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We study the permanence, extinction, and global asymptotic stability for a nonautonomous malaria transmission model with
distributed time delay. We establish some sufficient conditions on the permanence and extinction of the disease by using inequality
analytical techniques. By a Lyapunov functional method, we also obtain some sufficient conditions for global asymptotic stability
of this model. A numerical analysis is given to explain the analytical findings.

1. Introduction and the Model

There have been lots of researches about SEIRS, SIRS models,
in which the infectious diseases spread in a single population
[1, 2]. In recent years, the study of diseases spreading among
multiple populations has increased gradually, such as avian
influenza and malaria. Malaria remains one of the most
prevalent and lethal human infectious diseases in the world.
Malaria is a protozoan infection of red blood cells caused in
human by four species of the genus Plasmodium (Plasmod-
ium falciparum, Plasmodium vivax, Plasmodium ovale, and
Plasmodium malariae). The malaria parasites are generally
transmitted to the human host through the bite of an infected
female anopheline mosquito.

There has been a great deal of work about using mathe-
matical models to study malaria [3-5]. However, considering
malaria often occurs in most tropical and some subtropical
regions of the world [6], environmental and climatic factors
play an important role in the geographical distribution and
transmission of malaria [7]. Malaria fluctuates over time and
often exhibits seasonal behaviors, especially in the northern
areas. Therefore, it is meaningful and essential to take account
of malaria model with periodic environment [8]. However,
up to now, there have been few results about malaria model
with periodic environment. In [9], a malaria transmission
model with periodic birth rate and age structure for the

vector population was presented by Lou and Zhao, and they
further showed that %, is the threshold value determining
the extinction and the uniform persistence of the disease.
Later, they used these analytic results to study the malaria
transmission cases in KwaZulu-Natal Province, South Africa.

Motivated by the work of [8, 10-12], studied a malaria
transmission model with periodic environment. By applying
the way of computing the basic reproduction number for a
wide class of compartmental epidemic models in periodic
environments given by Wang and Zhao [13], Lei Wang,
Zhidong Teng, and Tailei Zhang calculated the basic repro-
duction number and indicated it was the threshold value
determining the extinction and the uniform persistence of the
disease. They studied the following model:

S0 =540 (1= 25 ) - a ) Suly,

I (t) = o (t) Splyy — d () I,

SL () = A — B(8) Syl — Sy + Ry M
Iy () = B(t) Sylp — (8 + u+0) Iy,

Ry, (£) = plyy; — ORg — yRyy.
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In [14], the researcher constructed a mathematical model
to interpret the spread of wild avian influenza from the birds
to the humans, after the emergence of mutant avian influenza,
with nonautonomous ordinary differential equations and
distributed time delay due to the intracellular delay between
initial infection of a cell and the release of new virus particles.
The researcher studied the following model:

h
X't)=ct)-b®) X t)-w(t) X (t) L Y (t-s)dn(s),

h
Y' (1) :w(f)X(t)J Y (t-s)dn(s) - {b(t) + m(®)}Y (2),

0
h

S () = A(t) — (O S(E) - By ()S(®) jo Y (t - ) (s)
h
—ﬁz(t)S(t)JOH(t—S)dﬂ(S),

h
B (t)= B, (1) S(t) j Y (t - $)dn (5)
—{fp®+d, ) +EM}B(®),
h
H' (t)= B, (S (2) jo H (t - s)dn(s) + £ () B(t)

—{u®)+dy, O +y®H (@),

Rt)=y)H®) - ut)R().
(2)

Motivated by system (2), considering the intracellular
delay between initial infection of a cell biting by an infected
female anopheline mosquito and the release of new virus
particles, we study the system (1) with distributed time delay,
which can be more reasonable. We construct the following
model:

h
SL () = ¢ () - a(t) Sy L Ly (t =) dn (s) b (1) Sg
, h
1(6) = a(t) S L Ly (¢ = $)di (s) = d (6) T = b () Iy

h
SL() = A (1) - B (1) Sy j I (t - ) dn(s) - 8.(¢) Sy
3)
+ vy () Ry,

h
1 =BOSy | -9

0
~@®+u® +o®) Iy
Ry (1) = (6 Iy = 8 (6) Ry =y () Ryy.

Here Ni(t) = Sgp(t) + Ix(t) and Ny(t) = Sy(t) + I4(t) +
Ry, (t) denote the total number of mosquito and human
population, respectively, at time #; Sp(t), Ix(t), Sp(t), (1),
and Ry, (t) represent the densities (or fractions) of susceptible
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mosquitoes, infected mosquitoes, susceptible humans, infec-
tive humans, and recovered humans, respectively, at time
t. Due to the mosquitos short lifespan, it cannot recover
from the infection. Consequently, we only divide the total
mosquito population into two classes: the susceptible and the
infected.

The quantities c(t), a(t), b(t), d(t), A(t), B(t), 8(t), y(t),
u(t), and o(t) are as follows:

c(t): the instantaneous growth rate function of the
mosquito population;

b(t): the instantaneous natural death rate function of
the mosquito population;

d(t): the instantaneous additional death rate function
of the mosquito population;

«(t): the transmission rate function from human
to mosquito when susceptible mosquitoes contact
infective humans and the rate of transmission is of the
form

h

a(t) Sy L Iy (t—s)dn(s); (4)

A(t): the instantaneous immigration rate function of
the human population;

&(t): the instantaneous natural death rate function of
the human population;

p(t): the instantaneous rate function of which the
recovered becomes susceptible again;

u(t): the instantaneous recovered rate function of the
human population;

o(t): the instantaneous disease-induced death rate
function of the human population;

B(t): the transmission rate function from mosquito to
human when susceptible humans take contact with
infected mosquitoes and the rate of transmission is of
the form:

h

ﬂ(t)SHJ Ig(t—s)dn(s). (5)

0

The nonnegative constant & is the time delay. The function
n(s) : [0,h] — [0, 00) is nondecreasing and has bounded
variation such that

h
J dn (s) = n(h) =5 (0) = 1. (6)

0

The time delay is due to intracellular delay between initial
infection of a cell and the release of new virions. Those
infected at time t — s become infectious at time s (0 < s <
h) later with different probabilities. Additionally, comparing
with the human, the mosquito’ life is much too shorter, so we
suppose that

bt)+d@)>6t)+u)+o(t). (7)
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This paper is organized as follows. In Section 2, we
establish some sufficient conditions on the permanence and
extinction of the disease. In Section 3, we analyze global
asymptotical stability of the disease. Some numerical simu-
lations are given in Section 4. And finally, in Section 5, we
come to a conclusion.

