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We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators
which are fuzzy demonic join (⊔fuz), fuzzy demonic meet (⊓fuz), and fuzzy demonic composition (◻fuz). Our definitions and
properties are illustrated by some examples using mathematica software (fuzzy logic).

1. Introduction

1.1. Motivation. Fuzzy set theory provides a major newer
paradigm in modeling and reasoning with uncertainty.
Zadeh, a professor at University of California at Berkeley was
the first to propose a theory of fuzzy sets and an associated
logic, namely, fuzzy logic in [1]. Essentially, a fuzzy set is a set
whose members may have degrees of membership between
0 and 1, as opposed to classical sets where each element
must have either 0 or 1 as the membership degree; if 0, the
element is completely outside the set; if 1, the element is
completely in the set. As classical logic is based on classical set
theory, fuzzy logic is based on fuzzy set theory. Since Zadeh’s
invention the concept of fuzzy sets has been extensively
investigated in mathematics, science, and engineering. The
notion of fuzzy relations is also a basic one in processing
fuzzy information in relational structures; see, for example,
Pedrycz [2]. Goguen [3] generalized the concepts of fuzzy sets
and relations taking values on partially ordered sets. Fuzzy
relations were initiated and applied to medical models of
diagnosis by Sanchez [4]. Fuzzy set theory is now applied
to problems in engineering, business, medical and related
health sciences, and the natural sciences. Fuzzy relations play
an important role in fuzzy modeling, fuzzy diagnosis, and
fuzzy control. They also have applications in fields such as
psychology, medicine, economics, and sociology.

There are countless applications for fuzzy logic. In fact,
some claim that fuzzy logic is the encompassing theory over
all types of logic. The items in this list are more common
applications that one may encounter in everyday life.

(a) Temperature Control (Heating/Cooling) [5–7]. I do not
think the university has figured this one out yet. The trick
in temperature control is to keep the room at the same
temperature consistently. Well, that seems pretty easy, right?
But how much does a room have to cool off before the heat
kicks in again? There must be some standard; so the heat
(or air conditioning) is not in a constant state of turning on
and off. Therein lies the fuzzy logic. The set is determined
by what the temperature is actually set to. Membership in
that set weakens as the room temperature varies from the set
temperature. Once membership weakens to a certain point,
temperature control kicks in to get the room back to the
temperature it should be.

(b) Medical Diagnosis [8]. How many of what kinds of
symptoms will yield a diagnosis? How often are doctors in
error? Surely everyone has seen those lists of symptoms for
a horrible disease that say “if you have at least 5 of these
symptoms, you are at risk.” It is a hypochondriac’s haven.The
question is as follows: how do doctors go from that list of
symptoms to a diagnosis? Fuzzy logic.There is no guaranteed
system to reach a diagnosis. If there was, we would not hear
about cases of medical misdiagnosis. The diagnosis can only
be some degree within the fuzzy set.

Fuzzy set theory appeared in 1965 [1]. Since then, it has
received increasing attention by the scientific community
and applied in almost all the general disciplines [9–11].
Fuzzy set theory provides a strict mathematical framework
(there is nothing fuzzy about fuzzy set theory) in which
vague conceptual phenomena can be precisely and rigorously
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studied. It can also be considered as amodeling language well
suited for situations in which fuzzy relations, criteria, and
phenomena exist. It will mean different things, depending
on the application area and the way it is measured. In
the meantime, numerous authors have contributed to this
theory. In 1984 as many as 4000 publications may already
exist. The first publications in fuzzy set theory by Zadeh
[1] and Goguen [3, 12] show the intention of the authors
to generalize the classical notion of a set. Zadeh [1] writes
“The notion of a fuzzy set provides a convenient point of
departure for the construction of a conceptual framework
which parallels in many respects the framework used in the
case of ordinary sets, but is more general than the latter
and, potentially, may prove to have a much wider scope
of applicability, particularly in the fields of mathematics
and computer science (pattern classification and information
processing). Fuzzy logic is a superset of conventional logic
that has been extended to handle the concept of partial
truth-truth values between “completely true” and “completely
false”. As its name suggests, it is the logic underlying modes
of reasoning which are approximate rather than exact. The
importance of fuzzy theory derives from the fact that most
modes of human reasoning and especially common sense
reasoning are approximate in nature.”

The calculus of relations has been an important compo-
nent of the development of logic and algebra since themiddle
of the nineteenth century [13–15]. The main advantages of
the relational formalization are uniformity and modularity.
Actually, once problems in these fields are formalized in terms
of relational calculus, these problems can be considered by
using formulae of relations; that is, we need only calculus
of relations in order to solve the problems. In the context
of software development, one important approach is that
of developing programs from specifications by stepwise
refinement; see, for example, [16–20]. One point of view is
that a specification is a relation constraining the input-output
(resp., argument-result) behaviour of programs.

The demonic calculus of relations [21, 22] views any
relation 𝑅 from a set 𝐴 to another set 𝐵 as specifying those
programs that terminate for all 𝑎 ∈ 𝐴 wherever 𝑅 associates
any values from 𝐵 with 𝑎, and then the program may only
return values 𝑏 for which (𝑎, 𝑏) ∈ 𝑅. Consequently, a relation
𝑅 refines another relation 𝑆 if 𝑅 specifies a larger domain
of termination and fewer possibilities for return values. The
demonic calculus of relations has the advantage that the
demonic operations are defined on top of the conventional
relation algebraic operations and can easily and usefully be
mixed with the latter, allowing the application of numerous
algebraic properties.

In Section 2, we present our mathematical tool, namely,
relational algebra. First, we will give certain notions about
elementary theory on relations and ordered structures.There,
a concept of type can be defined that allows an abstract
treatment of the domain (of definedness) of an element and
also of assertions. After some auxiliary results (Section 3
on relational calculus and Section 4 on fuzzy calculus), we
present, in Section 5, notions andproperties of demonic fuzzy
operators. Finally we conclude our work in Section 6.

2. Elementary Theory on Relations

Using Tarski [15] approach, we distinguish two levels of
abstraction in the study of binary relations: the elementary
theory of relations and relational calculus. First level defines
the relations as sets of (pairs) and second level defines the
relations as elementary objects on which the operations are
defined and studied in an algebraic point of view.

In this paper, we need both levels of abstraction. The first
one will give us our examples and the second one is useful for
our proofs and formulas. So, in this section we will present
both levels. A relation 𝑅 from a set 𝑋 to a set 𝑌 is a subset of
pairs (𝑥, 𝑦), where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. Formally,

𝑅 ⊆ 𝑋 × 𝑌 = {(𝑥, 𝑦) | 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌} . (1)

If𝑋 = 𝑌, then 𝑅 is homogeneous on𝑋. The relations on finite
sets can be represented by matrices. For example, the relation
𝑅 = {(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑑), (𝑐, 𝑑), (𝑑, 𝑒)} can be represented by

𝑅 =

𝑎

𝑏

𝑐

𝑑

𝑒

𝑎 𝑏 𝑐 𝑑 𝑒

(

0 1 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

)
. (2)

The graphs and relations are closely linked.
Every finite relation can be interpreted as a representation

graph and vice versa. Graph (1) which corresponds to the
relation 𝑅 is shown in Figure 1.

In matrix notation, an entry 0 corresponds to the absence
of an edge between two vertices of the graph (the absence of
the pair in the relation) and an entry 1 means the opposite.

