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2Department of Electromechanics and Vibration, Center for Advanced and Fundamental Technical Research,
Romania Academy, 300222 Timişoara, Romania
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In the present paper, we consider an incompressible magnetohydrodynamic flow of two-dimensional upper-convected Maxwell
fluid over a porous stretching platewith suction and injection.Thenonlinear partial differential equations are reduced to an ordinary
differential equation by the similarity transformations and taking into account the boundary layer approximations. This equation
is solved approximately by means of the optimal homotopy asymptotic method (OHAM). This approach is highly efficient and it
controls the convergence of the approximate solutions.Different approximations to the solution are given, showing the exceptionally
good agreement between the analytical and numerical solutions of the nonlinear problem. OHAM is very efficient in practice,
ensuring a very rapid convergence of the solutions after only one iteration even though it does not need small or large parameters
in the governing equation.

1. Introduction

The flow of non-Newtonian fluids has been analyzed by
numerous researchers, because, in practical applications,
non-Newtonian fluids are more appropriate than Newtonian
fluids. For such fluids, the Navier-Stokes theory becomes
inadequate and obviously there are several constitutive equa-
tions that have been proposed to various types of non-
Newtonian fluids. Examples of the flow of non-Newtonian
fluids occur in a large variety of applications: synthetic fibres,
drilling muds, food processing, plastic polymers, and so
on. There are numerous constitutive equations that have
been proposed to various types of non-Newtonian fluids; a
majority of non-Newtonian fluidsmodels are concernedwith
the fluids of grade two or three. One type of fluids in which
the relaxation type phenomena can be considered is known
as Maxwell model. Some investigations in this field are made
by the mathematicians, engineers, physicians, and computer
scientists. Sakiadis [1, 2] first studied various aspects of
the stretching problem: the flow due to a semi-infinite

horizontally moving wall in an ambient fluid. Phan-Thien [3]
considered the plane and axisymmetric stagnation flows in
a Maxwell fluid, using the shooting and boundary element
method, like Zheng et al. [4]. Sadeghy et al. [5] considered
the problem of hydrodynamic Sakiadis flow of an upper-
convected Maxwell fluid over a rigid plate moving steadily
in an otherwise quiescent fluid. Homotopy analysis method
is used by Hayat et al. [6] to solve nonlinear differential
equation of the upper-convectedMaxwell fluid over a porous
stretching plate. Also, the same method is considered by
Hayat and Sajid [7], Abbas et al. [8, 9], and Hayat et al.
[10]. Dual solutions inmixed convection flow near stagnation
point on a vertical porous plate have been presented by Ishak
et al. [11]. Sahoo [12] investigated the effects of partial slip in
the MHD flow and mass transfer of an electrically conducted
second grade fluid past an axisymmetric stretching sheet.

Taking into considerations these analyses, the objective
of the present paper is to propose an accurate procedure to
nonlinear differential equation of the magnetohydrodynamic
flow of an upper-convected Maxwell fluid over a porous
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stretching plate using OHAM. A version of the OHAM is
applied in this study to derive highly accurate analytical
expressions of the solutions. Our procedure does not depend
upon any small or large parameters, contradistinguishing
from other knownmethods in literature.Themain advantage
of this approach is the control of the convergence of approxi-
mate solutions in a very rigorous way. A very good agreement
was found between our approximate solutions and numerical
solutions, which proves that our method is very efficient and
accurate.

2. Equation of Motion

If we consider the steady incompressible two-dimensional
flow of an upper-convected Maxwell fluid over a porous
stretching plate, then the constitutive equation for theCauchy
stress tensor T is given by

T = −𝑝I + S (1)

such that the extra tensor S satisfies

S + 𝜆(

𝑑S
𝑑𝑡

− LS − SL𝑇) = 𝜇A
1
, (2)

where 𝜇 is the viscosity, 𝜆 is the relaxation time, and the first
Rivlin-Ericksen tensor A

1
is defined as follows:

A
1
= (gradV) + (gradV)𝑇, (3)

in which 𝑑/𝑑𝑡 is the material time derivative and V is the
velocity.

For the magnetohydrodynamic Sakiadis flow, by impos-
ing a uniform magnetic field 𝐵

0
along the 𝑦-direction and

neglecting the induced magnetic field, the equations which
govern the steady flow can be written as

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0, (4)

𝜌(𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

) = −

𝜕𝑝

𝜕𝑥

+

𝜕𝑆
𝑥𝑥

𝜕𝑥

+

𝜕𝑆
𝑥𝑦

𝜕𝑦

− 𝛿𝐵

2

0
𝑢,

𝜌 (𝑢

𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

) = −

𝜕𝑝

𝜕𝑦

+

𝜕𝑆
𝑦𝑥

𝜕𝑥

+

𝜕𝑆
𝑦𝑦

𝜕𝑦

,

(5)

where 𝑢, V are the velocity components, 𝑝 is the pressure, 𝜌 is
the density, 𝛿 is the electrical conductivity, and 𝑆

𝑥𝑥
, 𝑆
𝑥𝑦
, 𝑆
𝑦𝑥
,

𝑆
𝑦𝑦

are the components of the extra tensor S.
Using the boundary layer approximations [5, 13]

𝑢 = O (1) , V = O (𝛿) , 𝑥 = O (1) , 𝑦 = O (𝛿) ,

𝑇
𝑥𝑥

𝜌

= O (1) ,

𝑇
𝑥𝑦

𝜌

= O (𝛿) ,

𝑇
𝑦𝑦

𝜌

= O (𝛿

2
) ,

(6)

the flow in the absence of the pressure gradient is governed
by (4) and

𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕V
𝜕𝑥

+ 𝜆(𝑢

2 𝜕
2
𝑢

𝜕𝑥

2
+ V2

𝜕

2
𝑢

𝜕𝑦

2
+ 2𝑢V

𝜕

2
𝑢

𝜕𝑥𝜕𝑦

)

= ]
𝜕

2
𝑢

𝜕𝑦

2
−

𝛿𝐵

2

0

𝜌

𝑢,

(7)

where ] is the kinematic viscosity of the fluid.
The relevant initial/boundary conditions for the flow

problem are

𝑢 = 𝐶𝑥, V = −𝑉
0
, at 𝑦 = 0

𝑢 → 0, as 𝑦 → ∞,

(8)

in which 𝐶 is the stretching rate and 𝑉
0
> 0 is the suction

velocity and 𝑉
0
< 0 is the injection velocity.

Introducing the stream function Ψ such that

𝑢 =

𝜕Ψ

𝜕𝑦

, V = −

𝜕Ψ

𝜕𝑥

, (9)

then (4) is identically satisfied and (7) becomes

𝜕Ψ

𝜕𝑦

𝜕

2
Ψ

𝜕𝑥𝜕𝑦

−

𝜕Ψ

𝜕𝑥

𝜕

2
Ψ

𝜕𝑦

2
+ 𝜆[(

𝜕Ψ

𝜕𝑦

)

2
𝜕

3
Ψ

𝜕𝑥

2
𝜕𝑦

+ (

𝜕Ψ

𝜕𝑥

)

2
𝜕

3
Ψ

𝜕𝑦

3

− 2

𝜕Ψ

𝜕𝑦

𝜕Ψ

𝜕𝑥

𝜕

3
Ψ

𝜕𝑥𝜕𝑦

2
]

= ]
𝜕

3
Ψ

𝜕𝑦

3
−

𝛿𝐵

2

0

𝜌

𝜕Ψ

𝜕𝑦

.