2. Permanence and Extinction

In this section, we first introduce the following assumptions
for system (3): Functions c(t), a(t), b(t), d(t), A(t), B(t), &(t),
p(t), u(t), and o(t) are positive continuous bounded and have
positive lower bounds.

The initial conditions of (3) are given as

Ix(0) =9, (0),
Ry (6) = 95 (9),

Sr(0) =9, (0),
I (0) = ¢, (0),

S (0) = 95 (0),

-h<0<0,
(8)

where ¢ = (91,92 93,94 95)" € C such that ¢,(8) > 0
i = 1,2,3,4,5), VO € [-h,0]. C denotes the Ban-
ach space C([-h, 0],R%) of continuous functions mapp-
ing the interval [-h,0] into R® and the norm of an
element ¢ in C is designated by [l = sup_j,4
{lp1 01, 19, (0)1, |5 (O)], lp4(O)], 15 (O)]}.  For a biological
meaning, we further assume that ¢;(0) > 0 (i = 1,2, 3,4,5).

Lemma 1 (see [15]). If the functions c(t), a(t), b(t), d(t), A(t),
B), 8(t), y(t), u(t), and o(t) are continuous and bounded on
[0, +00), then there exists a unique solution of the system (3)
with initial conditions (8) defined on [0, +00).

Firstly we discuss the permanence of the system (3).
For a continuous and bounded function f(¢) defined on
[0, +00), we introduce the following signs:

fl=inff (1),

t=0

f* =supf(t). 9)
£20

Definition 2 (see [16]). The system (3) is said to be permanent,
that is, the long-term survival (will not vanish in time) of all
components of the system (3), if there are positive constants
v;and M; (i = 1,2,3,4,5) such that

v, < liminf Sy (t) < limsup Sy () < M,
f—o00 t— 00

v, < litm inf I (t) < limsup I (t) < M,,
- t— 0o

vy < litm inf Sy (t) < limsup Sy (t) < M3, (10)
-0 t— 00

vy < litm inf Ipy (¢) < limsup I (t) < M,,
— 00

t — 0o

vs < liminf Ry (t) < limsup Ry (¢) < M,
t—oo t— 00

hold for any solution (Si(t), Ix(t), S (t), I (t), Ry (t)) of (3)
with initial conditions of type (8). Here v; and M; (i =
1,2,3,4,5) are independent of (8).

Theorem 3. Set r* = (B/(d + b)*)(\'/8), r, = (o /(8 + u +
o)) /"), and ry = (& /(d +b)*)(c' /b"). The system (3) with
initial conditions (8) is permanent provided that r* > r, and
ro > L

Proof. We will give the following Propositions 4-8 to com-
plete the proof of this theorem. O

Proposition 4. The solution (Sg(t), Ix(t), Sy (t), Iy (t), Ry (t))
of (3) with initial conditions (8) is positive for all t > 0, and

u u

lim sup Ny (¢) < %; lim sup N (¢) < % 11)

t — +00 t — 400

Proof. Since the functions c(t), a(t), b(t), d(t), At), B(t), 5(t),
p(t), u(t), and o(t) are continuous and bounded on [0, +c0),
the solution of (3) with initial conditions (8) exists and is
unique on [0, +00). Now,

Sg (£)

t h
— S5 (0) exp [— L {oc(@) J I (0-s)dn(s) + b(@)} de]

0

0

+ Ltc(u) exp Utu {“(9) Jh Iy (O —s)dn (s)

+ b(0) } d9du] >0, t=0.
(12)
Next, we show that I(¢) > 0 for all + > 0. Otherwise there
exists at; € (0,+00) such that I(t;) = 0 and Ix(¢) > 0 for all
t € [0,¢,). We claim that I,;(¢) > 0 for all t € [0, ¢,). If this is
not true, then there exists a t, € [0,¢;) such that I;(¢,) = 0

and I;;(¢) > O for all t € [0,¢,). From the fourth equation of
system (3), we have

Iy ()

— 1, (0) exp {— Lz (5(0)+p(60) + 0 (0) de}

t, rh
+J' Jﬁ(u)sH(u)IR(u—S)dﬂ(S)
0

0

X exp “ (5(6)+u () + a(@))d@} du >0,
2 (13)

which contradicts with I;(t,) = 0. Therefore, I;;(t) > 0 for
all t € [0,¢,). Integrating the second equation of system (3)
from 0 to ¢,, we have

IR (tl)

~ I, (0) exp {— Ll (d(0) +b () d@}



t, ch
+J Ja(u)SR(u)IH(u—S)dU(S)
0

0

X exp “ (d(0)+b(9) d@} du >0,
ty
(14)

which contradicts with I(¢,) = 0. Therefore, I(t) > 0 for all
t > 0. Thus I;;(t) > 0.
From the fifth equation of system (3), we have

Ry (t) = Ry (0) exp {— L (8(s) +y(s)) ds}

+ J: p () Iy (u) exp {L“ (6(s) +y(s)) ds} du >0,

t>0.
(15)

Last, from the third equation of system (3), we have

Sy (£)

t h
_ S, (0) exp {— L (ﬁ(e) L I (0=s)dn(s) + 6(6)) d@}
+[ G+ y @Ry )
0
u h
xexp{ L (,8(0) Jo I (0 —5)dn(s)

