AIB(X,) dW,
0

s

forallt € [0, T]; moreover, we have

2\1/2
(Bl - X ]1)
min(y,1/2)

(16)

tuhelod] |ty — 1y
Proposition 5 immediately follows from Theorem 1 in
[17].
3. The Proposed Simplified Milstein Scheme

We construct the simplified Milstein scheme for nonlinear
stochastic partial differential equations. For this work first we
use Taylor formula in Banach space for coefficients B and F
for the problem (2). More formally using F(X,) = F(X,) and
B(X,) = B(X,) + B'(XO)(XS — X,) for small s € [0, T] shows

t
X, = eME+ J- eAIF (X)) ds
o (17)
o [ B (00) (- X)) aw,

for small t € [0,T]. Using the approximation X, = X, +
jos B(X,)dW, for small s € [0, T] gives

X, ~ ¥ X, +te™F(X,)

+ j e B(X,)dw, (18)

+ Lt B (X,) (Ls B(X,) qu) aw..

We then substitute e =~ (I — tA)™" for small t € [0,T] to

obtain

X, =S, (xo FF (X,)
t
+J B(X,)dW, (19)
0

+ E B (X,) (JO B(X,) qu> dWS> ,



where S, = (I — tA)™'. Combining the temporal approx-
imation (19) and spatial discretization in (4) suggests the
numerical scheme given by Y, = Py(&) = &N and

Y4, = PaSrne
X <Y,ﬁV + %F (v)
+B(Y) (Wihyrye = Wiryae)

N J'(k+1)T/N2 5 (Y,f\’)

KT/N?
N
x (j B(Y,f)de)de),
KT/N?

(20)
forallk € {0,1,...,N> — 1} and all N € N, where Srne =
(I-(T/N*)A)™". The difficulty in this formula is working with
the term corresponding to the double integral. As suggested

by Jentzen and Rockner (see [16, Subsection 6.7]), this double
integral can be replaced by

B (00) ([, B0 aw )
1/0
-1 (@b> ()b (7)) ()

N
N N 2 T 2
x ((W(k+1)T/N2 - WkT/NZ) - ﬁzm‘gi ) .
i=1

By using (21), the numerical scheme (20) thus reduces to

J~(k+1)T/N2

KT/N?

N N
Y =P NST/N2

y (y,gv e L) e (ar)
X (MI:+1)T/N2 - WkI\TI“/NZ)
d
(5b) e

1
+ —
2
N
N N 2 T 2
x <(W(k+1)T/N2 - WkT/NZ) - ﬁzmgi ))
i=1
(22)

where Sy, = (I-(T/N*)A) ™ and forall k € {0,1,..., N*-
1}, N e N.

For the simplified Milstein scheme (22) applied to (1), the
main result of this paper, that is, Theorem 7, will show that
with K = N?

(E"XT — Y ;)1/2 <C,N? 0<r< g (23)

Similar to scheme (7), the numerical method (22) can be
simulated quite easily. The term (T/N &) Zf\:jl n; gi2 in (22) can
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TABLE 1: Runtime (seconds) for one path simulation using three
methods Vs, 72, and Y2, for N = 64, 128, 256, 512, 1024.

NZ >
N Implicit Euler Milstein Simplified Milstein
scheme scheme scheme

64 38.316292 0.703536 0.690610

128 381.021714 3.628195 3.581998

256 3874.629760 19.811083 19.405515

512 46885.088426 126.663048 124.849040
1024 5.1574e + 005 842.699400 834.842365

be computed once in advance for which O(N?) computa-
tional operations are needed. With the term (T//N?) Zf\:jl n
at hand, O(N log N) further computational operations and
independent standard normal random variables are needed
to compute Y|, from Y;' by using fast Fourier transform.
Therefore, since N? time steps are used, O(N 3 log N) com-
putational operations and random variables are required to
obtain Y. The logarithmic term in O(N” log N) arises from
fast Fourier transform computations, due to the nonlineari-
ties of f and b. Taking into account the convergence order
3/2— in (23), one can show that scheme (22) shares the same
overall convergence order of 1/2—, which is greater than the
overall convergence order 3/8— of the linear implicit scheme
(4). We then take a more closer look at schemes (7) and (22)
at each step. It is obvious that the Milstein scheme (7) requires
evaluation of exponential term, while the simplified Milstein
scheme needs one simple mollifier (I — (T/N HA)7! instead
of exponential term. The CPU time for one path simulation
by the simplified Milstein scheme (22) applied to (1) is less
than that for (7). For example, see Table1; for N = 1024,
one path simulation of the simplified Milstein scheme (22)
requires 834.842365 CPU seconds, while this simulation by
Milstein scheme (7) needs 842.699400 CPU seconds. This
difference is due to the fact that evaluation of the exponential
term takes more time than that of the simple mollifier term.
A natural question thus arises on whether such substitution
can maintain the high convergence order of (7). In this paper
we investigate this issue and prove that the simplified Milstein
scheme maintains the expected order of convergence.