(10)

Introducing the similarity transformations

𝜂 =
√

𝐶

]
𝑦, Ψ =

√]𝐶𝑥𝑓 (𝜂) ,
(11)

equation (9) becomes

𝑢 = 𝐶𝑥𝑓


(𝜂) , V = −√𝑥𝑓 (𝜂) . (12)

Substituting (12) into (10), it obtains the governing equa-
tion in the following form:

𝑓


−𝑀

2
𝑓


− 𝑓

2
+ 𝑓𝑓


+ 𝛽 (2𝑓𝑓


𝑓


− 𝑓

2
𝑓


) = 0, (13)

where𝑀2 = 𝛿𝐵

2

0
/𝜌𝐶 and 𝛽 = 𝜆𝐶.

Now, the initial/boundary conditions (8) are

𝑓 (0) = 𝑅, 𝑓


(0) = 1, 𝑓


(∞) = 0, (14)

with 𝑅 = 𝑉
0
/
√]𝐶, where 𝑅 > 0 corresponds to suction

velocity and 𝑅 < 0 for injection velocity.
In what follows, the nonlinear differential equation (13)

with initial/boundary conditions (14) can be solved analyti-
cally using OHAM.
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3. Basic Ideas of the Optimal Homotopy
Asymptotic Method

Equation (13) with initial/boundary conditions (14) can be
written in a more general form as follows:

𝑁[𝑓 (𝜂)] = 0, (15)

where 𝑁 is a given nonlinear differential operator depend-
ing on the unknown function 𝑓(𝜂), subjected to the ini-
tial/boundary condition

𝐵(𝑓 (𝜂) ,

𝑑𝑓 (𝜂)

𝑑𝜂

) = 0. (16)

Let 𝑓
0
(𝜂) be an initial approximation of 𝑓(𝜂) and 𝐿 an

arbitrary linear operator such as

𝐿 [𝑓
0
(𝜂)] = 0, 𝐵(𝑓

0
(𝜂) ,

𝑑𝑓
0
(𝜂)

𝑑𝜂

) = 0. (17)

It should be emphasized that this linear operator 𝐿 is not
unique.

If 𝑝 ∈ [0, 1] denotes an embedding parameter and 𝐹 is an
analytic function, then we construct a homotopy [14–18]:

H [𝐿 (𝐹 (𝜂, 𝑝)) ,𝐻 (𝜂, 𝐶
𝑖
) ,𝑁 (𝐹 (𝜂, 𝑝))] , 𝑖 = 1, 2, . . . , 𝑠

(18)

with the properties

H [𝐿 (𝐹 (𝜂, 0)) ,𝐻 (𝜂, 𝐶
𝑖
) ,𝑁 (𝐹 (𝜂, 0))]

= 𝐿 (𝐹 (𝜂, 0)) = 𝐿 (𝑓
0
(𝜂)) = 0,

(19)

H [𝐿 (𝐹 (𝜂, 1)) ,𝐻 (𝜂, 𝐶
𝑖
) ,𝑁 (𝐹 (𝜂, 1))]

= 𝐻 (𝜂, 𝐶
𝑖
)𝑁 (𝐹 (𝜂)) = 0, 𝑖 = 1, 2, . . . , 𝑠,

(20)

where 𝐻(𝜂, 𝐶
𝑖
) ̸= 0 is an arbitrary auxiliary convergence-

control function depending on variable 𝜂 and on a number
of arbitrary parameters𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑠
unknown now and will

be determined later.
Let us consider the function 𝐹 in the form

𝐹 (𝜂, 𝑝) = 𝑓
0
(𝜂) + 𝑝𝑓

1
(𝜂, 𝐶
𝑖
) . (21)

By substituting (21) into equation obtained by means of
homotopy (18),

H [𝐿 (𝐹 (𝜂, 𝑝)) ,𝐻 (𝜂, 𝐶
𝑖
) ,𝑁 (𝐹 (𝜂, 𝑝))] = 0, 𝑖 = 1, . . . , 𝑠

(22)

and, then, equating the coefficients of 𝑝0 and 𝑝

1, we obtain

H [𝐿 (𝐹 (𝜂, 𝑝)) ,𝐻 (𝜂, 𝐶
𝑖
) ,𝑁 (𝐹 (𝜂, 𝑝))]

= 𝐿 (𝑓
0
(𝜂)) + 𝑝 [𝐿 (𝑓

1
(𝜂, 𝐶
𝑖
)) − 𝐿 (𝑓

0
(𝜂))

− 𝐻 (𝜂, 𝐶
𝑖
)𝑁 (𝑓

0
(𝜂))] = 0,

𝑖 = 1, 2, . . . , 𝑠.

(23)

From (23), we obtain the governing equation of 𝑓
0
(𝜂)

given by (17) and the governing equation of 𝑓
1
(𝜂); that is,

𝐿 (𝑓
1
(𝜂, 𝐶
𝑖
)) = 𝐻 (𝜂, 𝐶

𝑖
)𝑁 (𝑓

0
(𝜂)) ,

𝐵(𝑓
1
(𝜂, 𝐶
𝑖
) ,

𝑑𝑓
1
(𝜂, 𝐶
𝑖
)

𝑑𝜂

) = 0,

𝑖 = 1, . . . , 𝑠,

(24)

where we find the following expression for the nonlinear
operator:

𝑁(𝑓
0
(𝜂)) =

𝑚

∑

𝑖=1

ℎ
𝑖
(𝜂) 𝑔
𝑖
(𝜂) , (25)

where the functions ℎ
𝑖
(𝜂) and 𝑔

𝑖
(𝜂), 𝑖 = 1, . . . , 𝑚, are known

and depend on the function 𝑓
0
(𝜂) and also on the nonlinear

operator,𝑚 being a known integer number.
In this way, taking into account (20), from (21), for

𝑝 = 1, we obtain the first-order approximate solution which
becomes

𝑓 (𝜂, 𝐶
𝑖
) = 𝑓
0
(𝜂) + 𝑓

1
(𝜂, 𝐶
𝑖
) , 𝑖 = 1, . . . , 𝑠. (26)

It should be emphasized that 𝑓
0
(𝜂) and 𝑓

1
(𝜂, 𝐶
𝑖
) are gov-

erned by the linear equations (17) and (24), respectively, with
boundary conditions that come from the original problem.
It is known that the general solution of nonhomogeneous
linear equation (24) is equal to the sum of general solution
of the corresponding homogeneous equation and of some
particular solutions of the nonhomogeneous equation. How-
ever, the particular solutions are readily selected only in the
exceptional cases.