+ 8(9)>d9} du>0, t=0.
(16)

Therefore, Sg(t) > 0, Ix(t) > 0,Sy(t) > 0,15(t) > 0, Ry(t) >
0 for all £ > 0. Thus, V¢ € [0, c0),

Ny (t) < c(t) —b(t) Ng (£) —d (t) Iz () < * = ' N (£),

. c*
= limsupNR (t) < R
— +00

(17)
Similarly,

NL@B <A -8 () Ny (t) =0 (8) Iy (t) < A* = 8Ny (1),

= litmsup Ny () < 5
— +00

(18)
This completes the proof. O

Proposition 5. The solution (Sg(t), Ix(t), Sy (t), I;(t), Ry (1))
of (3) with initial conditions (8) satisfies

1l
lim inf g (£) > —2
t— 00 o

W =V > 0. (19)
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Proof. By Proposition 4, for any € > 0 (no matter however
small), there exists a t; > 0, such that

u

Iy () < s te tzh (20)

Therefore, from the first equation of system (3), when t >
t, +h,

u

Sp(t) =c(t) - [oc(t)(% +e) +b(t)] Sk (1)

2cl—[oc“</}s—1;+e>+b”]SR(t), (21)

Cl

ot (A /8 +€) + b+

= lltrgl(gf Sg(t) >

Since € > 0 can be made arbitrarily small, the result of this
proposition is valid. This completes the proof. O

Proposition 6. Set I(t) = Ix(t) + Iy(t), assume that
r* > r, and ry > 1, and then for any solution (Sx(t),
Ip(), S (1), I (t), Ry (1)) of (3) with initial conditions (8) we
have

~[(d+b)" +(8+p+0)*](h+p)

litm inf I (t) > ne =v, >0, (22)

wheren > 0 and p > 0 will be given in the proof.

Proof. Since r, > 1 and it is obvious that cl/G — cl/b”, as
n — 0, where G = b" + a”. Then, there exists two positive
constants # and p such that

d o

6 {1 — exp (—Gp)} W > 1. (23)

From that condition (7), we can get (d+b)" >
(6 + p + 0)". Then, we have

1 (Xl

{1 — exp (—Gp)} m > 1. (24)

Qle

Similarly, since r* > r, > 1, it is obvious that '/H —
A'/8%, as — 0 where H = 8 + 58*. Then, for the positive
constants 7 and p, we have

!

d+b)"

1
% {1 - exp (~Hp)} 51, (25)
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Firstly, from the second and the fourth equation of (3)
together [17]. We get the following equivalent system:

h

Sh(t) =c(t) - a(t) S L Iy (= s)dy (s) — b (t) Sg

h
()= alt)Se j Ly (- $)dn(s) - (d (1) + b (1) I
h
+ RSy L It - 5) dy (5)

(26)
—@W)+u@®)+o®) Iy

h
L) =A(t) - BO)Sy L I (t - ) dn (s)
8 Sy+y (O Ry

Ry (1) = () Iy = 8 (£) Ry =y (1) Ryy.
Let us consider the following differential function V(¢):

t

h
V)=I()+ J-o J; o (u+ ) Sg (1 + ) Iy (u) dudy (s)

=S

h ot
+J J B+s)Syu+s)Iw)dudy(s).
t—s

0
(27)

The derivative V(t) along solution of (26) is

Vo (©)

h
- a(t) S j Ly (- ) dn(s) - (d (1) + b (1) I

h
+ B Sy L Iy (£~ ) dy (5)
— W +u +a()Iy

h
+J a(t+s)Sg(t+s)I;(t)dn(s)
0

h

o (t) Sp (t) Iy (t = s)dn (s)

h

+ | B(t+s)SyE+s)Ix(t)dn(s)

|
|

(=]

h
—j B(t) Sy (8) I (t - 5) dy (5)

0

h
J a(t+s)Sg(t+s)dn(s)
—B®+u@)+o() | Iy@)

h

+ “0 B(t+39)Sy (t+s)dn(s) = (d(®) +b(1) | Ir ().

(28)

We claim that it is impossible that I(t) < #, Vt > t; (t;

is any nonnegative constant). Suppose the contrary; then as
t>t +h,

Sh(t) = c(t) - (na(t) + b (t)) S (t) = ' = GSg (£).  (29)

Fort > t, +h, integrating the above inequality from ¢, + h
to t, we obtain

t,+h
Sg (£) > Sy (£, + h) exp (j Gds)
t
t s
+J clexp<J Gd9>ds
t,+h t

t s t
zJ c’equ Gd@—j Gd@)ds
t,+h 0 0

Lt]m b exp (fos G d@) ds
exp (_[;Gd@)

J t
- ( exp (Gt) ) Jtﬁh exp (Gs) ds.

(30)

Hence

¢\ exp (Gt) —exp (G (¢, +h))
Se(t) 2 (5) exp (Gt)
(31)

_ (é) [1-exp(-G(t—t,—h))].

Therefore, Sg(t) > (CI/G)[I—QXP(—GP)] = Sﬁ,Vt >t +h+p =
t,.
Similarly, from the third equation of system (26), we have

I
Sy () > (%) [1-exp(-Hp)] =S5, Vtxt, (32)

Notice that r, > 1; from the previous discussion, we have
oclS§/(d+ b)* > 1. And from r* > r, > 1, we can get
BSE/(d +b)* > &S5/ +u+0) > 1. Since (d+b)* >
(6 + p + 0)", we have

B —(@d+b) >aSs—(+u+0) >0  (33)



Thus
V()2 [alSy = (8 +p+0)' |14 (t)

+ [BISE — (d +b)*] I (1)
> oSy = (8 +p+0)"] [Iy (1) + I (V)]

oA
o Sy

— - 1|I(t), Vt=>t,.
((S+I/[+O')u ] () 2

=(0+u+o)" [
(34)

Let us take i = min, ., ,;,I(t). Next we will prove that
I(t) =i, Vt > t,.