4. Convergence Analysis

Let (g;)jen € U be an orthonormal basis consisting of the
eigenfunctions of Q : U — U, and let (‘Mj)jeN c [0,00) be
their corresponding eigenvalues with Q : U — U as a trace
class operator; that is,

Qu=Y u{(g;pu),9; (24)

jeN
for all u € U. We define the linear projection operator
N
Py:H —H byPyv= Z(ej, v>Hej. (25)
=1

Furthermore, we define Wiener processes WY [0, TIxQ —
Up by W) = X7, (g, W), g; for all t € [0,T],
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we Qand N € N.Let T = MAt, M = N?, and At be
the time discretization step, and let H = U = L*((0,1), R) be
the R-Hilbert space of equivalence classes of (0,1)/B(R)-
measurable and Lebesgue square integrable functions from
(0,1) to R with the scalar product (u,v); = Jol u(x)v(x)dx

and the norm ||v| g = (Iol Iv(x)lzdx)l/2 foru,v € H=U.Now
we start our investigation to analyze the proposed method
for SPDE fulfilling Assumptions 1-4. Based on (1) we then
consider A = A(9%/9x?) and er(x) = V2 sin(knx), k € N, as
the orthonormal basis of H = L*((0, 1), R), which satisfy

Aek = —Akek, )Lk = Aﬂzkz. (26)

For the drift term to fulfill Assumption 2, let f : (0,1) x
R — R be a continuously differentiable function with

1 2
|, 1/ (x,0)]°dx < co and

sup
yeR

< 0. 27)

of
@ (x, )

Then, the operator F : H — H given by (F(v))(x) =
f(x,v(x)), for x € (0,1) and v € H, satisfies Assumption 2.
For the diffusion term to satisfy Assumption 3, we consider
b:(0,1) xR — R to be a twice continuously differentiable
function with

ob

|b(x,0)| <R, a(x,y) <R,

(28)
<R,

|52 )
ax 7 LRR)

and also

E"B (Xt)”izs(uo,vg) <R, ”F, (v)"L(H) <R

“F" (V)"L(Z)(Vﬁ,H) s R’ E“F (Xt)”il < R’

“B, (V)"L(H,HS(UO,Va)) <R

5" ]

LV, HS(U,Vs)) <R
E”(_A)th“?{ = E”Xt"éy <R

4 X -
B|x, - X, v, <Rlt2 - g [rna0-p2)

(29)

for all x € (0, 1) and some given R € (0,00). Letb : H —
HS(U,, H) be the operator (B(v)u)(x) = b(x, v(x)) - u(x) for
all x € (0,1).

It hasbeen shown in [16] that B: H — HS(U,, H) fulfills
Assumption 3. For the initial value to satisfy Assumption 4,
we assume that x; : (0,1) — R is a twice continuously
differentiable function with x| ;) = 0. Then the mapping
§:Q — V, given by {(w) = X, for all w € Q fulfills
Assumption 4 for all y € (0,1). With the above setting, the
SPDE (1) reduces to

dX, (x) = [AAX, (x) + f (x, X, (x))] dt

+b(x X, (x))dW, (x),

with X,(0) = X,(1) = 0 and X, = x,(x) fort € [0,T], x €

(0,1), and A = 9%/0x>. .
Moreover, we define a family p/(w) = (1/ \//,Tj)

<g]-,Wt(w))U forallw € O,t € [0,T] and all j € N, and we
consider the mappings AW : Q — Uj,k € {0,1,...,N*~1}
by AW () = Wi,y (@) = Wi (w).