In what follows we do not solve (24), but, from the
theory of differential equations, taking into considerations
the method of variation of parameters, Cauchy method,
method of influence function, the operator method [19], and
so on is more convenient to consider the unknown function
𝑓
1
(𝜂), in the form

𝑓
1
(𝜂, 𝐶
𝑗
) =

𝑛

∑

𝑖=1

𝐻
𝑖
(𝜂, ℎ
𝑗
(𝜂) , 𝐶

𝑗
) 𝑔
𝑖
(𝜂) , 𝑗 = 1, . . . , 𝑠

𝐵(𝑓
1
(𝜂, 𝐶
𝑖
) ,

𝑑𝑓
1
(𝜂, 𝐶
𝑖
)

𝑑𝜂

) = 0,

(27)

where within expression of 𝐻
𝑖
(𝜂, ℎ
𝑗
(𝜂), 𝐶

𝑗
) appear linear

combinations of some functions ℎ
𝑗
, some terms which are

given by the corresponding homogeneous equation, and the
unknown parameters 𝐶

𝑗
, 𝑗 = 1, . . . , 𝑠. In the sum, ∑𝑛

𝑖=1
𝐻
𝑖
𝑔
𝑖

appear an arbitrary number of 𝑛 terms.
For instance, if ℎ

1
= sin𝛼𝜂, then we can choose

𝐻
1
(𝜂, ℎ
1
, 𝐶
𝑗
) = 𝐶

1
sin𝛼𝜂 + 𝐶

2
cos𝛼𝜂 + 𝐶

3
sin 2𝛼𝜂 + ⋅ ⋅ ⋅ .

Similarly, if ℎ
1

= 𝜂

3, then we can choose 𝐻
1
(𝜂, ℎ
1
, 𝐶
𝑗
) =

𝐶
1
𝜂

3
+𝐶
2
𝜂+𝐶
3
𝜂

2
+𝐶
4
𝜂

4
+ ⋅ ⋅ ⋅ . In the case when ℎ

1
= ln 𝜂, we

can choose𝐻
1
(𝜂, ℎ
1
, 𝐶
𝑗
) = 𝐶
1
ln 𝜂+𝐶

2
ln2𝜂+𝐶

3
𝜂 ln 𝜂+ ⋅ ⋅ ⋅ or

𝐻
1
(𝜂, ℎ
1
, 𝐶
𝑗
) = 𝐶
1
ln 𝜂+𝐶

2
𝜂 ln 𝜂+𝐶

3
𝜂

2 ln 𝜂+𝐶
4
𝜂 ln 2𝜂+ ⋅ ⋅ ⋅ .

We have large freedom to choose the value of 𝑛. We cannot
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demand𝑓
1
(𝜂, 𝐶
𝑖
) to be solutions of (24) but𝑓(𝜂, 𝐶

𝑖
), given by

(26) with𝑓
1
(𝜂, 𝐶
𝑖
) given by (27), are the solutions of (15).This

is an underlying idea of our method. The convergence of the
approximate solution𝑓(𝜂, 𝐶

𝑖
) given by (26) depends upon the

auxiliary functions𝐻
𝑖
(𝜂, ℎ
𝑖
, 𝐶
𝑗
), 𝑗 = 1, . . . , 𝑠. There are many

possibilities to choose these functions𝐻
𝑖
.We try to choose𝐻

𝑖

so that within (27) the term∑

𝑛

𝑖=1
𝐻
𝑖
(𝜂, ℎ
𝑗
(𝜂), 𝐶

𝑗
)𝑔
𝑖
(𝜂) is of the

same shape with the term ∑

𝑚

𝑖=1
ℎ
𝑖
(𝜂)𝑔
𝑖
(𝜂) given by (25). The

first-order approximate solution 𝑓(𝜂, 𝐶
𝑖
) also depends on the

parameters 𝐶
𝑗
, 𝑗 = 1, . . . , 𝑠. The values of these parameters

can be optimally identified via various methods, such as the
least-square method, the Galerkin method, the collocation
method, and the Ritz method. The first option should be
minimizing the square residual error:

𝐽 (𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑠
) = ∫

(𝐷)

𝑅

2
(𝜂, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑠
) 𝑑𝜂, (28)

where the residual 𝑅 is given by

𝑅 (𝜂, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑠
) = 𝑁 (𝑓 (𝜂, 𝐶

𝑖
)) . (29)

The unknown parameters𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑠
can be identified

from the conditions:

𝜕𝐽

𝜕𝐶
1

=

𝜕𝐽

𝜕𝐶
2

= ⋅ ⋅ ⋅ =

𝜕𝐽

𝜕𝐶
𝑠

= 0. (30)

With these parameters known (called optimal conver-
gence-control parameters), the first-order approximate solu-
tion given by (26) is well determined.

It should be emphasized that our procedure contains
the auxiliary functions 𝐻

𝑖
(𝜂, 𝑓
𝑖
, 𝐶
𝑗
), 𝑖 = 1, . . . , 𝑚, 𝑗 =

1, . . . , 𝑠, which provides us with a simple way to adjust
and control the convergence of the approximate solutions.
It is very important to properly choose these functions
𝐻
𝑖
(𝜂, 𝑓
𝑖
, 𝐶
𝑗
) which appear in the construction of the first-

order approximation.

4. Different Approximations to
the Solution of Upper-Convected
Maxwell Fluid with OHAM

In what follows we apply our procedure to obtain approxi-
mate solutions of (13) and (14). For this purpose, we choose
the linear operator of the following form:

𝐿 [𝑓 (𝜂)] = 𝑓


(𝜂) − 𝐾

2
𝑓


(𝜂) . (31)

We mention that the linear operator is not unique. Also,
we have freedom to choose

𝐿 [𝑓 (𝜂)] = 𝑓


(𝜂) + 𝐾𝑓


(𝜂) , (32)

𝐿 [𝑓 (𝜂)] = 𝑓


(𝜂) +

3𝐾

𝐾𝜂 + 1

𝑓


(𝜂) ,

𝐿 [𝑓 (𝜂)] = 𝑓


(𝜂) −

6𝐾

2

(𝐾𝜂 + 1)

2
𝑓


(𝜂) ,

(33)

where 𝐾 is an unknown positive parameter and will be
determined later. The initial approximation 𝑓

0
(𝜂) can be

obtained from (17) with initial/boundary conditions

𝑓
0 (
0) = 𝑅, 𝑓



0
(0) = 1, 𝑓



0
(∞) = 0. (34)

Equation (17) with the linear operators (31) and (32) has
the following solution:

𝑓
0
(𝜂) = 𝑅 +

1

𝐾

(1 − 𝑒

−𝐾𝜂
) (35)

while (17) with the linear operators (33) has the following
solution:

𝑓
0
(𝜂) = 𝑅 +

1

𝐾

ln (𝐾𝜂 + 1) . (36)

Inwhat followswe consider only the linear operator given
by (31) and the initial approximation given by (35).

The nonlinear operator corresponding to nonlinear dif-
ferential equation (13) is defined by

𝑁[𝑓 (𝜂)] = 𝑓


−𝑀

2
𝑓


− 𝑓

2
+ 𝑓𝑓



+ 𝛽 (2𝑓𝑓


𝑓


− 𝑓

2
𝑓


) .