As relations are sets, they are ordered by inclusion. The
least relation between sets 𝑋 and 𝑌 is the empty (also called
zero), noted Ø

𝑋𝑌
, and the greatest one, called universal

relation, and noted 𝐿
𝑋𝑌

. A particular relation defined for
every set 𝑋 is the identity relation, noted 𝐼

𝑋

def
= {(𝑥, 𝑥) |

𝑥 ∈ 𝑋}. The set of elements of 𝑋 whose images by 𝑅 is called
domain of 𝑅, noted dom(𝑅), and the set of images is noted
img(𝑅). Formally,

dom (𝑅)
def
= {𝑥 | (∃𝑦 : (𝑥, 𝑦) ∈ 𝑅)} ,

img (𝑅)
def
= {𝑦 | (∃𝑥 : (𝑥, 𝑦) ∈ 𝑅)} .

(3)

As relations are particular sets, we can apply the usual
sets operations, which are union (∪), intersection (∩), and
complementation (

—
). Relations are ordered by inclusion.

More, their structure helps us to define other operations
which are as follows.

(a) Inverse of a relation 𝑅, denoted 𝑅S:

𝑅
S

= {(𝑥, 𝑦) | (𝑦, 𝑥) ∈ 𝑅} . (4)

(b) For 𝑅 ⊆ 𝑋 × 𝑍 and 𝑆 ⊆ 𝑍 × 𝑌, we define the
composition of 𝑅 and 𝑆, noted 𝑅 ∘ 𝑆, as follows:

𝑅 ∘ 𝑆 = {(𝑥, 𝑦) | (∃𝑧 : 𝑧 ∈ 𝑍 : (𝑥, 𝑧) ∈ 𝑅 and (𝑧, 𝑦) ∈ 𝑆)} .

(5)
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Figure 1: The graph associated to relation 𝑅.

We remark that 𝑅 ∘ 𝑆 ⊆ 𝑋 × 𝑌.

The composition operator symbol (∘) will be omitted (i.e., we
write (𝑅𝑆) for (𝑅 ∘ 𝑆)).

We can now define the abstract algebraic structures
having many properties of the relations. They are based
on boolean algebras and other operators which are the
composition (∘) and the inverse (

S
) and also a particular

element 𝐼 (identity relation).

3. Relational Calculus

The origin of relational calculus goes back to last century
with the work of de Morgan [23, 24] and Ströhlein [14], also
in the beginning of present century with the work of Peirce
[25, 26]. Their study has been revived by the work of Chin
andTarski [15, 27]. Formore details on the algebra of relations
see [27–33]. In what follows, we will give a definition of the
algebra of relations and some important models of axioms
characterizing this algebra. Most of our definitions are from
[34].

Definition 1. An abstract heterogeneous relational algebra is an
algebraic structure (R, ∪, ∩,

—,S, ∘,Ø, 𝐿, 𝐼) on a nonempty set
R of elements called relations, such that the next conditions
are satisfied.

(a) Every structure (R, ∪, ∩,—,Ø, 𝐿) is a complete atomic
boolean algebra, with zero element Ø, universal ele-
ment 𝐿, and order ⊆.

(b) Every relation 𝑅 has an inverse 𝑅S.
(c) (R, ∘) is a semigroup with precisely one unit element

𝐼.
(d) Schröder rule𝑃∘𝑄 ⊆ 𝑅 ⇔ 𝑃S ∘𝑅 ⊆ 𝑄 ⇔ 𝑅∘𝑄S ⊆ 𝑃

is valid.
(e) Tarski rule is valid: 𝐿 ∘ 𝑅 ∘ 𝐿 = 𝐿 if and if only 𝑅 ̸= Ø.

The precedence of the relational operators, from highest
to lowest, is the following: —,S, bind equally, followed by
(∘) followed by ∩ and finally by ∪. The scope of ⋃

𝑖
and ⋂

𝑖

goes to the right as far as possible. The relation 𝑅S is called
the converse of 𝑅. From Definition 1, the usual rules of the
calculus of relations can be derived (see, e.g., [27, 34–36]).
We assume these rules to be known and simply recall a few of

them. We will present certain examples of models satisfying
these axioms.

Example 2. (a) The algebra of binary relations on different
sets is an important relation algebra, because it is very useful.
Let 𝑆
1
, . . . , 𝑆

𝑛
be sets. Then

R
def
= {𝑅 | 𝑅 ⊆ 𝑆

𝑖
× 𝑆
𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑛} , (6)

with relation operators, is a relation algebra.The operations ∪
and ∩ between relations 𝑄 and 𝑅 are defined if and if only 𝑄

and 𝑅 have the same type. A relation is homogeneous if and
if only 𝑅 : 𝑆

𝑖
↔ 𝑆
𝑖
for a certain 𝑖. The composition 𝑄 ∘ 𝑅 is

defined if and if only 𝑄 : 𝑆
𝑖
↔ 𝑆
𝑗
and 𝑅 : 𝑆

𝑗
↔ 𝑆
𝑘
for certain

𝑖, 𝑗, 𝑘.
(b) The set of all homogeneous binary relations on a set

𝑋, denoted Rel(𝑋)
def
= (P(𝑋 × 𝑋), ∪, ∩,S,—, ∘,Ø, 𝑋 × 𝑋, 𝐼

𝑋
),

is a relation algebra.
(c) The algebra of boolean matrices is another important

relation algebra.
We recall by the next examples how some of the operators

are applied to boolean matrices. To respect the usual conven-
tion, we will use the boolean values {0, 1} instead of the values
{Ø, 𝐿}. Consider

𝐼
2×2

= (
1 0

0 1
) , Ø

1×2
= (0 0) ,

𝐿
2×3

= (
1 1 1

1 1 1
) , (

1 0

0 1

1 0

)

S

= (
1 0 1

0 1 0
) ,

(
1 0 1

0 1 0
)(

1 0

0 1

0 1

) = (
1 1

0 1
) .

(7)

(d) We will give another example. The set of matrices
whose entries are relations constitutes a relation algebra [34],
with the operators defined as follows:

(𝑅 ∪ 𝑆)𝑖𝑗 = 𝑅
𝑖𝑗
∪ 𝑆
𝑖𝑗
, (𝑅)

𝑖𝑗
= 𝑅
𝑖𝑗
,

(𝑅𝑆)𝑖𝑗 = ⋃
𝑘

𝑅
𝑖𝑘
𝑆
𝑘𝑗
, (𝑅 ∩ 𝑆)𝑖𝑗 = 𝑅

𝑖𝑗
∩ 𝑆
𝑖𝑗
,

(𝑅
S

)𝑖𝑗 = (𝑅
𝑗𝑖
)
S

.

(8)

The constant relations are defined as follows:

𝐿
𝑖𝑗

= 𝐿, Ø
𝑖𝑗

= Ø, 𝐼
𝑖𝑗

= {
𝐼 if 𝑖 = 𝑗

Ø otherwise,
(9)

where 𝑅
𝑖,𝑗
denotes entry 𝑖, 𝑗 of matrix 𝑅. Of course, 𝑅∪ 𝑆 and

𝑅∩ 𝑆 exist only if matrices 𝑅 and 𝑆 have the same dimension;
the composition 𝑅𝑆 exists only if the number of columns of
𝑅 is the same as the number of rows of 𝑆. The entries of the
identity matrix (which is square) are 0, except those of the
diagonal which are 1. The entries of the zero matrix are Ø
and those of the universal matrix are 𝐿.