Using these notations, the SPDE (30) can be rewritten as

dX, (x) = [A%Xt (x)+ f (%, X, (x))] dt

N ' (31)
+ 3 [b(x. X, () \Hz9; ()] dBl,
=1

with X,(0) = X,(1) = 0 and X(x) = x,(x) for t € [0,T] and
x € (0,1).
Scheme (21)-(22) applied to the SPDE (30) reduces to

N N N
Y, =Py (smyk + AtSy F (Y1)

(k+1)At

- J SuB (YR ) dw,”
k

At (32)

(k+1)At
+ J Sy B (Y,fV )

kAt
X (JS B(Y,f)de)dWSN),
kAt

where S,, = (I-AtA) " and At = T/N* k € {0,1,...,N*~1},
N € N. Therefore the numerical method (32) satisfies

N _ ok yN (DA N
v =S\, Y + Py ZJ Sa F (YY) ds
1=0 1At
k=1 ~(+1)At i N N
+ Py ZLM SAtB<Yl )dw;
(33)

k=1 -(+1)At
+ Py (Zj si'B (1)

iz Jiae

x <I B(Y,N)dwf> dWSN>,
1At
where 8§, = (I - AtA)™* and for all k € {0,1,...,N*}, N €
N. The following inequalities are classical and one can easily
prove them by using the spectral decomposition of A [1]:

”(_A)SSlAt” <MtS, 1>1,s€[0,1], (34)

LH) =

S T
"SlAt - elAtA”L(H) < A_l/I’ (36)

“(—A)_S (etA - I)"L(H) < M, (37)

(=47 (Sae = Dl iy < M(ALY’, s €[0,1].  (38)



To give the order of the L* convergence for the simplified
Milstein approximation of the evolution equation, we need
the following version of the Gronwall lemma.

Lemma 6. Let {o,},., {B,},50 be two sequences of nonnega-
tive numbers such that oy = 3, = 0 and such that there exists
a positive constant L such that

n—-1
@, <LY g+ B, Vnzl (39)
k=0
then
© nk-1)L
o, < Ze(n_ By~ B> Vnz 1, (40)
k=0

Proof. By Mathematical induction with respect to nusing L <
L
e —1. O

From the above lemma we can deduce that

vn>1, «a, < e("fl)L,Bn. (41)

L <
The main result of this section is stated below.

Theorem 7. Let T > 0, At = T/N? and X, € L*(Q,H).
Suppose that X is the solution of (2) on [0, T]. Let Assumptions
1-4 hold, and let {YN}, be the numerical approximations

obtained by scheme (33). Then there exists a positive constant
C such that

(eed])”

<C ( inf A;
Jj>N+1

/
) (ER%oli)

k (42)

a
+ ( sup //l]> + (At)min(Z(V—ﬁ),y)

J>N+1

Proof. To start the proof, we first note that the exact solution
of SPDE (2) satisfies

At kAt
XkAt =€ XO + JO

AIF(X,)ds

kAt
+ J AIB(X,) dW,
0

(I+1)At (43)

k-1
=eM X, + J AP (X,)ds

1=0 1At

k=1 ~(I+1)At N
+y j AIB(X,) dW,,
o Jiat
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where t = kAt. In particular, (43) shows

kAt
Py (Xpns) = €M X0 + Py (J AIF(X,) ds>
0

kAt
+Py (J AIB(X,) dws)

0

k=1 ((1+1)At
=X} + Py Z J eAIF (X,)ds
1=0 1At

k=1 ~(+1)At
+Py ZLN AIB(X,) dW, .

1=0

(44)
Let
D VES O
= Xiar — Py (Xgae) + Py (Xjad) — Yi' (45)
= é,lj + ékN,
where
& = Xjar = Py (Xear)» & =Py (Xear) - Y-

(46)
For the spatial discretization error €, , we have
E”éllc\]“; = E| Xya: — Py (XkAt)"iI
= E|(1 - Py) Xeaell
= A7 (1= P) CA Xyl 47)
<[ (=A)7" (1 - PN)”i(H)E"XkAt”f/},
< R(sy)’s

the real numbers (sy) ey are given by (see [16])

-y
sy = A (= Pyl = < inf )"> : (48)

j>N+1
For the é,lj with respect to (33) and (44), we have

2 = e - sh
k=1 ~(+1)At A—s)
)
+PN<ZJ (eMIF(X,)
1=0 IAt
- (7))

k=1 (+1)At M)