(37)

By substituting (35) into (37), it holds that

𝑁[𝑓
0
(𝜂)] = [𝐾

2
−𝑀

2
− 1 − 𝐾𝑅 − 𝛽(1 + 𝐾𝑅)

2
] 𝑒

−𝐾𝜂

+ 𝛽𝑒

−3𝐾𝜂
.

(38)

Comparing (25) and (38), one can get

ℎ
1
(𝜂) = 𝐾

2
−𝑀

2
− 1 − 𝐾𝑅 − 𝛽(1 + 𝐾𝑅)

2
,

𝑔
1
(𝜂) = 𝑒

−𝐾𝜂
, ℎ

2
(𝜂) = 𝛽, 𝑔

2
(𝜂) = 𝑒

−3𝐾𝜂
.

(39)

The function 𝑓
1
(𝜂) given by (27) becomes

𝑓
1
(𝜂, 𝐶
𝑖
) = 𝐻

1
(𝜂, 𝐶
𝑖
) 𝑒

−𝐾𝜂
+ 𝐻
2
(𝜂, 𝐶
𝑖
) 𝑒

−3𝐾𝜂
, (40)

where we have the freedom to choose a lot of possibilities for
the unknown functions𝐻

𝑖
as follows:

𝐻
1
(𝜂, 𝐶
𝑖
) = −

𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2

+ (

𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
3
𝜂 + 𝐶
4
𝜂

2
) 𝑒

−𝐾𝜂
,

𝐻
2
(𝜂, 𝐶
𝑖
) = 𝐶
5
𝜂 + 𝐶
6
𝜂

2
.

(41)

Substituting (41) into (40), we have

𝑓
1
(𝜂, 𝐶
𝑖
) = − (

𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2
) 𝑒

−𝐾𝜂

+ (

𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
3
𝜂 + 𝐶
4
𝜂

2
) 𝑒

−2𝐾𝜂

+ (𝐶
5
𝜂 + 𝐶
6
𝜂

2
) 𝑒

−3𝐾𝜂
.

(42)
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The first-order approximate solution given by (26) is
obtained from (35) and (42):

(𝐴
1
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

+ (−

1 + 𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2
) 𝑒

−𝐾𝜂

+ (

𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
3
𝜂 + 𝐶
4
𝜂

2
) 𝑒

−2𝐾𝜂

+ (𝐶
5
𝜂 + 𝐶
6
𝜂

2
) 𝑒

−3𝐾𝜂
.

(43)

In this way, we can find other solutions:

(𝐴
2
) 𝑓 (𝜂, 𝐶

𝑖
) =

1

𝐾

+ (2𝑅 −

1 + 𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2
) 𝑒

−𝐾𝜂

+ (

𝐶
1
+ 𝐶
3
+ 𝐶
5

𝐾

− 𝑅 + 𝐶
3
𝜂

+ 𝐶
4
𝜂

2
) 𝑒

−2𝐾𝜂
+ (𝐶
5
𝜂 + 𝐶
6
𝜂

2
) 𝑒

−3𝐾𝜂
,

(𝐴
3
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

2
+ (−

𝐶
1
+ 𝐶
3
+ 𝐶
5

2𝐾

+

𝐾 − 3

2𝐾

2

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2
) 𝑒

−𝐾𝜂

+ (𝐶
3
𝜂 + 𝐶
4
𝜂

2
) 𝑒

−2𝐾𝜂

+ (

1 − 𝐾

2𝐾

2
+

𝐶
1
+ 𝐶
3
+ 𝐶
5

2𝐾

+ 𝐶
5
𝜂 + 𝐶
6
𝜂

2
)

× 𝑒

−3𝐾𝜂
,

(𝐴
4
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

+ (−

1

𝐾

+ 𝐶
1
𝜂

2
+ 𝐶
2
𝜂

3

+ 𝐶
3
𝜂

4
) 𝑒

−𝐾𝜂

+ (𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−2𝐾𝜂
,

(𝐴
5
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

+ (−

1

𝐾

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2
+ 𝐶
3
𝜂

3

+ 𝐶
4
𝜂

4
) 𝑒

−𝐾𝜂

+ (−𝐶
1
𝜂 + 𝐶
5
𝜂

2
+ 𝐶
6
𝜂

3
) 𝑒

−2𝐾𝜂
,

(𝐴
6
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

2
+ (−

1

𝐾

2
+ (1 −

1

𝐾

) 𝜂 + 𝐶
1
𝜂

2

+ 𝐶
2
𝜂

3
+ 𝐶
3
𝜂

4
) 𝑒

−𝐾𝜂

+ (𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−2𝐾𝜂
,

(𝐴
7
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1 − 𝑒

−𝐾𝜂

𝐾

+ (𝐶
1
𝜂

2
+ 𝐶
2
𝜂

3

+ 𝐶
3
𝜂

4
) 𝑒

−2𝐾𝜂

+ (𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−3𝐾𝜂
,

(𝐴
8
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

(1 − 𝑒

−𝐾𝜂
) + (3𝐶

1
𝜂 + 𝐶
2
𝜂

2

+ 𝐶
3
𝜂

3
) 𝑒

−2𝐾𝜂

+ (−2𝐶
1
𝜂 + 𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−3𝐾𝜂
,

(𝐴
9
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

2
(1 − 𝑒

−𝐾𝜂
) + [(1 −

1

𝐾

) 𝜂 + 𝐶
1
𝜂

2

+ 𝐶
2
𝜂

3
+ 𝐶
3
𝜂

4
]

× 𝑒

−2𝐾𝜂
+ (𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−3𝐾𝜂
,

(𝐴
10
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

+ (−

1

𝐾

+ 𝐶
1
𝜂

2
+ 𝐶
2
𝜂

3
+ 𝐶
3
𝜂

4
)

× 𝑒

−𝐾𝜂
+ (𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−3𝐾𝜂
,

(𝐴
11
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

+ (−

1

𝐾

+ 𝐶
1
𝜂 + 𝐶
2
𝜂

2
) 𝑒

−𝐾𝜂

+ (𝐶
3
𝜂 + 𝐶
4
𝜂

2
) 𝑒

−2𝐾𝜂
+ (𝐶
5
𝜂 + 𝐶
6
𝜂

2
)

× 𝑒

−3𝐾𝜂
+ [(−𝐶

1
− 𝐶
3
− 𝐶
5
) 𝜂 + 𝐶

7
𝜂

2
]

× 𝑒

−4𝐾𝜂
,

(𝐴
12
) 𝑓 (𝜂, 𝐶

𝑖
) = 𝑅 +

1

𝐾

+ (−

1

𝐾

+ 𝐶
1
𝜂

2
) 𝑒

−𝐾𝜂

+ (𝐶
2
𝜂

2
+ 𝐶
3
𝜂

3
) 𝑒

−2𝐾𝜂

+ (𝐶
4
𝜂

2
+ 𝐶
5
𝜂

3
+ 𝐶
6
𝜂

4
) 𝑒

−3𝐾𝜂
.

(44)
It is clear that we can obtain many other solutions.

