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We introduce a demand forecasting model for a monopolistic company selling products to consumers with double-entry mental
accounting, which means consumers experience pleasure when consuming goods or service and feel pains when paying for
them. Moreover, as the monopolist changes prices, consumers form a reference price that adjusts an anchoring standard based
on the lowest price that they perceived, namely, the peak-end anchoring. We obtain the steady state prices under three different
payment schemes for two- and infinite-period. We also analyze the relationship between these steady prices and maximal profit
and compare the steady state prices of different payment schemes by changing the double-entry mental accounting’s parameters
through numerical examples. The proposed model is computationally tractable for demand forecasting of realistic size.

1. Introduction

Accurate demand forecasts are essential for companies
including manufactures and distributors because they will
drive more responsive customer service with lower inven-
tories and reduced obsolescence [1, 2]. As Huang et al. [3]
have shown, price-dependent demand models are the most
commonly employed possibly because pricing strategy is the
most effective tool that has been used to impact a firm’s
demand. Under consideration of an integrated demand and
supply chainmanagement, forecasting and pricing are related
to each other. Therefore, we obviously should consider the
impact of its price when predicting the consumers’ demand
of a certain product. A distinctive feature of this work is
that it depends on descriptive models of consumer behavior
to predict customers’ demand and to derive pricing strategies
under dynamic settings. Specifically, we incorporate both the
consumers’ mental accounting and the impact of reference
price when modeling our demand function.

Traditional assumption of consumers’ rationality some-
times cannot explain the realistic, complex world [4, 5]. In
order to make accurate prediction about product purchase,
we try to study the consumers’ behavior impact on it. Mental
accounting is an important concept in behavioral economics,

which is the set of cognitive operations used by individuals
and households to organize, evaluate, and keep track of
financial activities [6]. And mental accounting theory can
explain many economic anomalies about price such as the
endowment effect and the sunk cost effect [7]. Since mental
accounting was first formally proposed by Thaler in 1985
[8], it has been widely studied. One of the most outstanding
models is the double-entry mental accounting model pro-
posed by Prelec and Loewenstein [9], which obtain a variety
of predictions that are against the traditional economics
theory such as debt aversion and preferences for prepayment.
The double-entry model describes the nature of the recip-
rocal interactions between the pleasure of consumption and
the pain of paying and introduces the idea of prospective
accounting and coupling which refers to the degree to
which consumption calls to mind thoughts of payment and
vice versa. Besides, the double-entry model introduces two
coupling coefficients, that is, pleasure attenuation coefficient
𝜓 and pain buffering coefficient 𝛾, which represent and
respect the degree to which payments attenuate the pleasure
of consumption and the degree towhich consumption buffers
the pain of payments, respectively. And there are other
important studies on mental accounting; see [10–16]. All
these studies belong to empirical research, so it is essentially
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needed to explore how to incorporate mental accounting
into theoretical models in economics, and now there have
been a small number of behavioral operations management
studies attempting to model mental accounting. Erat and
Bhaskaran [17] formulate a simple model to formalize how
(and why) the mental account associated with a base product
impacts a consumers’ add-on purchase decision, and they
also develop a normative model to explicitly examine what
(if any) implications the proposed consumer biases have
on firm’s pricing decisions. And Chen et al. [18] studied
what effects the payment schemes have on inventory deci-
sions in the newsvendor problem when considering mental
accounting and found out that “prospective accounting” in
the double-entry mental accounting model can explain that
when keeping the net profit structure constant, inventory
quantities exhibit a consistent decreasing pattern in the order
of payment schemes O (where the order is financed by the
newsvendor herself), S (where the order is financed by the
supplier through delayed order payment), and C (where
the order is financed by the customer through advanced
revenue). To sum up, mental accounting is closely related to
consumer behavior, but current studies onmental accounting
are mostly empirical research, and there are seldom dynamic
pricing models incorporating double-entry mental account-
ing yet.