=S,

+PN<ZLN (eX9B(X,)dW,
1=0
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- SEIB(YN)awN A Ay
w (YY) dw) scf T =Sl (11 ) ds
ki J(l”) skl (YN)
- At 1 R (oA At-s)
1=0 1A + szo L At ”e oA "L(H)
N
X < L B (v))aw) ) de“) x (1+]X,], ) ds.
Y
(52)
=T1+1I+1I1,
(49) For the first term on the right-hand side of inequality (52), we
have
where I = ¢ X2 — 8% v and IT and I11 are, respectively, the
other terms under Py operator. From (36), the first term of ket Alt—s) 2
(49) can be easily estimated by E J(k—l)At ”e B SN” H) (1 X, )ds
(53)
B, <m@?(1e s lxF, )
E X + S
( “ At) At " ) (50) To estimate the second term of (52), one should note that
BTy
< C( = E" ”H ||eA(t—s) _SI;I” i S "eA(t 9 _ Ak 1At'|L(H
54
+ "eA(k—l—l)At _ gk " )
Let C denote a constant which may depend on A, f,b,R, N,
M, or T. We now treat the second term of (49) and from (35) and (37), we have
k-1 o (+1)At i QA=) _ JAG-1-DAt < [[(=a)reAkt-ar
II = PN (Z J;At (eA(t S)F (Xs) “ ” || “L(H
1=0 « ||(_A)—y (eA(l+1)At—s B I)"L(H)
- Sy/'F (Y,N))ds> _ ol nar—9y
T ((k=-1-1A)Y
k=1 (I+1)At (55)
= Py <Z j (X9 sy F(X,) ds>
=0 Y1t (5 Therefore, from (35), (38), and (36), we have
k=1 (+1)At k l
eB( X[ S F ) - () ds RE—
1=0 “IAt "e At "L(H)
k=1 c(+1)At < (=A) (eA*DAY Ay Y (T— S
+PN(ZJ' Sl;l (F (Xin,) —F(Yf’))ds) < "( ) (e )( )7 ( At)"L(H)
1=0 JIAt “S A(k—I-1)At Sk - 1 "
At
= I + 11, +1II,. HED (56)
AtY 1
SM(((k—l— DA T koI 1)
According to Assumption 2 and the fact that |[Py(v)lly <
[vll;; for all v € H, we get - (At)Y )
T ((k-1-1)AD)Y
T Ay e th h
-s) _ gk- us we have
PRI W e
Alt-s) k-1 (At)Y
X (1 + ”Xs”Vy)dS “e "= S "L(H) =M ( (k-1-1)AD)" )" (57)
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Therefore, by taking the expectation of (52) to the power of 2 Now for the last term of (49), we obtain

and using (53) and (57), we get
k=1 - (+1)At A
, I = Py ( Y LAt (eXB(X,)aw,
E|I1, &
k=15 (N N
k=2 ((+1)At (A1) , 2 = Spt B(Yz )dWs )
co( Y[ ey (1 EIXE, ) ds e e
= e ((k=1-1)At) v -y J' sk1p (v (64)
2 1=0 IAt t
+ C(At)”, .
(58) x <j B(vN)aw) ) dmN>
Iat

in which the summation can be estimated as = IIT, + I, + IT1, + I11,,

i Z (+1)At dt where
= k—l—lAtd_ LA k=1 ((+1)At
= ( AL t (59) III, = Py ZJ " A9
<!t T d<1 e
T1-d '
x B(X,) (dw, - dWSN)> ,
For the second term of (51), Proposition 5 and Assumption 2
lead to k=1 ~(l+1)At -
1112=PN<ZJ (e -5y
, K . 1=0 JlAt
minyy,
Bl < 3 [ ISk o s §
=0 “1& (60) x B(X,)dw! |,
< C(At)Zmin{y,l/Z}.
B k=1 ((+D)A
I, = Py ) J
For the third term of (51), by using Assumption 2, we have ig Jiae
k-1 oG+ x (B(X;p) - B(Y]Y))aw >
s 3 [ o O ) £ (5]
=0 k=1 (+1)A
- III, = Py <Z J
<5 P e @ )
= x (B(X,) = B(Xia)) dW,
k-1
N k=1 c(+1)At
<cyade’],, - j sk'B (v)
1=0 i Jiat
which leads to « ( J : B (YN) dWN) awN
IAf 1 u s .
k-1
2\1/2 (65)
E|IL?, < C(Z (At) (E"elN ||H) > : (62)
1=0 Using the fact that | Py (V)|l; < IVl forallv € H, for ITI,, we
have
where we have used the Minkowski inequality in (62). , )
Therefore, from (58), (60), and (62), we get E J At=9p (x,)d (VVS _ WN)
0 H
0o t
. _ A(t-s)
E|III% < C <(At)2y + (AgyPmine1/2) =E| ). <L ¢B(X,) g, <9J’Ws>>
Jj=N+1 H
(63) t _ 2
= 3 w( [ Ee g ).