Suppose that it is not true; then there exists T > 0, such
that I(t) > i, forallt € [t,,t, + h+ T], I(t, + h+ T) =i, and
I'(ty + h+T) < 0. On the other hand, by the second equation
of (26),ast =t, + h+ T, we have

h
I'(t) z«’sﬁj Iy (t = s)d# (s) — (d + b)“I
0
h
+ sy, L Ip(t=s)dn(s) - (8 +u+0)'Iy
h h
=(xlS§‘J IH(t—s)dr/(s)+oclS§‘J Ip(t—s)dn(s)
0 0

h h
_alst J Io(t - $)dy (s) + B'S5, J Io (=) dn (s)
0 0
—(d+b)'Ig—(d+b)Iy+(d+b)Iy

~(8+u+0)Iy

h
- ols2 J (- s)dy(s) - (d+b)"I(¢)
0

h
+ (Bt - als3) L I (t - $)dn ()

+[d+b)" = (8 +pu+0)"] .
(35)

Since 'S5 — (d +b)* > &S5 — (8 + p+0)* > 0,50 B'SE -
&S5 > (d+b) — (S +u+a)>0.
Thus

Ioa

! u S
I'(t)> (d+b) [(d‘ig)u

-1]g>o, (36)

since from (xlS§/ (d +b)" > 1. This is a contradiction. Hence,
I(t) = i, Vt > t,. Consequently,

loa
oS
—R)u—l]i>0,

V'(t)2(5+p¢+a)“[((SHH(7 i

Vt > t,,

(37)

which implies V(f) — ocoast — o©o. From Proposition 4,
V(t) is bounded. This is a contradiction. Hence the claim is
proved. From this claim, we will discuss the following two
possibilities:
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(1) I(t) = n for all large ¢;
(2) I(t) oscillates about # for all large t.

Finally, we will show that I(f) > ne [(@*0) +@turo)1lip)

for sufficiently large ¢. Evidently, we only need to consider
case (2).

Let t, and t, be sufficiently large times satisfying I(t,) =
I(t,) =n, I(t) <nast € (t;,1,).

Ift, —t;, < h+ p, since I't) > -d+ w)'Iy -
O+u+0)Iy > -[(d+u)+ (0 +pu+0)]I(t)and I(t,) =
1, integrating the above inequality from ¢, to ¢, according
to the comparison theorem, I(t) > ne_[(d+b)u+(5+“+")u](h+”),
vVt e [t,t,]. Ift, —t; > h + p, then it is obvious that
I(t) > ne @0 +@ruro)10ep) for all t € [t,,¢, + h + p]. From
the above discussion, we see that S(t) > S%, Sy (t) > S5, Vt €
[t,+h+p,t,]; we will show that I(£) > ne (@0 +@+ura)1(ep)
Vt € [t; +h+p,t,]. If it is not true, then there existsa T" > 0,
such that I(f) > ne @O +@r010e) 'yt ¢ [t ¢ + h +
p+ T, I(tl +h+ p+ T*) = Tle—[(d+b)“+(6+y+a)“](h+p)
I't,+h+p+T*)<0.

Using the second equation of system (26),ast = ¢, + h +
p+T", we have

, and

h
I'(t) > 'Sy J I(t—s)dn(s)—(d+b)“I (1)
0

h
+ (/j’leL‘I - (xlSQ) J-O I (t—s)dn(s)

+[d+b)" = (8 +p+0)] Iy

Lo

S
> (d + b)* [ (d“+ g)u

_ 1] qe_[(d+b)u+(6+”+”)u](h“’) >0
(38)

We get the last inequality by use of «'S5/(d +b)* > 1. This
is a contradiction. Therefore, I(t) > ne_[(dJ'b)uJ'(‘s”‘M)u](h”’ ),
Vt € [t,,t,]. Hence

—[(d+b)" +(8+u+0)"1(h+p)

litm inf I (t) > ne =v,>0. (39)

This completes the proof of Proposition 6. O

Proposition 7. The solution (Sg(t), Ix(t), Sy (t), Iy (t), Ry (t))
of (3) with initial conditions (8) satisfies

U

lltl’l;l)lolngH (t) > m

=v;>0. (40)

Proof. From the third equation of system (26), we have

h

Sl (6) 2 A(8) — B (1) Sy L Lo (t =) dn(s) = 8(5) Sy (41)

From Proposition 4, for any € > 0 (no matter however small),
there exists a £; > 0 such that

u

I (t) < Z—l +e, (42)
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ast >t;. Thuswhent > t, +h,

SL() 2 A(t) - {ﬁ(t( +e>+8(t)]»SH(t)

zhl—{ﬁ”<b—j+e>+8”}sH(t), (43)

Y
B (c*/bt +€) + 6%

= liminf S () >
t— 00

Since € > 0 can be made arbitrarily small, the result of this
proposition is valid. This completes the proof. O

Proposition 8. Assume that r* > r, and v, > 1; then
for any solution (Sg(t), Ix(t), Sg(t), Iy(t), Ry (t)) of (3) with
initial conditions (8), we have

1 u
o u[vz—c—]zv4>0. (44)

liminf Ry; (¢) > :

2 Sy
Proof. From the fourth equation of system (26), we have
=u@ 1) —pu@) I (1) -

From Proposition 4, for any € > 0, there exists a t; > 0 such
that

Ry (1) 8(t)Ry — y(t) Ry (45)

u

Ip(t) < 2_1 +e, t>t). (46)

From Proposition 6, when t > t,, we have

0 Z;A(t)vz—[,t(t)(;—l+e>—(8(t)+y(t))RH
=u(t) [V2_<Z_l+

> i [vz— (2—1 +e>] — (8" +y")Ry (t).

So, when v, > ¢" /v, according to the comparison theorem
and the arbitrariness of €, we have

e)] - +y®)Ry (47

1 u
A C
lltnlngH (t) > (S”MT)/” [VZ - —:| > 0. (48)

This completes the proof. O

Thus, the system (3) with initial conditions (8) is perma-
nent provided that r* > r, and r, > 1.