5. Numerical Results

We illustrate the accuracy of our procedure for different
values of the coefficients 𝑅, 𝛽, and 𝑀. Also, we represent
graphically the behavior of the functions 𝑓 and 𝑓

 and
we compare results obtained through our procedure with
numerical results.

(1) First, we consider 𝛽 = 0.5, 𝑀 = 0.75, and 𝑅 =

0.25 which corresponds to suction velocity. The optimal
convergence-control parameters are determined by means of
the least-square method and are as follows:

(𝐴
1
) 𝐾 = 1.7223999348, 𝐶

1
= 0.0203632630,

𝐶
2
= −0.0003551855, 𝐶

3
= −0.0046442857,

𝐶
4
= 0.0021151819, 𝐶

5
= −0.0040337933,

𝐶
6
= −0.0030441083,
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(𝐴
2
) 𝐾 = 1.2039668671, 𝐶

1
= 0.0484595533,

𝐶
2
= −0.0035879577, 𝐶

3
= −0.1933189832,

𝐶
4
= −0.0613273780, 𝐶

5
= −0.0321447762,

𝐶
6
= −0.0048370121

(45)

and so on.
The first-order approximate solutions obtained by means

OHAM, for the above cases (𝐴
1
)–(𝐴
12
), become as follows:

(𝐴
1
) 𝑓 (𝜂) = 0.8305852518 + ( − 0.5873694973

+ 0.0203632630𝜂

− 0.0003551855𝜂

2
)

× 𝑒

−1.7223999348𝜂

+ (0.0067842454 − 0.0046442857𝜂

+ 0.0021151819𝜂

2
) 𝑒

−3.4447998696𝜂

+ (−0.0040337933𝜂 − 0.0030441083𝜂

2
)

× 𝑒

−5.1671998044𝜂
,

(46)

(𝐴
2
) 𝑓 (𝜂) = 0.8305876410 + ( − 0.1835701350

+ 0.0484595533𝜂

− 0.0035879577𝜂

2
)

× 𝑒

−1.2039668671𝜂
+ ( − 0.3970175060

− 0.1933189832𝜂

− 0.0613273780𝜂

2
)

× 𝑒

−2.4079337342𝜂
+ ( − 0.0321447762𝜂

− 0.0048370121𝜂

2
)

× 𝑒

−3.6119006013𝜂
,

(47)

(𝐴
3
) 𝑓 (𝜂) = 0.8305880207 + ( − 0.3420493544

+ 0.0892570980𝜂

− 0.0066950727𝜂

2
)

× 𝑒

−1.3123992230𝜂
+ ( − 0.2899683613𝜂

− 0.0166914996𝜂

2
)

× 𝑒

−2.6247984460𝜂
+ ( − 0.2385386662

− 0.1873679245𝜂

− 0.0454910883𝜂

2
)

× 𝑒

−3.9371976690𝜂
,

(48)

(𝐴
4
) 𝑓 (𝜂) = 0.8305846668 + ( − 0.5805846668

+ 0.0113141332𝜂

2

− 0.0026254854𝜂

3

+ 0.0002157623𝜂

4
)

× 𝑒

−1.7224016705𝜂

+ (0.0194551449𝜂

2
+ 0.0055884706𝜂

3

+ 0.0021434013𝜂

4
) 𝑒

−3.4448033410𝜂
,

(49)

(𝐴
5
) 𝑓 (𝜂) = 0.8305850786 + ( − 0.5805850786

+ 0.0129138333𝜂

+ 0.0029826874𝜂

2

− 0.0007022807𝜂

3

+ 0.0000575450𝜂

4
)

× 𝑒

−1.7224004488𝜂

+ (−0.0129138333𝜂 + 0.0055128320𝜂

2

− 0.0009540905𝜂

3
) 𝑒

−3.4448008976𝜂
,

(50)

(𝐴
6
) 𝑓 (𝜂) = 0.8305896186 + ( − 0.5805896186

+ 0.2380356841𝜂

− 0.0458010823𝜂

2

+ 0.0050361161𝜂

3

− 0.0002634636𝜂

4
)

× 𝑒

−1.3123974169𝜂

+ (0.0276184306𝜂

2
− 0.0042554588𝜂

3

+ 0.0040951218𝜂

4
) 𝑒

−2.6247948339𝜂
,

(51)

(𝐴
7
) 𝑓 (𝜂) = 0.25 + 0.5805981621 (1 − 𝑒

−1.7223616352𝜂
)

+ (3.7465003467𝜂

2
− 2.5918747904𝜂

3

+ 0.5688873710𝜂

4
) 𝑒

−3.4447232705𝜂

+ (−3.7216397470𝜂

2
− 3.7194132780𝜂

3

− 1.7743745762𝜂

4
) 𝑒

−5.1670849057𝜂
,

(52)
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(𝐴
8
) 𝑓 (𝜂) = 0.25 + 0.5806004947 (1 − 𝑒

−1.7223547156𝜂
)

+ (28.6559933963𝜂 − 17.1574454736𝜂

2

+ 3.0755892307𝜂

3
) 𝑒

−3.4447094313𝜂

+ (−28.6559933963𝜂 − 32.1751588943𝜂

2

− 15.8637665758𝜂

3
− 4.4540759880𝜂

4
)

× 𝑒

−5.1670641469𝜂
,

(53)

(𝐴
9
) 𝑓 (𝜂) = 0.25 + 0.5807600837 (1 − 𝑒

−1.3122047950𝜂
)

+ (0.2379238333𝜂 + 14.3490983671𝜂

2

− 7.4936309491𝜂

3
+ 1.3346589985𝜂

4
)

× 𝑒

−2.6244095900𝜂

+ (−14.0803697555𝜂

2
− 10.6121821644𝜂

3

− 3.7974679259𝜂

4
) 𝑒

−3.9366143850𝜂
,

(54)

(𝐴
10
) 𝑓 (𝜂) = 0.8305805525 + ( − 0.5805805525

+ 0.0163027398𝜂

2

− 0.0053622456𝜂

3

+ 0.0006113624𝜂

4
)

× 𝑒

−1.7224138763𝜂

+ (0.0153758771𝜂

2
+ 0.0170806180𝜂

3

+ 0.0369073209𝜂

4
) 𝑒

−5.1672416289𝜂
,

(55)

(𝐴
11
) 𝑓 (𝜂) = 0.8305850069 + ( − 0.5805850069

+ 0.0167016213𝜂

+ 0.0001742425𝜂

2
)

× 𝑒

−1.7224006615𝜂

+ (−0.0115884531𝜂 − 0.0052672814𝜂

2
)

× 𝑒

−3.4448013230𝜂
+ ( − 0.0193966267𝜂

+ 0.0114385136𝜂

2
)

× 𝑒

−5.1672019845𝜂
+ (0.0142834585𝜂

+ 0.0114385136𝜂

2
)

× 𝑒

−6.8896026460𝜂
,

(56)

(𝐴
12
) 𝑓 (𝜂) = 0.8305751642 + ( − 0.5805751642

+ 0.0012101182𝜂

3
)

× 𝑒

−1.7224298620𝜂

+ (−0.4645923536𝜂

2
+ 0.2718146543𝜂

3
)

× 𝑒

−3.4448597240𝜂

+ (0.4983783090𝜂

2
+ 0.5722116290𝜂

3

+ 0.4013983403𝜂

4
) 𝑒

−5.1672895860𝜂
.