k-1 2
+ <Z (At) (E||e1N";)1/2> > . j=N+1
1=0 (66)
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t
and therefore 2 y (L (t—5? [(1 . E"XSHVY )2] ds)
t
E L eA(t_S)B (Xs) d (Ws - ‘/VSN) 200 ¢
" < ( sup ; ) (J (t—s)_29d5>,
© ‘ A(t—s) - 2 >N+l 0
R (L BB (X)QQ gj"HdS> (67) (70)
j=N+1
© o ! —s —a 2 i
_ ; 1(.“]')2 +1 <J‘O E"eA(t B (X,)Q gj"HdS) _ which leads to
j=N+
t 2
Thus i E|L |, < EH L B (X,)d (W, - W) ;
t
| [ 2B (x)d (w, - w) . 7
0 H
2 <<l ) -
@ J
< ,
()
For II1,, by Proposition 5, it is seen that
. y
© —s - 2
X z Mf(J E“eA(t 'B(X,)Q gj“Hds) (68) )
joNaL R ki (l“)At( A=) _ Y (x,) dW
E J A9 E N B(X,) dW.
2 — Jiat
< ( sup y; ) =0 H
j>N+1 k=1 ~(I+1)At A=) B(X) J
< E
00 e e ;) L " ”(e ) "HS(UO m*
o ([ B Qg )
j=1 0 k=1 ~(+1)At 5[ Alt-s) PN (72)
which means s IZZO JZAt ”(_A) (e —Sat )“L(H)
t 2
EIIL B (X)) d (W, - W) ) < B (X Frscw vy @S
e ol -5 ( Alt-s) _ k-1\|]?
<(sop ) <Ry [ oAy (- o) s
j>N+1 =0 JIAt
‘ -5 - 2
X (_[0 E"eA(t )B (XS) Q gj"HS(Ug,H)dS) in which
2«
(I+1)A 2
A(t-s) k-1
() S et (S
! 20 -6 —a||? (+1)A
X (L (t-s) E||(—A) B(X,)Q "HS(UO,H)dS)' _ Z J 41 t“( 4 (A0 SZZ)"i(H)dS (73)
(69) =0
kAt
Therefore, from (13), we get 2 . J(k N “ - A),g At—s) _s,, “L(H
t
El“0 B (X)) d (W, - W)
" Now for the first term on the right-hand side of (73), we need
c ( )2"‘ to estimate
< Sup ;
J>N+1 B " A
"(_ ) (e oA “L(H)
(j -9 [(1+]x]y,) ]ds>
< " (—A)™ (eA(tfs) _ AkIDA HL(H) (74)
20
-8 ([ A(k-I-DAt _ k-1
<c( sun ) Ay (e s
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and then by (34) and (36), we obtain
“(_ A)7? ( gA=S) _ JAG-1-DA ”

< “(_A)l—aeA(k—l—l)At”L(H)

% “(_A)—l (eA(l+1)At—s _

((k+1)At—5s)
C—l_s.
((k=1-1)A1)
Similarly from (34), (35), we obtain

||(_A)—8( A(k—I1-1)At _Sk -1 “

L(H)

(75)
Dlen

L(H)
< "(_A)1/2—66A(k—l—1)At(_A)—1/2 (I-5,,)

N "(_ A)—asm (eA(k—l—l)At Sk - 1

lecen

)

(AD)Y? 1 )
<C
(((k—l— Dane  k-1-1

(An)'/? (At)" )
<C ,
= (((k—l— 1) At)l/20 ! (k=1-1) A"

where y; > 0 is such that

(76)

1
y<y < > (77)

which is possible since

(78)

=1
AN
N | =

Therefore,

"(_A)its (e = SZtl "L(H

<c( (N i ) 79
T\ (k-1-DA)E (k-1-1)AD)™ )’

For the second term on the right-hand side of (73), we can
write

"(_A)_‘S (eA(H) - SAf)"i(H)
A ) =Sy )
<C((t-9°+(an°),
from which we get

kAt
J(k DAt [ (e - SN)"i(H)dS <C@n™. (1)