Remark 9. In this paper, we only find the inferior limit of I(¢)
for system (26), that is, the inferior limit of I(t) + I;(t). We
cannot find the inferior limits of I(t) and I;(t) for system (3),
respectively. Even though we can also obtain the permanence
of system (3), as liminf, , I(t) > v, > 0, there exist the
following three possibilities:

(1) liminf, |, Ix(#) > 0 and liminf, , Iy(t) > 0:in
this case, it is obvious that system (3) is permanent;

(2) liminf, | JIp(t) > O and liminf, | Iy(t) =
in this case, infected mosquitoes exist all the time;
then as long as the effective infection occurs between
infected mosquitoes and susceptible humans, the
human population will be infected ultimately, so
system (3) is permanent;

(3) liminf, _, ., Ix(t) = 0 and liminf, , I4(¢#) > 0:in
this case, infective humans exist all the time; then
as long as the effective infection occurs between
infective humans and susceptible mosquitoes, the
mosquito population will be infected ultimately, so
system (3) is permanent. In fact, we only pay attention
to the human population of system (3). We do not care
whether mosquito population is infected or not.

Next, we will use the following lemma to discuss the
extinction of the epidemic.

Lemma 10 (see [14]). Consider an autonomous delay differen-
tial equation

h
x' (1) = a .[0 x(t—s)dn(s) —ax(t), (49)

where a,, a, are two constants. If 0 < a; < a,, then for any
solution x(t) with initial condition ¢(0) > 0,0 € [-h,0], we
have

tlingox (t)=0. (50)

Theorem 11. Set R* = (B*/(d+b))(A\*/8),R, = (a*/
S +pu+a))c/V). IfR* < R, < 1, then lim, , JI(t) = 0;
that is, the disease in system (3) will be extinct.

Proof. Note that

I <t)—oc<t)st Ly (- $)dn(s) - (d (1) + b (1) Iy

h
+ B Sy jo Ia(t - ) dn (s)
—W+u® +o®)Iy

h
< &S, J Ly (- 9)dn (s) - (d + )T,
0
+,8”SHJ0 Ig(t=s)dn(s)— (6 +pu+o)ly

¢k _h
=a"Sy J.o Iy (t = s)dn(s) + a"Sy L It —s)dn(s)



—(8+M+G)IIH—(6+;/L+0)IIR
ok ok
- oSy Jo I (t—s)dn(s) + Sy Jo I (t = s)dn(s)

—(d+ b)lIR +(0+p+ O‘)IIR

ugQ h
=@+p+o) [“—SRJ I(t—s)dn(s)—I(t)]

(5+M+0)l 0

+[(d+b)l—(8+y+0)l]

ﬁugH - (xugR J

h
X[ 7 ] IR(t—S)dﬂ(S)—IR],
(d+b) —(6+u+o)

0

(51)

where Sy, S, are some upper bounds of Sy, Sy, respectively,
and will be given later.

From Proposition 4, there exists a ¢, > 0 and a sufficiently
small € > 0, such that

u u

SH(t)S§+eé§H, SR(t)s‘;—l+eé§R, t>t.
(52)
AsR" < R, < 1, we have
B“Sy «“Sp
@+ (S+u+o) &9

And from condition (7), we can obtain (d+b) >
O+u+ o)l. So from (53) we have

B'Sy—(@d+b) <a'Sp—(S+u+0) <0.  (54)
Thus
B'Sy — Sy < (@d+b) - (8 +u+o). (55)
Next we will discuss the extinction in two cases.

(1) If B“Sy; — &Sk < 0, then the second part of (51) is
negative, so we have

I'(t)

ugQ h
“—SRJ I(t-s)dn(s)-1(t)].

1
<(6+u+o) |:(8+y+a)l .

(56)

Using the Lemma 10 and the comparison theorem,
we come to (x“ER/(5 +u+ a)l < 1;thatis, R, < 1,
lim, , I(t) = 0.

(2) If “Sy; — &Sy > 0, then (55) becomes
[))MEH - “HSR

0< ;
(d+b) - (6+u+0)

<1 (57)
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Now we denote the second part of (51) as Y'(t); that is,

Y'(t)

= [(d+b)l—(8+y+a)l]

h
Y(-s)dy(s)-Y(t)|.
0

" [ B“Sy — oSy J
(d+b)l—(8+y+0)l
(58)

Using the Lemma 10, we have lim, , Y (#) = 0. Thus when
t — 00, (51) becomes

'@

u§ h
%J I(t-s)dy(s)—1(t)].

<(6+ +o)
(O p )|:(8+y+0) 0

(59)

Using the Lemma 10 and the comparison theorem again, we
come to a“Sy/(8 + p + o) < 1;thatis, R, < 1,lim, , I(t) =
0. This completes the proof. O

3. Global Asymptotic Stability

In this section, we derive sufficient conditions for the global
asymptotic stability of system (3) with initial conditions (8).

Definition 12 (see [16]). System (3) with initial conditions (8)
is said to be globally asymptotically stable if

Jim [Sp (6) = Spo (6] = 0,

Jim [Iny (1) = I, (1)] = 0,

— 00

tlingo e () = S (B)] = 0, (60)
Jim |1, () = 1, (0] =0,

tli”.}o |Rppy () = Ry, (1)] = 0

hold for two solutions (Sg;(t), I, (), Sy (), Iy (1), Repy (£))
and (Sgy(t), Iy (1), Sppp (1), Iy (), Ry (£)) of (3) with initial
conditions of type (8).