From Definition 1, the usual rules of the calculus of
relations can be derived (see, e.g., [27, 34–38]). We assume
these rules to be known and simply recall a few of them.
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Theorem 3. Let 𝑃,𝑄, 𝑅 be relations and let 𝑋 be an arbitrary
index set. Consider the following:

(1) ⋃
𝑖∈𝑋

𝑅
𝑖
= ⋂
𝑖∈𝑋

𝑅
𝑖
,

(2) ⋂
𝑖∈𝑋

𝑅
𝑖
= ⋃
𝑖∈𝑋

𝑅
𝑖
,

(3) (𝑄 ∩ 𝑅) ∪ 𝑅 = 𝑄 ∪ 𝑅,
(4) 𝑃 ∩ 𝑄 ⊆ 𝑅 ⇔ 𝑃 ⊆ 𝑄 ∪ 𝑅,
(5) 𝑄 ⊆ 𝑅 ⇔ 𝑅 ⊆ 𝑄,
(6) 𝑄(⋃

𝑖∈𝑋
𝑅
𝑖
) = ⋃

𝑖∈𝑋
𝑄𝑅
𝑖
,

(7) 𝑃(𝑄 ∪ 𝑅) = 𝑃𝑄 ∪ 𝑃𝑅,
(8) (⋃

𝑖∈𝑋
𝑄
𝑖
)𝑅 = ⋃

𝑖∈𝑋
𝑄
𝑖
𝑅,

(9) (𝑃 ∪ 𝑄)𝑅 = 𝑃𝑅 ∪ 𝑄𝑅,
(10) 𝑄(⋂

𝑖∈𝑋
𝑅
𝑖
) ⊆ ⋂

𝑖∈𝑋
𝑄𝑅
𝑖
,

(11) (⋂
𝑖∈𝑋

𝑄
𝑖
)𝑅 ⊆ ⋂

𝑖∈𝑋
𝑄
𝑖
𝑅,

(12) 𝑄 ⊆ 𝑅 ⇒ 𝑃𝑄 ⊆ 𝑃𝑅,
(13) 𝑃 ⊆ 𝑄 ⇒ 𝑃𝑅 ⊆ 𝑄𝑅,
(14) (⋃

𝑖∈𝑋
𝑅
𝑖
)
S

= ⋃
𝑖∈𝑋

𝑅S
𝑖
,

(15) (⋂
𝑖∈𝑋

𝑅
𝑖
)
S

= ⋂
𝑖∈𝑋

𝑅S
𝑖
,

(16) (𝑄𝑅)
S

= 𝑅S𝑄S,
(17) 𝑅

S
= 𝑅S,

(18) 𝑃𝑄 ∩ 𝑅 ⊆ (𝑃 ∩ 𝑅𝑄S)(𝑄 ∩ 𝑃S𝑅),
(19) 𝑃𝑄 ∩ 𝑅 ⊆ 𝑃(𝑄 ∩ 𝑃S𝑅),
(20) 𝑃𝑄 ∩ 𝑅 ⊆ (𝑃 ∩ 𝑅𝑄S)𝑄,
(21) 𝐿𝐿 = 𝐿,
(22) (⋂

𝑖∈𝑋
𝑅
𝑖
𝐿)𝐿 = ⋂

𝑖∈𝑋
𝑅
𝑖
𝐿,

(23) (⋃
𝑖∈𝑋

𝑅
𝑖
𝐿)𝐿 = ⋃

𝑖∈𝑋
𝑅
𝑖
𝐿,

(24) (𝑃 ∩ 𝑄𝐿)𝑅 = 𝑃𝑅 ∩ 𝑄𝐿,
(25) (𝑃 ∩ 𝐿𝑄S)𝑅 = 𝑃(𝑅 ∩ 𝑄𝐿),
(26) 𝑄𝐿𝑅 = 𝑄𝐿 ∩ 𝐿𝑅,
(27) 𝑅𝐿𝐿 = 𝑅𝐿,
(28) 𝑅 = (𝐼 ∩ 𝑅𝑅S)𝑅.

Sometimes, instead of refering to laws 6, 7, 8, and 9, we
refer to the operation (∘) as distributive. Then, we have (∘)
which is monotonic instead of refering to laws 12 and 13.

In the following, we will give the definitions of certain
properties.

Definition 4. A relation 𝑅 is as follows:

(a) deterministic if and if only 𝑅
S𝑅 ⊆ 𝐼,

(b) total if and if only 𝐿 = 𝑅𝐿 (equivalent to 𝐼 ⊆ 𝑅𝑅S),
(c) an application if and if only it is total and determinis-

tic,
(d) injective if and if only𝑅S is deterministic (i.e.,𝑅𝑅S ⊆

𝐼),
(e) surjective if and if only 𝑅S is total (i.e., 𝐿𝑅 = 𝐿 or also

𝐼 ⊆ 𝑅S𝑅),

(f) a partial identity if and if only 𝑅 ⊆ 𝐼 (subidentity),
(g) a vector if and if only 𝑅 = 𝑅𝐿 (the vectors are usually

denoted by the letter V),
(h) a point if and if only 𝑅 ̸= Ø, 𝑅 = 𝑅𝐿, and 𝑅𝑅

S ⊆ 𝐼.

A function is a deterministic relation.The vectors 𝑅𝐿 and
𝑅S𝐿 are particular vectors characterizing, respectively, the
domain and codomain of 𝑅. The set of vectors of a certain
type is a complete boolean algebra [34, 36, 38].

In an algebra of boolean matrices, a vector is a matrix in
which the rows are constant and a point is a vector with a
nonzero row.

Example 5. Let 𝑋 = {0, 1, 2} and 𝑉 = {0, 1}. Then

V def
= 𝑉 × 𝑋 = {(0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 1) , (1, 2)} (10)

is a vector that corresponds to a set of points 𝑉. The partial
identity which corresponds to V is 𝑎 = {(0, 0), (1, 1)}.

Let 𝑅 def
= {(0, 1), (0, 2), (2, 1)} and let V and 𝑎 be the vector

and the partial identity given before.

(i) Prerestriction of 𝑅 to V (or to 𝑎) is as follows:

V ∩ 𝑅 = 𝑎𝑅 = {(0, 1) , (0, 2)} . (11)

(ii) Postrestriction of 𝑅 to V (or to 𝑎) is as follows:

VS ∩ 𝑅 = 𝑅𝑎 = {(0, 1) , (2, 1)} . (12)

(iii) Domain of 𝑅 is

𝑅𝐿 = {(0, 0) , (0, 1) , (0, 2) , (2, 0) , (2, 1) , (2, 2)} . (13)

The vector represents the subset {0, 2}.
(iv) The relation 𝑅S𝐿 = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1),

(2, 2)} is the vector characterizing the subset {1, 2},
which is the codomain of 𝑅.

4. Fuzzy Relational Calculus

Fuzzy set theory has been studied extensively over the past 30
years. Most of the early interest in fuzzy set theory pertained
to representing uncertainty in human cognitive processes [1].

The concept of a fuzzy relation on a set was defined by
Zadeh [1, 39] and other authors like Rosenfeld [40], Tamura
et. al. [41], and Yeh and Bang [5] considered it further.
Fuzzy relations are of fundamental importance in fuzzy logic
and fuzzy set theory, including particularly fuzzy preference
modeling, fuzzy mathematics, fuzzy inference, and many
more.