Thus from (73), after replacing (79) and (81) in (72), we obtain

o (oA Alt-s) k-1 N

. _
ZI (e - S, )B(Xs)dWs
1=0 IAt

2
E

o (82)
< C((an + (ap™ + ("),

which gives

Abstract and Applied Analysis

E|IIL|;, < C(At™ < C(At)?, since <y,  (83)

For the third term III;, we have

2

H

k=1 ~(1+1) : N
= Z sz E"S B(Xjy) - B (Yl ))"HS(UO,H)dS
1=0
k=1 ~(+1)A
<3 [,

X "(B (Xiar) - B (YIN))“HS(UO’H)dS

k- (I+1)At
Ele
S
(84)
This implies that
2
E|IIL|
k-1 (l+1)At 2
<E B(X B dW
D J, S (B0 B () -
k-1 e
<CY (A E|je]|.,-
1=0
Finally for III,, the last term of (65), we should recall
kL pdeoae
111, = P, J S,
N ; " At
x (B(X,) = B(Xa,)) dWY
k=1 ~(+1)At
Y,
S s
X (J B(Y,N)dwf>dmN>.
1At
(86)
Using the fact that
B(X,) - B(Xiar)

=B (XlAt) (Xs - XlAt)
1
[ B (= X100) (X, = X X, = Xin)

x(1—-r)dr
(87)
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foralls € [IAt,(I+1)At],1 € {0,1,2,...,N*
r € (0, 1) and using the inequality

-1}, N e N,and

(al+a2+---+an)2Sn(af+a§+---+az) (88)
forallg, e R,i=1,...

, N, for I11,, we obtain

E|L [,

<2E

(I+1)At oot
>, S )
1=0

At

2

X (Xs = Xar — LN B (Xa) szf\]) d‘/sz

H

(I+1)At i 1 .
JlAt St L B (XlAt +r (Xs - XlAt))

+2E

X (Xs - XlAt’ Xs - XlAt)

2
x (1-7) drdWsN

H
(89)

To estimate the first term of (89), we first approximate

2

S
E”Xs - XlAt - Jlm B (XlAt) dWi\] (90)

for all IAt,s € [0,T], with IAt < sand all N € N. More
precisely, with respect to (88), we have

g

s
Xs - XlAt - j
1At

< (et 1) xmn;

2

+5E J A W) du
1At H
(o1
2
A(s—u)
+5E sz X,)d(w,-wy)
H
+5E J A(s w_
1At ( ) H

+5EJI (B(X,) - B(X,))dwy 2

N
Xs - XlAt - JIAt B(XlAt)dW;V

1

By using (71), we have

O e

5(s - IAL) (JI E|e"“F (Xu)";du>
At

20
( + ]>
J>N+1

+5 <J;AtE'| (A~ I)B(Xu)";S(UO’H)du)

+5 (J E|B(X
IAt

E|[(-A) Xip s

(92)

.)— B (th)“;S(UwH)du) .

This implies that

2

H

< 5R(s — IAt)* + 5 (s — IAY)

s 2
X (J E|F (Xu)”;du) + C( sup m)
IAt j>N+1
-8 (s—u) 2
es([Jea -k,
X E“(—A)BB (Xu)";(umH)du)
o5 ([ B, - Xl
At

2a
< 5R(s — IA)* + 5R(s — IA)? + C< sup 7); >

J>N+1

es( [ Jea @ -k,

(93)
><E||( A) B(Xu)"HS(U H)d )

S
+5R? <j E|X, - X,At||§1du>
IAt

5R(s — IAt)*

IN

2a
+5R(s — IAt)? + C( sup ;7]-)

j>N+1

+5 (JI (s - E|[(-4) B(x,)| — H)du>

" 5R2 <LA! "(_A)iﬁ“L(H)E"Xu - Xs”%ﬁ;du)
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for all IAt,s € [0,T], with [At < s, and all k € N. Therefore,
we obtain

s 2

N
E‘ Xs - XlAt - JlAt B (XlAt) qu H

< 5R(s — IAt)* + 5R(s — IAt)?