Assume that (Sg(t), Ix(t), Sy (t), I (t), Ry (t)) is a solution
of (3). By the uniform boundedness of solutions of (3), there
isa L > 0 (in fact, L = max{c*/b', 1*/8'} + €, where € > 0 can
be made arbitrary small) independent of initial conditions (8)
such that

0<Sx(t) <L, 0<Iz(t) <L, 0<Sy) <L,

(61)

0<Iy(t) <L, 0<Ry(t)<L,
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for large enough t. Without loss of generality, we may assume
that

0<Sx(t) <L, 0<Iz(t)<L, 0<Sy ()<L,

0<Iy) <L, 0<Ry()<L,

Theorem 13. If there exist c;, ¢,, ¢; > 0, such that the functions

B(t) i = 1,2,3,4,5) are nonnegative on [0,00) and for

any interval sequence {[a;, b}, [a;,b] N [aj,bj] = 0, and

b - a,»b= bj—a; >0, foralli,j = 1,2,3,..., i# j, one has

pa Lk B;(t)dt = oo, then system (3) with initial conditions
k

(8) is globally asymptotically stable. Here

B, (1) = ob(D) - oLa (1),

h
By() = () +b(1) - (g w)LJ0 Bt +s)dn(s),
By (t) =6 (t) - LB (1),
B,t)=c(6@®)+0®)+(c—¢c5) u(t)

h

+(C1+02)LL a(t+s)dn(s),

Bs() =0 (1) +(cs—c)y(t).
(63)

Proof. Assume that (Sg;(£), Ig, (1), Sy (£), Iy (£), Ry (£)) and
(Sra(1), Iy (1), Sppa (), Iipp (1), Rppy (1)) are any two solutions of
system (3) with initial conditions of type (8).
The right-upper derivatives of [Sg, () — Sgo (), g, () —
Lo @)L 1i00(8) = Seio @) gy (8) = Ly Ol [Rypy () — Rypo (0
along the solution of system (3) and (8) are given below:
D* |SR1 () = Spo (t)|

= sgn (Sg, (t) = Sg, (1))

h
X {—oc () Sgy (1) L Iy (E—s)dn(s)

h

—b(t) Spy () + o (£) Sy (1) JO Iipy (£ = 5)dn (s)

+b(t) Sgy (1) }
= sgn (Sg; (1) — Sgy (1))

h
X {—oc () Sgy (1) L Iy (E—s)dn (s)

h
+a(t) Sg, () L Iy (8= s)dn (s)
h

— o (t) Sgy (1) L Iy (8= s)dn (s)

h
+ o (1) Spy (1) J I (t—s)dr (s)

0

—b(t) (Sg; (t) = Sk, (1)) ]’
=sgn (Sg; (1) — Sgy (1))

h
X ‘1—0‘ (t) Jo Iy (t = 5)dn (s) (Sgy (£) = Sk, (1))
h

+a(t) Sy () L (I (£ =) = Iy (t = 5)) drp (s)

—b(t) (Sg; (t) = Sk, (1)) } )

(64)
$0

D" |Sg; (t) = Sgo (@)

h
< oc(t)LL |y (£ = 8) = I, (t = 5)| dn (s) (65)

—b (1) [Sgy (£) = Sg, ()],
D" lIRl () = I, (f)l
= sgn (I, (t) = I, (1))

h
x {a () Sgy (1) L Ly, (£~ ) dg (s)

h

— o (t) Sgy (1) L Iy (8= s)dn (s)

h
+a (t) Sg, (1) J Iy (t=s)dn (s)

0
h

() Sy (1) j Ly (¢ — 5) dn (s)

0

—(d (1) +b (1)) (I, (t) — I, (1)) ]’
= sgn (I, (1) — I, (1))

h
X <1oc t) L Iy (t = 8)dn () (Sgy (t) = Sg,y ()

h

+a(t) S, () L (Lyy (£ = 8) = Iy, (£ — 5)) drp (s)

= (@) + (1) (Ipy () — Iy (1)) ]’ s

(66)
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(1a) Time series of Sp(t) of the system (1b) Time series of Ix(t) of the system (1c) Time series of Sg;(¢) of the system
2.5 1.4 4
1.2 3.5
2
1 3
K ~ 08 = 25
S = 0.6 F 2
0.4 1.5
0.5
0.2 1
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(1d) Time series of I;(t) of the system (1e) Time series of Ry (t) of the system
9 9
8 8
7 7
6 6
= 5 < 5
W & 4
3 3
2 2
1 1
0 0
0 5000 10000 15000 0 5000 10000 15000
t t

FIGURE 1: (a)-(e) show that system (3) with initial conditions (Sx(0), I(0), S;(0), I;;(0), R;;(0)) = (2,0.12,3,0.15,0.1) is permanent.

s = sgn (Sgpy (1) = Sppp (1))
D" |Ip, () = I, (1))

h
<a(t)L |SR1 ) = Sey (t)| x ‘[‘/5 (1) L Ipy (t = 5)dn (s) (Sgry — Sen)

h (67) h
+a(t)L L [y (£ = 8) = I, (¢ = 5)| dn (s) + B (t) Sy, () L (Iny (t = 8) = Iy (£ —5)) dr (5)
—@d®) +b () Iy (1) ~ I, ()],
. =8 () (St — Sea) + ¥ (8) (Reny — Ryp) ]’)
D" Sy (8) = Sy, (1))
(68)
= sgn (Sgpy (1) = Sppp (1))
h
x {-ﬁ () Sg (1) L Iy (t =) dn (s) 50
h
+ B () Sy, (1) L Ip, (t = s)dn (s) D[Sy (£) = Sy ()]
h h
=B (&) Sip, (1) L Iy (= s)dn(s) Sﬁ(t)LJ-o [Iny (£ = s) = In, (t = )| dn (s) (69)
h
OO | T e-9 a0 0 1S = Seal + ¥ O [Ren = Reo