(57)

(2) In the last case, we consider 𝛽 = 0.5, 𝑀 = 0.75,
and 𝑅 = −2 for injection velocity. The optimal convergence-
control parameters are as follows:

(𝐴
1
) 𝐾 = 3.4039784470, 𝐶

1
= −0.0073489093,

𝐶
2
= −0.0000300879, 𝐶

3
= 0.0019346837,

𝐶
4
= −0.0028434644, 𝐶

5
= 0.0004870868,

𝐶
6
= 0.0008838343,

(58)

(𝐴
2
) 𝐾 = 0.3235777833, 𝐶

1
= 193.0767116481,

𝐶
2
= −9.2315115218, 𝐶

3
= 269.5805006985,

𝐶
4
= 10.4423160474, 𝐶

5
= −36.4073561981,

𝐶
6
= −8.0939438081

(59)

and so on.
The first-order approximate solutions can be written for

only three cases in the following forms:

(𝐴
1
) 𝑓 (𝜂) = −1.7062261070 + ( − 0.2923264282

− 0.0073489093𝜂

− 0.0000300879𝜂

2
)

× 𝑒

−3.4039784470𝜂

+ ( − 0.0014474647 + 0.0019346837𝜂

− 0.0028434644𝜂

2
) 𝑒

−6.8079568940𝜂

+ (0.0004870868𝜂 + 0.0008838343𝜂

2
)

× 𝑒

−10.2119353411𝜂
,

(60)
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(𝐴
4
) 𝑓 (𝜂) = −1.7062260957 + ( − 0.2937739042

− 0.0079483534𝜂

2

+ 0.0033559204𝜂

3

− 0.0005109100𝜂

4
)

× 𝑒

−3.4039783163𝜂

+ (−0.0123589233𝜂

2
− 0.0091292547𝜂

3

− 0.0057558384𝜂

4
)

× 𝑒

−6.8079566326𝜂
,

(61)

(𝐴
11
) 𝑓 (𝜂) = −1.7062260959 + (−0.2937739040

− 0.0058506315𝜂

− 0.0004400135𝜂

2
)

× 𝑒

−3.4039783189𝜂

+ (0.0043294258𝜂 + 0.0042247893𝜂

2
)

× 𝑒

−6.8079566378𝜂

+ (0.0072464953𝜂 − 0.0092559326𝜂

2
)

× 𝑒

−10.2119349567𝜂

+ (−0.0057252895𝜂 − 0.0092559326𝜂

2
)

× 𝑒

−13.6159132756𝜂
.

(62)

In Figures 1 and 2, a comparison between the first-
order approximate solutions 𝑓(𝜂) and 𝑓



(𝜂), respectively,
for the suction velocity in the case (𝐴

1
) and numerical

results is plotted, while, in Figures 3 and 4, a comparison
between the first-order approximate solutions𝑓(𝜂) and𝑓



(𝜂),
respectively, for the injection velocity in the case (𝐴

1
) is

plotted.
InTables 1, 2, 3, 4, and 5,we present a comparison between

the first-order approximate solutions (46)–(62), respectively,
with numerical results for some values of variable 𝜂.

In Tables 6, 7, and 8, we present the relative error
between the first-order approximate solutions (46)–(62) and
numerical results; 𝜀 = |𝑓OHAM(𝜂) − 𝑓numerical(𝜂)| for some
values of variable 𝜂.

In Tables 9 and 10, we present a comparison between
the skin friction coefficient 𝐹(0) and the value of 𝐹(∞)

by means of OHAM and numerical integrations. All these
comparisons are found to be in very good agreement with the
first-order approximate solution obtained by OHAM.

It can be seen from the above Tables that the solutions
obtained by the proposed procedure are nearly identical

2 4 6 8

0.2

0.4

0.6

0.8

f
(𝜂
)

𝜂

Figure 1: Comparison between the approximate solution (46) and
numerical solution in the following cases: 𝛽 = 0.5, 𝑀 = 0.75, and
𝑅 = 0.25—numerical solution; . . . . . . . . . approximate solution.

2 4 6 8

0.2

0.4

0.6

0.8

1.0

f
 (
𝜂
)

𝜂

Figure 2: Comparison between the derivative of the first-order
approximate solution of (46) and numerical solution in the follow-
ing cases: 𝛽 = 0.5, 𝑀 = 0.75, and 𝑅 = 0.25—numerical solution;
. . . . . . . . . approximate solution.

with the numerical solutions obtained using a fourth-order
Runge-Kutta method in combination with the shooting
method.

Also, we note that one can get a lot of other solutions by
means of the initial approximation given by (36).

Some statistical tests are necessary to sustain some
asymptotic properties. In fact, two statistical tests are more
important: test of homoscedasticity and test of autocorrela-
tions. We compute the Durbin-Watson test for autocorrela-
tion and Bartlett test for homoscedasticity:

𝐹 =

∑

[𝑛/2]

𝑖=1
𝜀

2

𝑖

∑

𝑛

𝑖=[𝑛/2]+1
𝜀

2

𝑖

(Barlett test) ,

𝑑 =

∑

2𝑛

𝑖=1
(𝜀
𝑖
− 𝜀
𝑖−1

)

2

∑

𝑛

𝑖=1
𝜀

2

𝑖

(Durbin-Wattson test) .

(63)

The representative limits for Barlett test are 𝐹inf =

0.000162; 𝐹sup = 8.6831168141 for confidence lavel 0.99%
(the errors 𝜀

𝑖
= 𝑓OHAM(𝜂𝑖) − 𝑓numerical(𝜂𝑖), 𝑖 = 1, 2, ..., 𝑛 pass

the Barlett test if 𝐹inf < 𝐹 < 𝐹sup). This test assure that errors
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Table 1: Comparison of the first-order approximate solution 𝑓 obtained by OHAM with numerical results.

𝜂

𝑓OHAM(𝜂)

(46)
𝑓OHAM(𝜂)

(47)
𝑓OHAM(𝜂)

(48) 𝑓numerical(𝜂)

0 0.25 0.25 0.25 0.25
4/5 0.6867557456 0.6867558261 0.6867555458 0.6867557531
8/5 0.7952831540 0.7952832405 0.7952835769 0.7952831536
12/5 0.8219262765 0.8219262098 0.8219258666 0.8219262711
16/5 0.8284614196 0.8284613427 0.8284615570 0.8284614131
4 0.8300643020 0.8300645259 0.8300647355 0.8300642946
24/5 0.8304574558 0.8304574869 0.8304573214 0.8304574344
28/5 0.8305538969 0.8305537376 0.8305535912 0.8305538603
32/5 0.8305775573 0.8305776155 0.8305777588 0.8305775112
36/5 0.8305833631 0.8305839424 0.8305843430 0.8305833139
8 0.8305847881 0.8305859411 0.8305864617 0.8305847388

Table 2: Comparison of the first-order approximate solution 𝑓 obtained by OHAM with numerical results.