Let 𝐴, 𝐵 ⊆ 𝑈 be two sets; a fuzzy relation on 𝐴 × 𝐵 is
defined by �̃� = {((𝑥, 𝑦), 𝜇

�̃�
(𝑥, 𝑦)) | (𝑥, 𝑦) ∈ 𝐴×𝐵}, where the

map 𝜇
�̃�

: 𝐴 × 𝐵 → [0, 1] is called membership function and
the value 𝜇

�̃�
(𝑥, 𝑦) ∈ [0, 1] is called the degree of membership

of (𝑥, 𝑦) in �̃� [40, 41].
As fuzzy relations are sets, they are ordered by inclusion.

The least fuzzy relation between sets 𝐴 and 𝐵 is the empty
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(also called zero), noted Ø̃
𝐴𝐵
, and the greatest one, called

universal fuzzy relation, and noted �̃�
𝐴𝐵
. A particular fuzzy

relation defined for every set 𝐴 is the identity fuzzy relation,
noted 𝐼

𝐴

def
= {((𝑥, 𝑦), 𝜇

𝐼
(𝑥, 𝑦)) | 𝑥 ∈ 𝐴}, where 𝜇

𝐼
(𝑥, 𝑦) = 1 if

𝑥 = 𝑦 and 0 otherwise.The domain of �̃�, denoted by dom(�̃�),
is defined as follows:

dom (�̃�)
def
= sup

𝑦∈𝐵
{((𝑥, 𝑦) , 𝜇

�̃�
(𝑥, 𝑦)) | ∀𝑥 ∈ 𝐴} , (14)

and the codomain of �̃�, denoted by codom(�̃�), is expressed
by finding the maximal value of �̃� a long 𝐴:

codom (�̃�)
def
= sup

𝑥∈𝐴
{((𝑥, 𝑦) , 𝜇

�̃�
(𝑥, 𝑦)) | ∀𝑦 ∈ 𝐵} . (15)

The domain and codomain are regarded as the height of row
and columns of the fuzzy relation [42].

4.1. Operations on Fuzzy Relations. As fuzzy relations are par-
ticular fuzzy sets, we can apply the usual fuzzy sets operations,
which are union (∪), intersection (∩), and complementation
(
—

), given in [43]. More, their structure helps us to define
other operations which are as follows.

Definition 6 (see [1, 5, 39]). Let 𝐴, 𝐵, and 𝐶 be sets and let �̃�
and 𝑆 be fuzzy relations defined, respectively, on 𝐴 × 𝐵 and
𝐵 × 𝐶. One has

�̃� = {[(𝑥, 𝑦) , 𝜇
�̃�
(𝑥, 𝑦)] | (𝑥, 𝑦) ∈ 𝐴 × 𝐵} ,

𝑆 = {((𝑦, 𝑧) , 𝜇
𝑆
(𝑦, 𝑧)) | (𝑦, 𝑧) ∈ 𝐵 × 𝐶} .

(16)

(a) Inverse of a fuzzy relation �̃�, denoted �̃�S:

�̃�
S

= {[(𝑥, 𝑦) , 𝜇
�̃�
(𝑥, 𝑦)] | (𝑥, 𝑦) ∈ 𝐴 × 𝐵} , (17)

such that

�̃� = {[(𝑦, 𝑥) , 𝜇
�̃�
(𝑦, 𝑥)] | (𝑦, 𝑥) ∈ 𝐵 × 𝐴} . (18)

(b) The max-min composition �̃� ∘ 𝑆 is the fuzzy relation

�̃� ∘ 𝑆 = {[(𝑥, 𝑧) , ∨𝑦∈𝐵 {𝜇�̃� (𝑥, 𝑦) ∧ 𝜇
𝑆
(𝑦, 𝑧)}] | 𝑥 ∈ 𝐴,

𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶} .

(19)

(i) From now on, the composition operator symbol
(∘) will be omitted (i.e., we write (�̃�𝑆) for (�̃�∘𝑆)).

(c) The semiscalars multiplication 𝑘�̃� of a fuzzy relation
�̃� by a scalar 𝑘(∈ [0, 1]) is a fuzzy relation such that

𝑘�̃� = {[(𝑥, 𝑦) , 𝑘𝜇
�̃�
(𝑥, 𝑦)] | (𝑥, 𝑦) ∈ 𝐴 × 𝐵} . (20)

Example 7. (i) Let �̃� and 𝑆 be two fuzzy relations given as
follows and 𝑘 = 0.3,

(ii) Let 𝐴 = {𝑥
1
, 𝑥
2
, 𝑥
3
}, 𝐵 = {𝑦

1
, 𝑦
2
, 𝑦
3
, 𝑦
4
}, �̃� = “𝑥

considerably larger than 𝑦,” and 𝑆 = “𝑦 very close to 𝑥”; then

�̃� =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.8 1 0.1 0.7

0 0.8 0 0

0.9 1 0.7 0.8

)
,

𝑆 =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.4 0 0.9 0.6

0.9 0.4 0.5 0.7

0.3 0 0.8 0.5

)
.

(21)

We have

(i) �̃� ∪ 𝑆 =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.8 1 0.9 0.7

0.9 0.8 0.5 0.7

0.9 1 0.8 0.8

)

(ii) �̃�
S

=

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑥
1

𝑥
2

𝑥
3

(

0.8 0 0.9

1 0.8 1

0.1 0 0.7

0.7 0 0.8

)

(iii) �̃� ∩ 𝑆 =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.4 0 0.1 0.6

0 0.4 0 0

0.3 0 0.7 0.5

)

(iv) 𝑘𝑆 =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.12 0 0.27 0.18

0.27 0.12 0.15 0.21

0.9 0 0.24 0.15

)
.

(22)

These operations are illustrated, respectively, by Figures 2,
3, 4, 5, and 6.

Remark 8. Different versions of “composition” have been
suggested which differ in their results and also with respect
to their mathematical properties. The max-min composition
has become the best known and the most frequently used.
However, often the so-called max-product or max-average
compositions lead to results that aremore appealing; see [40].

(a) The max-prod composition (�̃�∘
⋅
𝑆) is defined as fol-

lows:
�̃�∘
⋅
𝑆 = {[(𝑥, 𝑧) , ∨𝑦 {𝜇�̃�

1

(𝑥, 𝑦) ⋅ 𝜇
�̃�
2

(𝑦, 𝑧)}] | 𝑥 ∈ 𝐴,

𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶} .

(23)

(b) The max-av composition (�̃� ∘av 𝑆) is defined as fol-
lows:

�̃�∘av𝑆 = {[(𝑥, 𝑧) ,
1

2
∨
𝑦
{𝜇
�̃�
(𝑥, 𝑦) + 𝜇

𝑆
(𝑦, 𝑧)}] | 𝑥 ∈ 𝐴,

𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶} .

(24)
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Figure 2: Fuzzy relation �̃� in Example 9.
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Figure 3: Fuzzy relations 𝑆 in Example 9.
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Figure 4: The max-min composition of fuzzy relations �̃� and 𝑆.
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Figure 5: The max-product composition of fuzzy relations �̃� and 𝑆.
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Figure 6: The max-av composition of fuzzy relations �̃� and 𝑆.

Example 9. Let �̃� and 𝑆 be defined by the following matrices
[44]:

�̃� =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

(

0.1 0.2 0 1 0.7

0.3 0.5 0 0.2 1

0.8 0 1 0.4 0.3

)
,

𝑆 =

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

𝑧
1

𝑧
2

𝑧
3

𝑧
4

(

0.9 0 0.3 0.4

0.2 1 0.8 0

0.8 0 0.7 1

0.4 0.2 0.3 0

0 1 0 0.8

)
.