D" |IH1 (&) = Iy (t)|
-6 (t) (SHI - SHZ) + Y (t) (RHI - RHZ) } = sgn (IHI (t) _ IHZ (t))
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(2a) Time series of Si(t) of the system (2b) Time series of Ix(t) of the system (2¢) Time series of S (¢) of the system
3 1.8 4
25 1.6 3.5
14
3
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0.4
0.5 02 1
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(2d) Time series of If;(t) of the system (2e) Time series of Ry(t) of the system
9 8 9
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6 5 6
e° S -5
oy =4 W
3 3 3
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0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 50 100 150 200
x10° x10° Time ¢
FIGURE 2: (a)-(e) show that system (3) with initial conditions (Sg(0), I(0), S;(0), I;;(0), R;;(0)) = (2,0.12,3,0.15,0.1) is permanent.
h SO
X {[3 () Sy .[0 Ip, (t=s)dn(s)
" D" Iy, () = Iy, (1))
_BW®S J Ty (= 5) dny (5)
ﬁ H2 0 R1 11 Sﬁ(t)L|SH1_SH2|
h h (71)
+B () S, L Iy (E—s)dn(s) +B(t)L J [Iny (£ =s) = In, (t = )| dn (s)
0
h —W+u®)+0®) |y - Iipl,
_ﬁ(t)SHz (t) J;) IR2 (t—S)dﬂ(S) ( [/l )l H1 H2|
D" |RH1 (1) = Rypy (t)|
~@@W +u@)+o®) (I —Im) } = sgn (R () = Ry, (1))
X)) (I — 1 (6@ +y@®)(Ry — R ,
= sgn (I, (£) — Ly () {u® (I = I) = ( Y (®) (R H2)}(72)
h
X ‘[ﬁ (1) L Ig, (t = 5)dn (s) (Sgn — Sw) )
h +
D" Ry, (t) — Ry, (¢
+ B (1) Sipp L (Igy (t = 8) = I, (t —5)) dr (5) [Rezy (£) = Ryry (0) (73)

W) +u@)+0®) Iy — ) } >

(70)

Su(t) |IH1 - IH2| -(@@®+y®) |RH1 - RH2| .

Define V; (£) = [Sgy(t) — Suo (O] + Ly () — Ly (O], Vs (6) =
gy () = Inoy (O] + 1S (8) = S ()], V3(8) = [Rppy (8) = Rypp (B
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(3a) Time series of Sp(t) of the system (3b) Time series of Ix(t) of the system (3¢) Time series of Sy;(#) of the system
7 0.16 3.5
6.5 0.14 3.49
6 0.12
3.48
5.5 0.1
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(3d) Time series of If;(¢) of the system (3e) Time series of Ry(t) of the system
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FIGURE 3: (a)-(e) show that the disease in system (3) with initial conditions (Sz(0), Iz(0), S;;(0), I;(0), R;(0)) = (2.5,0.15,3.5,0.1,0.2) will
be extinct.

Calculating the right-upper derivatives of V,(¢), V,(¢), D'V, (t)
V;(t) along the solution of system (3) and (8), we have
< () [T = Ippp| = (8(1) + v (1)) [Reny = Rpa -

(74)
. Define V,(t) as
D'V, (1) h
< =b(t)|Sp; (t) = Sga ()] + B () L |Ssyy — S Vi) = L L_ o (u+s)L|Iy () — Iy, (w)| dudn (s)
— (80 +p () +0 (1) [Ty — I hot
) " L L B+ ) LIy (1) — Iy ()] due g (s).
ra®L JO Ly (£ =) — Iy (£ — ) dn (5) (75)
h The right-upper derivative of V,(t) along the solution of
+B@)L L |IR1 (t—s)— I, (t— s)| dr (s), system (3) and (8) is given below:
. h
D™V, (¢) D'V, (t) = LIy, (t) - Iy, (t)) J a(t+s)dy(s)
0
< & (t) L[Sy, (t) = Sgy ()] = (d () + b (1)) [Ig, () — I, (1)) L
~8(0) St = Sea| + 1 (O |Re = Ry —a(t)L Jo [Tz, (8 = 8) = Ty (£ = 9)| dnp ()
h h (76)
+a(t)L L |IHl (t—s)— Iy, (t— s)l dr (s) +L |IRl t) - Ip, (t)| L B(t+s)dn(s)

h h
+[3(t)LJ-O [Iny (£ =s) = In, (t = 9)| dn (s), - ﬁ(t)LL [Ipy (£ =) = Iny (£ = 9)| dn (s).
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(4a) Time series of Sp(t) of the system

(4b) Time series of Ip(t) of the system

13

(4c) Time series of Sg;(t) of the system

6 0.16 3.52
5.5 0.14 3.5
3.48
0.12
5 3.46
0.1
o 45 _ _ 34
= < 0.08 =, 3.42
5 4 = =
0.06 34
3.38
3.5 0.04
3.36
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(4d) Time series of If;(¢) of the system (4e) Time series of Ry(t) of the system ®
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t

FIGURE 4: (a)-(e) show that the disease in system (3) with initial conditions (Sz(0), Iz(0), S;;(0), I;;(0), R;(0)) = (2.5,0.15,3.5,0.1,0.2) will

be extinct.

Let V(t) = Vi (t) + 6V, (1) + & V5 (t) + (¢ + ¢,) V4 (1); then
by using (74) and (76), we have

DV (t)
< =B, (t) |Sry () = Sgo (1)] = B, (1) |Ig; (1) — I, (1))
=By (t) Sty — Spra| = By (1) [ Iy (8 = 8) = Iy (£ = 9)|

—Bs (t)|[Ryyy = Ryp|,  VE=h,
(77)

where B;(t) (i = 1,2,3,4,5) are defined in (63).
Integrating (77) from h to t, we have

J-h {Bl (t) [Sgy (£) = Sgy ()] + By, (t) [Ty (£) = I, (8)]

+ By (1) Sy — S| + By () [Ty (8 = 8) = Iy, (£ = 5)|

+Bs (£) |Rygy — Ry }dt <V -V(t).
(78)

So

L {31 () |Sgy () = Sgy ()| + B, () |Igy () — I, (8)]
+ By (t) Sy — S| + By (1) [Ty (8 = 5) = Iy (£ = 9)|

+Bs (t) Ry, — Ry } dt < co.
(79)

By assumptions about B;(t) and the boundedness of

(Sr1 () Ipy (8), Sy (), Ty (), Rey (1)) and (Sgy(8), Ip,y (8)s
Stz (), Iy (1), Ry, (£)) on [0, 00], we obtain from system
(3) that [Sg; () = Spo (B, gy (8) = Ipo (D)5 1S () = S (D)1
[ (8) — I, (8)], and |Ry; () — Ry, (¢)| are bounded and
uniformly continuous on [0, 00).