𝜂

𝑓OHAM(𝜂)

(49)
𝑓OHAM(𝜂)

(50)
𝑓OHAM(𝜂)

(51) 𝑓numerical(𝜂)

0 0.25 0.25 0.25 0.25
4/5 0.6867559559 0.6867558676 0.6867559421 0.6867557531
8/5 0.7952829566 0.7952830577 0.7952832693 0.7952831536
12/5 0.8219264714 0.8219263597 0.8219262460 0.8219262711
16/5 0.8284612774 0.8284613647 0.8284612078 0.8284614131
4 0.8300641916 0.8300642631 0.8300646204 0.8300642946
24/5 0.8304575489 0.8304574866 0.8304575594 0.8304574344
28/5 0.8305539626 0.8305539177 0.8305536600 0.8305538603
32/5 0.8305774335 0.8305775190 0.8305775904 0.8305775112
36/5 0.8305830455 0.8305832668 0.8305842233 0.8305833139
8 0.8305843381 0.8305846532 0.8305866484 0.8305847388

Table 3: Comparison of the first-order approximate solution 𝑓 obtained by OHAM with numerical results.

𝜂

𝑓OHAM(𝜂)

(52)
𝑓OHAM(𝜂)

(53)
𝑓OHAM(𝜂)

(54) 𝑓numerical(𝜂)

0 0.25 0.25 0.25 0.25
4/5 0.6867604947 0.6867642071 0.6866887026 0.6867557531
8/5 0.7952711920 0.7952698391 0.7952830603 0.7952831536
12/5 0.8219400081 0.8219414386 0.8219258072 0.8219262711
16/5 0.8284434011 0.8284360789 0.8285164738 0.8284614131
4 0.8300472216 0.8300445299 0.8299931937 0.8300642946
24/5 0.8304557614 0.8304567567 0.8303854806 0.8304574344
28/5 0.8305615064 0.8305635876 0.8305702204 0.8305538603
32/5 0.8305888008 0.8305910952 0.8306729872 0.8305775112
36/5 0.8305957861 0.8305981136 0.8307238267 0.8305833139
8 0.8305975612 0.8305998931 0.8307459962 0.8305847388
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Table 4: Comparison of the first-order approximate solution 𝑓 obtained by OHAM with numerical results.

𝜂

𝑓OHAM(𝜂)

(55)
𝑓OHAM(𝜂)

(56)
𝑓OHAM(𝜂)

(57) 𝑓numerical(𝜂)

0 0.25 0.25 0.25 0.25
4/5 0.6867577703 0.6867556858 0.6867565108 0.6867557531
8/5 0.7952835590 0.7952833690 0.7952904892 0.7952831536
12/5 0.8219267050 0.8219260684 0.8219182801 0.8219262711
16/5 0.8284593204 0.8284614530 0.8284624519 0.8284614131
4 0.8300649028 0.8300645204 0.8300733641 0.8300642946
24/5 0.8304590162 0.8304575585 0.8304617717 0.8304574344
28/5 0.8305540337 0.8305538374 0.8305514864 0.8305538603
32/5 0.8305757755 0.8305773944 0.8305708821 0.8305775112
36/5 0.8305801662 0.8305831505 0.8305746354 0.8305833139
8 0.8305807821 0.8305845549 0.8305752047 0.8305847388

Table 5: Comparison of the first-order approximate solution 𝑓 obtained by OHAM with numerical results.

𝜂

𝑓OHAM(𝜂)

(60)
𝑓OHAM(𝜂)

(61)
𝑓OHAM(𝜂)

(62) 𝑓numerical(𝜂)

0 −2 −2 −2 −2
4/5 −1.7258163099 −1.7258162625 −1.7258163629 −1.7258163121
8/5 −1.7075377409 −1.7075377235 −1.7075377264 −1.7075377364
12/5 −1.7063139221 −1.7063139346 −1.7063139675 −1.7063139251
16/5 −1.7062319851 −1.7062320229 −1.7062319899 −1.7062319847
4 −1.7062265004 −1.7062265071 −1.7062264918 −1.7062264984
24/5 −1.7062261333 −1.7062261259 −1.7062261225 −1.7062261309
28/5 −1.7062261087 −1.7062260981 −1.7062260977 −1.7062261063
32/5 −1.7062261071 −1.7062260959 −1.7062260960 −1.7062261046
36/5 −1.7062261070 −1.7062260957 −1.7062260959 −1.7062261044
8 −1.7062261070 −1.7062260957 −1.7062260959 −1.7062261044

2 4 6 8

𝜂

−0.5

−1.0

−1.5

−2.0

f
(𝜂
)

Figure 3: Comparison between the approximate solution (60) and
numerical solution in the following cases: 𝛽 = 0.5, 𝑀 = 0.75, and
𝑅 = −2—numerical solution; . . . . . . . . . approximate solution.

have the constant variance and possible to control the analytic
approximate solutions for any real interval.

The representative limits for Durbin-Wattson test are
𝑑inf = 1.36; 𝑑sup = 2.92 for confidence lavel 0.99% (again,

2 4 6 8

0.2

0.4

0.6

0.8

1.0

f
 (
𝜂
)

𝜂

Figure 4: Comparison between the derivative of the first-order
approximate solution of (60) and numerical solution in the follow-
ing cases: 𝛽 = 0.5, 𝑀 = 0.75, and 𝑅 = −2—numerical solution;
. . . . . . . . . approximate solution.

the all errors 𝜀
𝑖
= 𝑓OHAM(𝜂𝑖) − 𝑓numerical(𝜂𝑖), 𝑖 = 1, 2, ..., 𝑛

pass the Durbin-Wattson test, that is, 𝑑inf < 𝑑 < 𝑑sup). This
test explain no correlation between errors and thismeans that
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Table 6: Comparison of the first-order approximate solution 𝑓

obtained by OHAM with numerical results.

𝜂

𝜀

(46)
𝜀

(47)
𝜀

(48)
𝜀

(49)
𝜀

(50)
0 1.1 ⋅ 10

−16
1.1 ⋅ 10

−16 0 0 0
4/5 7.8 ⋅ 10

−9
7.2 ⋅ 10

−8
2.0⋅10

−7
2.0⋅10

−7
1.1⋅10

−7

8/5 9.0 ⋅ 10

−10
8.5 ⋅ 10

−8
4.2⋅10

−7
1.9⋅10

−7
9.7⋅10

−8

12/5 1.9 ⋅ 10

−9
6.4 ⋅ 10

−8
4.0⋅10

−7
1.9⋅10

−7
8.5⋅10

−8

16/5 4.0 ⋅ 10

−10
7.7 ⋅ 10

−8
1.4⋅10

−7
1.4⋅10

−7
5.5⋅10

−8

4 4.7 ⋅ 10

−9
2.1 ⋅ 10

−7
4.4⋅10

−7
1.1⋅10

−7
4.3⋅10

−8

24/5 1.2 ⋅ 10

−9
3.2 ⋅ 10

−8
1.1⋅10

−7
9.4⋅10

−8
3.1⋅10

−8

28/5 4.5 ⋅ 10

−9
1.5 ⋅ 10

−7
2.6⋅10

−7
7.0⋅10

−8
2.5⋅10

−8

32/5 3.5 ⋅ 10

−9
5.4 ⋅ 10

−8
2.4⋅10

−7
1.2⋅10

−7
4.1⋅10

−8

36/5 2.6 ⋅ 10

−8
5.5 ⋅ 10

−7
1.0⋅10

−6
3.4⋅10

−7
1.2⋅10

−7

8 6.4 ⋅ 10

−8
1.0 ⋅ 10

−6
1.7⋅10

−6
5.1⋅10

−7
1.9⋅10

−7

Table 7: Comparison of the first-order approximate solution 𝑓

obtained by OHAM with numerical results.