(25)

We will first compute the max-min composition �̃�𝑆. We
will show in details the determination for 𝑥 = 𝑥

1
, 𝑧 = 𝑧

1
; Let

𝑥 = 𝑥
1
, 𝑧 = 𝑧

1
, and 𝑦 = 𝑦

𝑖
, 1 ≤ 𝑖 ≤ 5:

(i) ∧{𝜇
�̃�
(𝑥
1
, 𝑦
1
), 𝜇
𝑆
(𝑦
1
, 𝑧
1
)} = ∧{0.1, 0.9} = 0.1

(ii) ∧{𝜇
�̃�
(𝑥
1
, 𝑦
2
), 𝜇
𝑆
(𝑦
2
, 𝑧
1
)} = ∧{0.2, 0.2} = 0.2

(iii) ∧{𝜇
�̃�
(𝑥
1
, 𝑦
3
), 𝜇
𝑆
(𝑦
3
, 𝑧
1
)} = ∧{0, 0.8} = 0

(iv) ∧{𝜇
�̃�
(𝑥
1
, 𝑦
4
), 𝜇
𝑆
(𝑦
4
, 𝑧
1
)} = ∧{1, 0.4} = 0.4

(v) ∧{𝜇
�̃�
(𝑥
1
, 𝑦
5
), 𝜇
𝑆
(𝑦
5
, 𝑧
1
)} = ∧{0.7, 0} = 0

�̃�𝑆 (𝑥
1
, 𝑧
1
) = ((𝑥

1
, 𝑧
1
) , 𝜇
�̃�𝑆

(𝑥
1
, 𝑧
1
))

= ((𝑥
1
, 𝑧
1
) , ∨ {0.1, 0.2, 0, 0.4, 0})

= ((𝑥
1
, 𝑧
1
) , 0.4) .

(26)

In analogy to the above computation we now deter-
mine the grades of membership for all pairs (𝑥

𝑖
, 𝑧
𝑖
),

1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 4 and finally we have

�̃�𝑆 =
𝑥
1

𝑥
2

𝑥
3

𝑧
1

𝑧
2

𝑧
3

𝑧
4

(

0.4 0.7 0.3 0.7

0.3 1 0.5 0.8

0.8 0.3 0.7 1

)
. (27)

For the max-prod we obtain
𝑥 = 𝑥

1
, 𝑧 = 𝑧

1
, and 𝑦 = 𝑦

𝑖
, 1 ≤ 𝑖 ≤ 5:

(vi) 𝜇
�̃�
(𝑥
1
, 𝑦
1
) ⋅ 𝜇
𝑆
(𝑦
1
, 𝑧
1
) = 0.1 ⋅ 0.9 = 0.09

(vii) 𝜇
�̃�
(𝑥
1
, 𝑦
2
) ⋅ 𝜇
𝑆
(𝑦
2
, 𝑧
1
) = 0.2 ⋅ 0.2 = 0.04

(viii) 𝜇
�̃�
(𝑥
1
, 𝑦
3
) ⋅ 𝜇
𝑆
(𝑦
3
, 𝑧
1
) = 0 ⋅ 0.8 = 0

(ix) 𝜇
�̃�
(𝑥
1
, 𝑦
4
) ⋅ 𝜇
𝑆
(𝑦
4
, 𝑧
1
) = 1 ⋅ 0.4 = 0.4

(x) 𝜇
�̃�
(𝑥
1
, 𝑦
5
) ⋅ 𝜇
𝑆
(𝑦
5
, 𝑧
1
) = 0.7 ⋅ 0 = 0;

then

�̃�𝑆 (𝑥
1
, 𝑧
1
) = ((𝑥

1
, 𝑧
1
) , 𝜇
�̃�𝑆

(𝑥
1
, 𝑧
1
))

= ((𝑥
1
, 𝑧
1
) , {0.09 ∨ 0.04 ∨ 0 ∨ 0.4 ∨ 0})

= ((𝑥
1
, 𝑧
1
) , 0.4) .

(28)

After performing the remaining computations we
obtain

�̃�∘
⋅
𝑆 =

𝑥
1

𝑥
2

𝑥
3

𝑧
1

𝑧
2

𝑧
3

𝑧
4

(

0.4 0.7 0.3 0.56

0.27 1 0.4 0.8

0.8 0.3 0.7 1

)
. (29)

The max-av composition finally yields:
i 𝜇 (𝑥

1
, 𝑦
𝑖
) + 𝜇 (𝑦

𝑖
, 𝑧
1
)

1 1
2 0.4
3 0.8
4 1.4
5 0.7;

then

1

2
⋅ ∨
𝑦
{𝜇
�̃�
(𝑥
1
, 𝑦
𝑖
) + 𝜇
𝑆
(𝑦
𝑖
, 𝑧
1
)} =

1

2
⋅ (1.4) = 0.7

�̃�∘av𝑆 =
𝑥
1

𝑥
2

𝑥
3

𝑧
1

𝑧
2

𝑧
3

𝑧
4

(

0.7 0.85 0.65 0.75

0.6 1 0.65 0.9

0.9 0.65 0.85 1

)
.

(30)

These operations are, respectively, illustrated by Figures 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22.

Remark 10. The vectors �̃��̃� and �̃�
S

�̃� are particular vectors
characterizing, respectively, the domain and codomain of �̃�,
which are defined in (14) and (15).
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Figure 7: The fuzzy relation �̃�.
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Figure 8: The complement of fuzzy relation �̃�.
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Figure 9: The fuzzy relation �̃� ∪ �̃� ̸= �̃�.
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Figure 10: The fuzzy relation �̃� ∩ �̃� ̸= 0̃.
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Figure 11: The demonic fuzzy relation 𝑄.
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Figure 12: A demonic fuzzy relation �̃�.
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Figure 13: Demonic union of fuzzy relations 𝑄 and �̃�.
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Figure 14: Angelic union of fuzzy relations 𝑄 and �̃�.
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Figure 15: Demonic intersection of fuzzy relations 𝑄 and �̃�.
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Figure 16: Angelic intersection of fuzzy relations 𝑄 and �̃�.
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Figure 17: The demonic fuzzy relation 𝑄.
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Figure 18: The demonic fuzzy relation �̃�.



Journal of Applied Mathematics 11

0

0.25

0.5

0.75

1

5

0

1

2

3

4
0

1

2

4

5

3

Figure 19: Demonic union of fuzzy relations 𝑄 and �̃�.
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Figure 20: Angelic union of fuzzy relations 𝑄 and �̃�.
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Figure 21: Demonic intersection of fuzzy relations 𝑄 and �̃�.
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Figure 22: Angelic intersection of fuzzy relations 𝑄 and �̃�.
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4.2. Properties of Fuzzy Relations. Just as for relations,
the properties of commutativity, associativity, distributivity,
involution, and idempotency all hold for fuzzy relations.
Moreover, DeMorgan’s principles hold for fuzzy relations just
as they do for relations, and the empty relation 0̃ and the
universal relation �̃� are analogous to the empty set and the
whole set in set-theoretic form, respectively. Fuzzy relations
are not constrained, as is the case for fuzzy sets in general,
by the excluded middle axioms. Since a fuzzy relation �̃� is
also a fuzzy set, there is overlap between a relation and its
complement [45]; hence,

�̃� ∪ �̃� ̸= �̃�, �̃� ∩ �̃� ̸= 0̃. (31)

Example 11. Let

�̃� =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

(

0.1 0.2 0 1 0.7

0.3 0.5 0 0.2 1

0.8 0 1 0.4 0.3

)
. (32)

Then

(i) �̃� =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

(

0.9 0.8 1 0 0.3

0.7 0.5 1 0.8 0

0.2 1 0 0.6 0.7

)
,

(ii) �̃� ∩ �̃� =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

(

0.1 0.2 0 0 0.3

0.3 0.5 0 0.2 0

0.2 0 0 0.4 0.3

)
̸= 0̃,

(iii) �̃� ∪ �̃� =
𝑥
1

𝑥
2

𝑥
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

(

0.9 0.8 1 1 0.7

0.7 0.5 1 0.8 1

0.8 1 1 0.6 0.7

)
̸= �̃�.