20 s
+ C( sup ’7]‘) +5R (J (s-— u)mdu>
J>N+1 IAt
o 2
+5R J E|X, - X du>
(], 2, - X,

2a
< 10R’(s — IAE)™ + C( sup 11j>

j>N+1

+ SR(S - lAt)1+26 (94)

: 2
+5R* (LN E||x, - le||vﬁdu>

2«
< 15R’(s — IAD)™ + C( sup ’7;’)

J>N+1
s 1/2
+5R* (LN (E“Xu - XIA,||§‘,/3) du)

20
< 15R*(s - IAt)™ + C( sup 17]-)

j>N+1

s _ 1/2
+ 5R4<J R(u - lAt)m‘“(4<V_ﬂ)’2>> du
IAt

and hence

s 2

N
E‘ Xs - XlAt - JlAt B (XlAt) qu H

2a
< 15K’ <(s — AP + C( sup qj)

j>N+1

S .
+5R’ (J (u— lAt)mmM(y_ﬁ)’z)) du)
1At

2«
< 15R’° <(s—lAt)2V +C< sup 111-)

Jj>N+1

(95)

n SRS (S _ lAt)l+min(4(y—ﬂ),2) )

2«
<C ((s — IAf)mInA0=FR2y) ( sup r]j> )
j>N+1

for all IAt,s € [0, T], with IAt < s.

Abstract and Applied Analysis

Therefore,

k=1 cl+1At el
Z J Spe B (Xiar)
1=0 “IAt

2

X (Xs = Xiae — LN B (Xia) dWlf\]) dWsN

H
k=1 ~l+1At
< E
!
X | B" (Xiar)
X (Xs - XlAt
s 2
- j B(X,) dWY > dwl ds
IAt HS(U,,H)
5 k=1 ~(+1)At
<R J E
s 2
XN X = Xiae J B(XlAt)dW;N ds)
H
(96)
and hence from (95), we get
k=1 ~(+1)At el
EIY ]S ()
iz it
. 2
N N
X <Xs = Xiae — J B (X)) dW, )dWs
1At u

k=1 ~(+1)At )
<C Z J (s — [Af)™nA0-H)2)

iz Jiae
20
+< sup ’7]‘) )ds)
J>N+1

k=1 -(+1)At .
sc( Y[ - mpmepng,
= Jine

20
+< sup ﬂj) )
j>N+1

2«
<C <Nz(At)(1+min(4(y—ﬁ),2y)) " ( sup ’7;’) )

J>N+1

2a
<C <(At)min(4(”p)’27) + < sup 11j> ) .
Jj>N+1

(97)
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And for the second term of (89), we have

k=1 ~(+1)At il 1 "
BNy [ s B Gt (- X))
= Jiae 0
x (Xs - XlAt’Xs - XlAt) (98)
2
x(l—r)drdWsN
H
ko1csDar 1
sy [ B (e (X~ X))
Zdae  Jo
X(Xs XlAt
2
X, - XlAt)”HS(UO,H)dr ds
k=1 (+1)At )
2
<y | E[(RIx - Xy, ) ds
= Jiae
k=1 ~(+1)At (99)

EIX, - Xl ds

k-1 ~(+1)At )
SR(Y [ RS- 8™ P s
= Jine

k-1
< R3 Z (At)1+min(4(y—ﬁ),2) )
1=0
< C(At)min(4(}’*ﬁ)>2).
Therefore, from (71), (83), (85), (89), (97), and (98), we obtain
E|III|Z,

20 k—
<C (( sup /4]») + (AT + ZI(N)E"‘#V";)
=0

Jj>N+1

20
+ (Ar)REORA) ( sup yj>

Jj>N+1

A (100)
" (At)mm(4()/—ﬁ),2)/)

20
<C (( sup [/t]) + (At)min(‘l()”ﬁ))z]’)
Jj>N+1

k-1
2
-3 eosle, )
1=0
Hence from (50), (63), and (100), we obtain

(el

2\1/2
SC(%%Enaﬁnp"ﬁw

13
' k=1 2\1/2
N (At)mln{%l/Z} + Z (A1) (E”ekN“H)
1=0
o
+ ( sup P‘j)
J>N+1
. k-1 2\1/2
N (At)mm(Z(}/*,B)ﬁ’) + Z (At) (E||éiv||H) > '
1=0
(101)

Now we take an integer g > 1 and use the Holder inequality
for the two summations in the last estimation to get

k-1
> o (2N
1=0
k-1 (29-1)/2q
< (ZAL‘)
1=0

k-1 129
<(F o (eter)™)
=0

1

k= 2\4 12
co( T (e))

1=0

(102)

Therefore, with using (97) and (98), we obtain
(2le;,)"