𝜂

𝜀

(51)
𝜀

(52)
𝜀

(53)
𝜀

(54)
𝜀

(55)
0 0 0 0 0 0
4/5 1.8⋅10

−7
4.7⋅10

−6
8.4⋅10

−6
6.7⋅10

−5
2.0⋅10

−6

8/5 1.1⋅10

−7
1.1⋅10

−5
1.3⋅10

−5
9.4⋅10

−8
4.0⋅10

−7

12/5 2.8⋅10

−8
1.3⋅10

−5
1.5⋅10

−5
4.6⋅10

−7
4.3⋅10

−7

16/5 2.1⋅10

−7
1.8⋅10

−5
2.5⋅10

−5
5.5⋅10

−5
2.0⋅10

−6

4 3.1⋅10

−7
1.7⋅10

−5
1.9⋅10

−5
7.1⋅10

−5
5.9⋅10

−7

24/5 1.0⋅10

−7
1.6⋅10

−6
6.9⋅10

−7
7.1⋅10

−5
1.5⋅10

−6

28/5 2.3⋅10

−7
7.6⋅10

−6
9.6⋅10

−6
1.6⋅10

−5
1.4⋅10

−7

32/5 2.9⋅10

−8
1.1⋅10

−5
1.3⋅10

−5
9.5⋅10

−5
1.7⋅10

−6

36/5 8.3⋅10

−7
1.2⋅10

−5
1.4⋅10

−5
1.4⋅10

−5
3.2⋅10

−6

8 1.7⋅10

−6
1.2⋅10

−5
1.5⋅10

−5
1.6⋅10

−5
4.0⋅10

−6

Table 8: Comparison of the first-order approximate solution 𝑓

obtained by OHAM with numerical results.

𝜂

𝜀

(56)
𝜀

(57)
𝜀

(60)
𝜀

(61)
𝜀

(62)
0 0 0 0 0 0
4/5 6.7⋅10

−8
7.5⋅10

−7
2.4 ⋅ 10

−9
4.9⋅10

−8
5.0⋅10

−8

8/5 2.1⋅10

−7
7.3⋅10

−6
3.8 ⋅ 10

−9
1.3⋅10

−8
9.9⋅10

−9

12/5 2.0⋅10

−7
7.9⋅10

−6
4.0 ⋅ 10

−9
8.5⋅10

−9
4.2⋅10

−8

16/5 3.2⋅10

−8
1.0⋅10

−6
8.8 ⋅ 10

−10
3.6⋅10

−8
5.1⋅10

−9

4 2.1⋅10

−7
9.0⋅10

−6
4.9 ⋅ 10

−10
7.2⋅10

−9
6.6⋅10

−9

24/5 1.0⋅10

−7
4.3⋅10

−6
7.2 ⋅ 10

−10
6.6⋅10

−9
8.3⋅10

−9

28/5 5.4⋅10

−8
2.4⋅10

−6
6.8 ⋅ 10

−10
9.9⋅10

−9
8.5⋅10

−9

32/5 1.6⋅10

−7
6.6⋅10

−6
6.3 ⋅ 10

−10
1.0⋅10

−8
8.5⋅10

−9

36/5 2.3⋅10

−7
8.7⋅10

−6
6.0 ⋅ 10

−10
1.0⋅10

−8
8.5⋅10

−9

8 2.9⋅10

−7
9.6⋅10

−6
5.8 ⋅ 10

−10
1.0⋅10

−8
8.4⋅10

−9

there no exists an analytic terms in the errors, that is, we
obtain the best analytic approximate solution.

Table 9: Values of 𝐹(0) and 𝐹(∞) for 𝛽 = 0.5, 𝑀 = 0.75, and
𝑅 = 0.25.

Equation (46) (49) (55)
𝐹



numeric (0) −1.6610234543 −1.6610234543 −1.6610234543

𝐹



OHAM (0) −1.6610517418 −1.6608631140 −1.6608887452

𝐹numeric(∞) 0.8305852596 0.8305852596 0.8305852596

𝐹OHAM(∞) 0.8305852518 0.8305846668 0.8305850069

Table 10: Values of 𝐹(0) and 𝐹(∞) for 𝛽 = 0.5, 𝑀 = 0.75, and
𝑅 = −2.

Equation (60) (61) (62)
𝐹



numeric (0) −3.4445300498 −3.4445300498 −3.4445300498

𝐹



OHAM (0) −3.4445331335 −3.4445928699 −3.4446421233

𝐹numeric(∞) −1.7062261065 −1.7062261065 −1.7062261065

𝐹OHAM(∞) −1.7062261070 −1.7062260957 −1.7062260959

For all 12 approximate solutions (46)–(57) and for 𝑛 = 30

points, all errors pass both tests (e.g., we obtain {1.87448,
1.87448, 5.86776, 2.13935, 1.48597, 1.68839} for Barlett’s test
and respectively the values {1.81622, 1.81622, 1.92555, 2.64548,
1.83306, 1.96373} for Durbin-Wattson test).

6. Conclusions

The optimal homotopy asymptotic method is employed to
propose new analytic approximate solutions for the upper-
convected Maxwell fluid over a porous stretching plate. Our
procedure is valid even if the nonlinear differential equation
does not contain any small or large parameters. In con-
struction of the homotopy appear some distinctive concepts
such as the auxiliary functions 𝐻

1
(𝜂, 𝐶
𝑖
),𝐻
2
(𝜂, 𝐶
𝑖
), . . ., the

linear operator 𝐿, and several optimal convergence-control
parameters 𝐶

1
, 𝐶
2
, . . . which ensure a fast convergence of the

all solutions. The examples presented in this work lead to the
conclusion that the obtained results are of the exceptional
accuracy using only one iteration. The OHAM provides us
with a simple and rigorous way to control and adjust the
convergence of the solutions through the auxiliary func-
tions 𝐻

1
(𝜂, 𝐶
𝑖
),𝐻
2
(𝜂, 𝐶
𝑖
), . . ., involving several parameters

𝐶
1
, 𝐶
2
, . . . which are optimally determined. Actually, the

capital strength of OHAM is its fast convergence, which
proves that our procedure is very efficient in practice.
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[16] V. Marinca, N. Herişanu, C. Bota, and B. Marinca, “An optimal
homotopy asymptotic method applied to the steady flow of a
fourth-grade fluid past a porous plate,” Applied Mathematics
Letters, vol. 22, no. 2, pp. 245–251, 2009.
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