(33)

In the following, we will give some properties of fuzzy
relations.

Definition 12. Let �̃�
1
and �̃�

2
be fuzzy relations on 𝐴 × 𝐵,

one have �̃�
1
= {((𝑥, 𝑦), 𝜇

�̃�
1

(𝑥, 𝑦))}, �̃�
2
= {((𝑥, 𝑦), 𝜇

�̃�
2

(𝑥, 𝑦))}.
Then, one has the following.

(a) Equality

�̃�
1
= �̃�
2
if and only if 𝜇

�̃�
1

(𝑥, 𝑦) = 𝜇
�̃�
2

(𝑥, 𝑦) . (34)

(b) Inclusion

(i) If 𝜇
�̃�
1

(𝑥, 𝑦) ≤ 𝜇
�̃�
2

(𝑥, 𝑦), the relation �̃�
1
is

included in �̃�
2
or �̃�
2
is larger �̃�

1
, denoted by

�̃�
1
⊆ �̃�
2
.

(ii) If �̃�
1
⊆ �̃�
2
and in addition if for at least one pair

(𝑥, 𝑦),

𝜇
�̃�
1

(𝑥, 𝑦) < 𝜇
�̃�
2

(𝑥, 𝑦) . (35)

Then one has the proper inclusion �̃�
1
⊆ �̃�
2
.

The following properties in Theorem 13 and Proposition 14
have been proved to hold for fuzzy relations (see [11, 46]).

Theorem 13. Let �̃�, 𝑆, and �̃� be fuzzy relations. Then

(a) associativity of composition: �̃�(𝑆�̃�) = (�̃�𝑆)�̃�;

(b) distributivity over union: �̃�(𝑆 ∪ �̃�) = (�̃�𝑆) ∪ (�̃��̃�);

(c) weak distributivity over intersection: �̃�(𝑆∩�̃�) ⊆ (�̃�𝑆)∩

(�̃��̃�);

(d) commutativity: �̃� ∩ 𝑆 = 𝑆 ∩ �̃�, �̃� ∪ 𝑆 = 𝑆 ∪ �̃�;

(e) associativity: �̃� ∩ (𝑆 ∩ �̃�) = (�̃� ∩ 𝑆) ∩ �̃�, �̃� ∪ (𝑆 ∪ �̃�) =

(�̃� ∪ 𝑆) ∪ �̃�;

(f) distributivity: �̃�∩(𝑆∪�̃�) = (�̃�∩𝑆)∪(�̃�∩�̃�), �̃�∪(𝑆∩�̃�) =

(�̃� ∪ 𝑆) ∩ (�̃� ∪ �̃�);

(g) idempotency: �̃� ∪ �̃� = �̃�, �̃� ∩ �̃� = �̃�;

(h) identity: �̃� ∩ 𝜙 = 𝜙, �̃� ∪ 𝜙 = �̃�, �̃� ∩ �̃� = �̃�, �̃� ∪ �̃� = �̃�;

(i) involution: �̃� = �̃�;

(j) De Morgans law: �̃� ∪ 𝑆 = �̃� ∩ 𝑆, �̃� ∩ 𝑆 = �̃� ∪ 𝑆.

Proposition 14. A fuzzy relation �̃� ⊆ 𝐴 × 𝐴 is as follows:

(a) reflexive if and if only 𝐼 ⊆ �̃�; that is, (∀𝑥 : 𝜇
�̃�
(𝑥, 𝑥) =

1);

(b) transitive if and if only �̃��̃� ⊆ �̃�; that is, (∀𝑥, 𝑦, 𝑧 :

𝜇
�̃�
(𝑥, 𝑧) ≥ ∧{𝜇

�̃�
(𝑥, 𝑦), 𝜇

�̃�
(𝑦, 𝑧)});

(c) symmetric if and if only �̃� ⊆ �̃�S; that is, (∀𝑥, 𝑦 :

𝜇
�̃�
(𝑥, 𝑦) = 𝜇

�̃�
(𝑦, 𝑥);

(d) antisymmetric if and if only �̃�S ⊆ �̃� ∪ 𝐼; that is,

∀𝑥, 𝑦 : 𝜇
�̃�
(𝑥, 𝑦) ̸= 𝜇

�̃�
(𝑦, 𝑥)

𝑜𝑟 𝜇
�̃�
(𝑥, 𝑦) = 𝜇

�̃�
(𝑦, 𝑥) = 0;

(36)

(e) equivalence if and if only �̃� verifies properties (a), (b),
and (c);

(f) order if and if only �̃� verifies properties (a), (b), and (d);

(g) preorder if and if only �̃� verifies properties (a) and (b).
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Example 15. Let �̃�, 𝑆, 𝑄, �̃� and �̃� be fuzzy relations:

(i) �̃� =

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

1 0 0.2 0.3

0 1 0.1 1

0.2 0.7 1 0.4

0 1 0.4 1

)

(ii) 𝑆 =

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.2 1 0.4 0.4

0 0.6 0.3 0

0 1 0.3 0

0.1 1 1 0.1

)

(iii) �̃� =

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

𝑦
6

(

(

1 0.2 1 0.6 0.2 0.6

0.2 1 0.2 0.2 0.8 0.2

1 0.2 1 0.6 0.2 0.6

0.6 0.2 0.6 1 0.2 0.8

0.2 0.8 0.2 0.2 1 0.2

0.6 0.2 0.6 0.8 0.2 1

)

)

(iv) �̃� =

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0.4 0 0.7 0

0 1 0.9 0.6

0.8 0.4 0.7 0.4

0 0.1 0 0

)

(v) 𝑄 =

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑦
1

𝑦
2

𝑦
3

𝑦
4

(

0 0.1 0 0.1

0.1 1 0.2 0.3

0 0.2 0.8 0.8

0.1 0.3 0.8 1

)
.

(37)

�̃� is a reflexive fuzzy relation, 𝑆 is a transitive fuzzy relation,
𝑄 is a symmetric fuzzy relation, �̃� is an antisymmetric fuzzy
relation, and �̃� is an equivalence fuzzy relation.

5. Demonic Fuzzy Order and
Fuzzy Demonic Operators

First, we will give the rationale behind the definition of
refinement called the refinement ordering. If we consider a
relation 𝑅 as a specification of the input-output behavior of a
program 𝑝, then 𝑝 refines 𝑅 (or that 𝑝 is correct with respect
to 𝑅) if,

(i) for any input 𝑖 in the domain of 𝑅, 𝑖
 is a possible

output of 𝑝 only if (𝑖, 𝑖) ∈ 𝑅;
(ii) 𝑝 always terminates for any input belonging to the

domain of𝑅 [47]. For an input that does not belong to
the domain of specification 𝑅, program 𝑝 may return
any result or return no result; that is, the specifier does
not care what happens following the submission of
such an input.