2 \1/2
<R << (E”X(;J'H) N (E”Eé\r”;)l/z

2
T (Af)TICO-PL) +< sup [,;j> > (103)

Jj>N+1
k1 N2 \4
+ ZZ (At) (E"ek "H)
=0
k-l N2 \4
+ lz @ (Ele],) |-
-0
We then have
q
(e

5 \1/2
< C<< (E"X(;C"H) N (E"éf)v”;)l/z
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2q
. (At)min(Z(]/*ﬁ)J’) + < sup [,tj>
J>N+1
k-1 N2 \4
+(1+Ap) Z (At) (E"ek ”H)
=0
(104)
Hence, we conclude from (41) that
2
2 \1/2 (Elx I: )1 '
(o)™ = = (n)
(105)

+ (At)min(z(y—ﬁ),y)

Finally, with respect to (47) and (105), we obtain

(Bler )"

1/2
-y Elx 2 o
<C (inf)h) +<"O—”H)+<sup[,¢j)

N+ k 7>N+1
+ (At)min(z(}’*ﬁ)ﬁ’)
(106)
which completes the proof of the theorem. O

5. Simulation Results

In this section we consider SPDE (1) and solve it by numerical
scheme (22). More formally, let k = 1/100 and & : [0,1] —
R be given by &(x) = 0 for all x € [0,1] and suppose that
fib:(0,1) x R — R are given by f(x,y) = 1 — y and
b, y) =1 -y)/(1+ yz) forall x € (0,1), y € R. The SPDE
(1) reduces to

1 9
dXt (.X) = mﬁxt (X) +1- Xt (X) dt
(107)
1-X,(x)

1+ X2 (%) AW, (x)

with X,(0) = X, (1) = 0 and X, = 0 for x € (0,1) and
t € [0,1]. We also assume that the SPDE (107) should be
solved with a precision of, say, two decimals, that is, with
the precision ¢ = 0.01 in (3). To confirm numerically our
theoretical founding in Theorem 7, we recall that for SPDE
(107) there should exist some real number C, € (0, c0) such
that

1/2

(E|xr - I) <cN (108)

Abstract and Applied Analysis

10°

107

1072}

1073}

Mean square approximation error

107 . . . .
10° 10 10* 10° 108 10'°
Number of used independent random variables

-0+ Orderlines 3/8
-e- Orderlines 1/2

—o— Simplified Milstein scheme
—e— Milstein scheme
—o— Linear implicit Euler scheme

FIGURE 1: Approximation error in the sense of (22) of the linear
implicit Euler and simplified Milstein and Milstein type schemes
against the precise number of independent standard normal random
variables needed to compute the corresponding approximation for
N € {2,4,8,16,32,64}.

holds for each small r € (0,3/4). The overall convergence
order of the linear implicit Euler method (4) is 3/8— (see
[16]), while the overall convergence of the simplified Milstein
scheme (22) and Milstein scheme (7) is 1/2. In Figure 1 the
approximation error in the sense of (6) of the linear implicit

Euler approximation ?Zs, obtained by (4), of the approx-
imation 171\1}72, obtained by Milstein scheme (7), and of the

approximation YII\}Z, obtained by simplified Milstein scheme
(22), is plotted against the precise number of independent
standard normal random variables that is needed to compute
the corresponding approximation for N € {2,4,8,...,128}
on a log-log scale. Figure 1 confirms the order of convergence
of our scheme and compares with the other two schemes.
Besides, the simplified Milstein scheme (22) and the Mil-
stein scheme (7) produce nearly the same approximation
errors. Numerical results also show that the linear simplified
Milstein scheme (21) and the Milstein type scheme (7) are
much computationally effective than the linear implicit Euler

scheme (4). To simulate one path ?i;, one needs to generate
32* = 1048576 independent normal random variables, but
this amount for simulation of }75’222 and Y33222 reduces to 32° =
32768. From the numerical results reported in Table 1 and
Figure 1, we conclude that the simplified Milstein scheme is
more effective than implicit Euler method and slightly better
than Milstein scheme.

6. Conclusions

A simplified Milstein scheme for solving stochastic partial
differential equations of the form (1) with multiplicative trace
class noise was theoretically and numerically investigated.
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This scheme has advantages to some other methods such
as linear imzplicit Euler and Milstein schemes. We have
shown the L~ convergence of this method under the stated
conditions and then we have illustrated the effectiveness of
the simplified Milstein scheme numerically.
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