It follows from (79) that

Jim [Sey (8) = gz ()] = 0,

tlinolo |IR1 () — I, (t)| =0,

Jim [Sp (8) = Sy (8)] = 0,
— 0
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}1{20 [Ty (8) = Iy, ()] = 0,
(80)
Jim [Regy (8) = Repp ()] = 0.

This shows that system (3) with initial conditions (8) is
globally asymptotically stable. This completes the proof. [

Corollary 14. If there exist ¢;, ¢,, ¢ > 0 such that

litlgi.gf {a,b(t) —gLa(t)} >0,
lim inf {oz d(®) +b(®)

h
_(CI+GZ)LL /3(t+S)d11(s)} >0,

liminf {¢,d (t) - q LB (1)} > 0, (81)

lim inf {cl B +a () +(q —c)ul)

h

+(C1+02)LJ

0

cx(t+s)d11(s)]> >0,

liminf {¢;6 (1) + (6 — &) y (1)} > 0,

then system (3) with initial conditions (8) is globally asymptot-
ically stable.

Theorem 15. Specially, if system (3) is w-periodic and there are
positive constants v; and M; (i = 1,2, 3,4,5) such that

v, < liminf Sy (t) < limsup Sy (t) < M,
ft—oo0 t— 00

v, < liminf I (¢) < limsup I () < M,,
=00 t— 00

vy < litnliorngH (t) < limsup Sy (t) < M, (82)

t— 00

vy < litmianH (t) < limsup Iy (t) < M,,

t— 00

vs < liminf Ry (¢) < limsup Ry () < M,
t—oo t— o0

hold for any solution (Sg(t), Ix(t), Sy (t), I (t), Ry (2)) of (3)
with initial conditions (8), then system (3) has positive periodic
solution with period w.

Corollary 16. If system (3) is w-periodic and the conditions in
Theorems 3 and 13 are valid, then there exists a unique positive
w-periodic solution which is globally asymptotically stable.

4. Numerical Simulations

To demonstrate the theoretical results obtained in this paper,
we will give some numerical simulations.

Firstly, for system (3) we consider the special case; that
is, the parameter values are constants as A(t) = 0.29, (t) =

Journal of Applied Mathematics

0.29, a(t) = 0.19, u(t) = 0.022, c(t) = 04, d(t) = 0.22,
o(t) = 0.011, b(t) = 0.11, p(t) = 0.01, and 6(¢) = 0.011.
The delay h = II/2 and 5(s) = s/h. It is easy to verify
r* > r,,r, > 1; the conditions in Theorem 3 are all valid.
So according to Theorem 3, we know that the system (3) is
permanent. Figure 1 shows trajectories of Sg(t), Ix(t), Sy (1),
I;;(t), and Ry (t), respectively.

Now, we consider the general case; that is, we take
account of malaria model with periodic environment, we
chose the parameter values as A(t) = 0.3 + 0.01 cost, 3(t) =
0.3 + 0.01sint,a(t) = 02 + 0.0lcost,u(t) = 0.02 +
0.002sint,c(t) = 0.5+ 0.1sint,d(t) = 0.2 + 0.02sint,0(t) =
0.012 + 0.001sint,b(t) = 0.1 + 0.01sint,p(t) = 0.01 +
0.0001 cost,d(t) = 0.01 + 0.001 sint, and the conditions in
Theorem 11 are all valid. Figure 2 shows trajectories of Sg(t),
Ip(t), Sy(t), I(t), and Ry(t), respectively.

Next, we also consider the special case firstly; we chose the
parameter values as A(t) = 0.31, (t) = 0.031, a(t) = 0.011,
u(t) = 0.018,c(t) = 0.6,d(t) = 0.48,5(t) = 0.011, b(t) = 0.09,
p(t) = 0.01, and §(t) = 0.09. The delay h = II/2 and
n(s) = s/h. It is easy to verify R* < R, < 1; the conditions
in Theorem 11 are all valid. So according to Theorem 11, we
know that the disease in system (3) will be extinct. Figure 3
shows trajectories of Sg(t), Igx(t), Sy (t), I;(t), and Ry(t),
respectively.

Now, we consider the general case; we chose the parame-
ter values as A(f) = 0.3 + 0.01 cost, 3(t) = 0.03 + 0.001 sint,
a(t) = 0.01 + 0.001 cost, u(t) = 0.02 + 0.002sint, c(t) =
0.5+0.1sint,d(t) = 0.5+0.02sint, o(t) = 0.012+0.001 sin t,
b(t) = 0.1 + 0.01sint, y(t) = 0.01 + 0.0001 cost, and §(¢) =
0.1+ 0.01 sin t and the conditions in Theorem 11 are all valid.
Figure 4 shows trajectories of Sg(t), I(t), Sy(t), I4(t), and
Ry (1), respectively.

5. Conclusions

In this paper, we study the permanence, extinction, and
global asymptotic stability for a nonautonomous malaria
transmission model with distributed time delay, that is, (3).
We establish some sufficient conditions on the permanence
and extinction of the disease by using inequality analytical
techniques. When r* > r, and r, > 1, the system is
permanent. When R* < R, < 1, the disease in system will
be extinct. By a Lyapunov functional method, according to
the definition of global asymptotic stability, we also obtain
some sufficient conditions for global asymptotic stability of
this model. This method has been used in many references
(11,13, 14].
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