In the following, we will define the refinement fuzzy
ordering (demonic fuzzy inclusion). The associated fuzzy
operators are fuzzy demonic join (⊔̃), fuzzy demonic meet

(⊓̃), and fuzzy demonic composition (◻̃). We will give the
definitions and needed properties of these operators. We
will illustrate them with simple examples using mathematica
(fuzzy logic).

Definition 16. One says that a fuzzy relation 𝑄 fuzzy refines a
fuzzy relation �̃�, denoted by 𝑄 ⊑̃ �̃�, if and if only

∨
𝑦∈𝐵

{𝜇
�̃�
(𝑥, 𝑦)} ⊆ ∨

𝑦∈𝐵
{𝜇
�̃�
(𝑥, 𝑦)} ,

∧ {𝜇
�̃�
(𝑥, 𝑦) , ∨

𝑦∈𝐵
{𝜇
�̃�
(𝑥, 𝑦)}} ⊆ 𝜇

�̃�
(𝑥, 𝑦) ,

(38)

where 𝜇
�̃�
and 𝜇

�̃�
are, respectively, the membership functions

of �̃� and 𝑄.

In other words, 𝑄 fuzzy refines �̃� if and only if the
prerestriction of 𝑄 to the domain of �̃� is included in �̃�: this
means that 𝑄 must not produce results not allowed by �̃� for
those states that are in the domain of �̃�.

It is easy to show that this definition is equivalent to
definition (given [43]). In other words,

𝑄�̃� ⊆ �̃��̃� ∧ 𝑄 ∩ �̃��̃� ⊆ �̃� (39)

if and only if

∨
𝑦∈𝐵

{𝜇
�̃�
(𝑥, 𝑦)} ⊆ ∨

𝑦∈𝐵
{𝜇
�̃�
(𝑥, 𝑦)} ,

∧ {𝜇
�̃�
(𝑥, 𝑦) , ∨

𝑦∈𝐵
{𝜇
�̃�
(𝑥, 𝑦)}} ⊆ 𝜇

�̃�
(𝑥, 𝑦) .

(40)

Example 17. Let

𝑄 = (
0.1 0

1 0.2
) , �̃� = (

0.1 0.1

0.4 0.4
) . (41)

We have

∨
𝑦∈𝐵

𝜇
�̃�

= (
0.1

0.4
) ⊆ (

0.1

1
) = ∨

𝑦∈𝐵
𝜇
�̃�
.

∧ {𝜇
�̃�
(𝑥, 𝑦) , ∨

𝑦∈𝐵
{𝜇
�̃�
(𝑥, 𝑦)}} = (

0.1 0

0.4 0.2
)

⊆ (
0.1 0.1

0.4 0.4
)

= 𝜇
�̃�

(42)

Then

𝑄 ⊑̃ �̃�. (43)

Let

�̃� = (

0.3 0.2 0.5

0.4 0.5 0.9

0.1 0.2 0.7

) , 𝑆 = (

0.3 0.2 0.4

0.7 0.8 0.8

0.3 0.5 0.6

) . (44)
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We have

∨
𝑦∈𝐵

𝜇
𝑆
= (

0.4

0.8

0.6

) ⊆ (

0.5

0.9

0.7

) = ∨
𝑦∈𝐵

𝜇
�̃�
,

∧ {𝜇
�̃�
(𝑥, 𝑦) , ∨

𝑦∈𝐵
{𝜇
𝑆
(𝑥, 𝑦)}} = (

0.3 0.2 0.4

0.4 0.5 0.8

0.1 0.2 0.6

)

⊆ (

0.3 0.2 0.4

0.7 0.8 0.8

0.3 0.5 0.6

)

= 𝜇
𝑆
.

(45)

Then

�̃� ⊑̃ 𝑆. (46)

Let

𝑄 = (
0.1 0.2 0.4

0.5 0.7 0.9
) , �̃� = (

0.2 0.2 0.3

0.4 0.5 0.8
)

𝑄 ̸̃⊑ �̃�

(47)

because

∧ {𝜇
�̃�
(𝑥, 𝑦) , ∨

𝑦∈𝐵
{𝜇
�̃�
(𝑥, 𝑦)}} = (

0.1 0.2 0.3

0.5 0.7 0.8
)

̸⊆ (
0.2 0.2 0.3

0.4 0.5 0.8
)

= 𝜇
�̃�
.

(48)

Let

�̃� = (
0.5 0.2 0.7

0.7 0 0.3
) , 𝑆 = (

0.1 0.3 0.4

0.9 1 0.5
)

�̃� ̸̃⊑ 𝑆

(49)

because

∨
𝑦∈𝐵

𝜇
𝑆
= (

0.4

1
) ̸⊆ (

0.7

0.7
) = ∨

𝑦∈𝐵
̸⊆ 𝜇
�̃�
. (50)

Theorem 18. The fuzzy relation ⊑̃ is a partial order.

5.1. Fuzzy Demonic Operators and Illustration with Mathe-
matica. In this subsection, we will present fuzzy demonic
operators and some of their properties.

Definition 19. Let 𝑄 and �̃� be fuzzy relations.

(a) Their supremum is 𝑄 ⊔̃ �̃� and their membership is

𝜇
(�̃�⊔̃�̃�)

(𝑥, 𝑦) = [𝜇
�̃�
(𝑥, 𝑦) ∨ 𝜇

�̃�
(𝑥, 𝑦)] ∧ [∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦))]

∧ [∨
𝑦∈𝐵

(𝜇
�̃�
(𝑥, 𝑦))]

(51)

and satisfies

∨
𝑦∈𝐵

{𝜇
(�̃� ⊔̃ �̃�)

(𝑥, 𝑦)}

= [∨
𝑦∈𝐵

(𝜇
�̃�
(𝑥, 𝑦))] ∧ [∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦))] .

(52)

The operator (⊔̃) is called fuzzy demonic union. This
definition is equivalent to the definition ([43]). In
other words,

𝑄 ⊔ 𝑅 = (𝑄 ∪ 𝑅) ∩ 𝑄𝐿 ∩ 𝑅𝐿 (53)

if and only if

𝜇
(�̃� ⊔̃ �̃�)

(𝑥, 𝑦) = [𝜇
�̃�
(𝑥, 𝑦) ∨ 𝜇

�̃�
(𝑥, 𝑦)]

∧ [∨
𝑦∈𝐵

(𝜇
�̃�
(𝑥, 𝑦))] ∧ [∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦))] .

(54)

(b) Their infimum, if it exists, is𝑄 ⊓̃ �̃� and their member-
ship is

𝜇
(�̃� ⊓̃ �̃�)

(𝑥, 𝑦) = [𝜇
�̃�
(𝑥, 𝑦) ∧ 𝜇

�̃�
(𝑥, 𝑦)]

∨ [𝜇
�̃�
(𝑥, 𝑦) ∧ (1 − ∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦)))]

∨ [𝜇
�̃�
(𝑥, 𝑦) ∧ (1 − ∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦)))]

(55)

and it satisfies

∨
𝑦∈𝐵

{𝜇
(�̃� ⊓̃ �̃�)

(𝑥, 𝑦)}

= [∨
𝑦∈𝐵

(𝜇
�̃�
(𝑥, 𝑦))] ∨ [∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦))] .

(56)

The operator (⊓̃) is called fuzzy demonic intersection.
This definition is equivalent to the definition given in
([18, 19, 36, 43, 48–50]). In other words,

𝑄 ⊓ 𝑅 = 𝑄 ∩ 𝑅 ∪ 𝑄 ∩ 𝑅𝐿 ∪ 𝑅 ∩ 𝑄𝐿 (57)

if and only if

𝜇
(�̃� ⊓̃ �̃�)

(𝑥, 𝑦) = [𝜇
�̃�
(𝑥, 𝑦) ∧ 𝜇

�̃�
(𝑥, 𝑦)]

∨ [𝜇
�̃�
(𝑥, 𝑦) ∧ (1 − ∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦)))]

∨ [𝜇
�̃�
(𝑥, 𝑦) ∧ (1 − ∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦)))] .

(58)

For 𝑄 ⊓̃ �̃� to exist, one has to verify

𝜇
�̃�
(𝑥, 𝑦) ⊆ ∨

𝑦∈𝐵
[(𝜇
�̃�
(𝑥, 𝑦) ∨ (1 − ∨

𝑦∈𝐵
𝜇
�̃�
(𝑥, 𝑦)))

∧ (𝜇
�̃�
(𝑥, 𝑦) ∨ (1 − ∨

𝑦∈𝐵
𝜇
�̃�
(𝑥, 𝑦)))] .

(59)
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This condition is equivalent to

(∨
𝑦∈𝐵

𝜇
�̃�
(𝑥, 𝑦)) ∧ (∨

𝑦∈𝐵
𝜇
�̃�
(𝑥, 𝑦))

⊆ ∨
𝑦∈𝐵

(𝜇
�̃�
(𝑥, 𝑦) ∧ 𝜇

�̃�
(𝑥, 𝑦)) ,

(60)

which can be interpreted as follows: the existence
condition simply means that, on the intersection of
their domains, 𝑄 and �̃� have to agree for at least one
value.

Example 20. We know that𝑄 ⊔̃ �̃� ̸= 𝑄∪�̃� and𝑄 ⊓̃ �̃� ̸= 𝑄∩�̃�.

(a) Let 𝑄 = (
0.1 0 0.2

0.3 0.8 1

0 1 0.7
) and �̃� = (

0 1 0

0.3 0.5 0.4

0.9 0.7 0.2
)

(i) 𝑄 ⊔̃ �̃� = (
0.1 0.2 0.2

0.3 0.5 0.5

0.9 0.9 0.7
) but 𝑄 ∪ �̃� = (

0.1 1 0.2

0.3 0.8 1

0.9 1 0.7
)

(ii) 𝑄 ⊓̃ �̃� = (
0 0.8 0

0.3 0.5 0.5

0 0.7 0.2
) but 𝑄 ∩ �̃� = (

0 0 0

0.3 0.5 0.4

0 0.7 0.2
).

(b) Let 𝑄 = ( 0.3 0.1
0.2 0.5

) and �̃� = ( 0.1 0
1 0.7

)

(i) 𝑄 ⊔̃ �̃� = ( 0.1 0.1
0.5 0.5

) but 𝑄 ∪ �̃� = ( 0.3 0.1
1 0.7

)

(ii) 𝑄 ⊓̃ �̃� = ( 0.3 0.1
0.5 0.5

) but 𝑄 ∩ �̃� = ( 0.1 0
0.2 0.5

).

These demonic operations are illustrated, respectively, by
Figures 23 and 24.

Now we need to define the relative fuzzy implication.
In what follows, we will give our definition of the relative

fuzzy implication and some examples.

Definition 21. The binary operator (⊳̃) is called relative fuzzy
implication, and its a membership function is defined as
follows:

𝜇
�̃� ⊳̃ �̃�

(𝑥, 𝑧) = 1 − ∨
𝑦∈𝐵

{∧ {𝜇
�̃�
(𝑥, 𝑦) , 1 − 𝜇

�̃�
(𝑦, 𝑧)}} . (61)

This definition is equivalent to definition ([18, 19, 36, 48–50])
which is

𝑄 ⊳ 𝑅
def
= 𝑄𝑅 (62)

if and only if

𝜇
�̃� ⊳̃ �̃�

(𝑥, 𝑧) = 1 − ∨
𝑦∈𝐵

{∧ {𝜇
�̃�
(𝑥, 𝑦) , 1 − 𝜇

�̃�
(𝑦, 𝑧)}} . (63)

Example 22. (a) Let 𝑄 = ( 0 0.1
0.3 0.5

) and �̃� = ( 0.9 0.2
0.7 1

)

(i) 𝑄 ⊳̃ �̃� = ( 0 0.1
0.3 0.5

).

(b) Let 𝑄 = (
0.1 0.2 0.4

0.5 0.5 1

0 0 0.3
) and �̃� = (

0.7 0.8 0.9

1 0 0.1

0.6 0.2 0.3
)

(i) 𝑄 ⊳̃ �̃� = (
0.6 0.6 0.6

0.6 0.2 0.3

0.7 0.7 0.7
).

In what follows, we will give the definition of the fuzzy
demonic composition.
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Figure 23: Demonic composition in Example 24 (a).
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Figure 24: Demonic composition in Example 24 (b).
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Definition 23. The fuzzy demonic composition of relations 𝑄

and �̃� is (𝑄 ◻̃ �̃�), and its membership function is given by

𝜇
�̃� ◻̃ �̃�

(𝑥, 𝑦)

= ∧ [∨
𝑦∈𝐵

{∧ {𝜇
�̃�
(𝑥, 𝑦) , 𝜇

�̃�
(𝑦, 𝑧)}} ,

1 − ∨
𝑦∈𝐵

{∧ {𝜇
�̃�
(𝑥, 𝑦) , 1 − ∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦))}}] .

(64)

In other words,

𝑄◻𝑅 = 𝑄𝑅 ∩ 𝑄 ⊳ 𝑅𝐿 (65)

if and only if

∧ [∨
𝑦∈𝐵

{∧ {𝜇
�̃�
(𝑥, 𝑦) , 𝜇

�̃�
(𝑦, 𝑧)}} ,

1 − ∨
𝑦∈𝐵

{∧ {𝜇
�̃�
(𝑥, 𝑦) , 1 − ∨

𝑦∈𝐵
(𝜇
�̃�
(𝑥, 𝑦))}}] .

(66)

Example 24. Consider the following:

(a) ( 0.3 0.1
0.2 0.5

) ◻̃ ( 0.1 0
1 0.7

) = ( 0.1 0.1
0.5 0.5

)

(b) (
0.1 0 0.2

0.3 0.8 1

0 1 0.7
) ◻̃ (

0 1 0

0.3 0.5 0.4

0.9 0.7 0.2
) = (

0.2 0.2 0.2

0.5 0.5 0.4

0.5 0.5 0.4
).

Figures 23 and 24 represent fuzzy demonic composition of
two relations.

6. Conclusion

In this paper, we have presented the notion of relational
fuzzy calculus specially a fuzzy refinement order (⊑̃) also the
definitions of the operators associated to this order which are
(⊳̃), fuzzy demonic operators (⊓̃, ⊔̃), and fuzzy composition
(◻̃) and give some of their properties. These operators have
been illustrated by mathematica (fuzzy logic).
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