On the other hand, mental accounting is always closely
linked with reference price. According to [19], consumers
keep a reference price in mind and perform two com-
parisons. First, they compare the reference price with the
actual price and this comparison yields transaction utility.
Second, they compare the benefits of consumption with the
reference price yielding acquisition utility. And it is essential
to note that the demand model in [20] is exactly estab-
lished on this framework. Moreover, Baucells and Hwang
[7] propose the MARA model of multiperiod purchase
decision-making, which integrates the psychological mech-
anism of mental accounting and reference price adaptation.
And the MARAmodel can capture some important underly-
ing psychological processes (such as payment depreciation)
that other mental accounting models (including Thaler’s
double-comparison model and Prelec and Loewenstein’s
double-entry mental accounting model) fail to do.Therefore,
it is necessary to simultaneously incorporate consumers’
mental accounting and reference-dependent behavior into
dynamic pricing models. In particular, under the influence
of double-entry mental accounting, not only the reference
price will be constantly updated, but also the consumers’
perceived price and perceived consumption benefit will be
changed under different payment schemes; consequently, the
demand function will vary, thus affecting the prediction
of product demand quantity. This suggests that there may
exist further research opportunities for using the combi-
nation of consumers’ double-entry mental accounting and
reference effect to forecast the demand of a product and to
investigate the optimal pricing strategy of a monopolistic
firm.

The remainder of this paper is organized as follows.
Section 2 describes our model of double-entry mental
accounting in product demand forecasting and further

investigates the combined effect of consumers’ double-entry
mental accounting and reference-dependent behavior on
firm’s pricing strategies. Section 3 provides two-period
dynamic pricing model under three different payment
schemes anddrives an explicit solution. In Section 4,we study
infinite-period dynamic pricing model. Section 5 reports the
numerical study and Section 6 concludes the paper with a
summary of results.

2. The Basic Model

Consider a product sold by a monopolistic company over an
infinite horizon through three different payment schemes.
The first payment scheme (scheme 𝑂), the most ordinary
one, indicates that consumers pay for and consume a product
simultaneously in each period. The second one is prepay-
ment (scheme Pre) meaning that consumers pay at the
beginning and consume at the end of each period, and the
third scheme postpayment (scheme Post) shows completely
opposite conditions of prepayment that consumers consume
at first and pay in the end. And the impact of double-
entry mental accounting on consumer is different under
different payment schemes. In this section, we build demand
forecasting and dynamic pricingmodels under each payment
scheme and compare their impacts on the monopolist’s
profit.

To facilitate the analysis, we assume that product demand
function is linear, as shown in Assumption 1.

Assumption 1. The reference-dependent demand is𝐷(𝑝, 𝑟) =
𝑞(𝑝) + 𝑅(𝑟 − 𝑝, 𝑟) where 𝑞(𝑝) = 𝛽

0
− 𝛽
1
𝑝, 𝑅(𝑟 − 𝑝, 𝑟) =

𝛽
2
min(𝑟 − 𝑝, 0) + 𝛽

3
max(𝑟 − 𝑝, 0), and 𝛽

0
, 𝛽
1
, 𝛽
2
, 𝛽
3
≥ 0.

Let the price interval be 𝑃 = [𝑝, 𝑝] and let the product cost
be 0.

The term 𝛽
0
, 𝛽
1
, 𝛽
2
, 𝛽
3
≥ 0 ensures that the demand

function is decreasing in price and increasing in reference
price. For loss-averse consumers, the demand function is
steeper for losses than for gains; for example, 𝛽

2
> 𝛽
3
while

𝛽
2
< 𝛽
3
for loss-seeking consumers. And for loss-neutral

consumers, we have 𝛽
2
= 𝛽
3
so the demand function is

smooth.
According to [20], 𝑅(𝑥, 𝑟) measures the impact on

demand of a perceived discount/surcharge where 𝑥 = 𝑟 − 𝑝,
relative to the reference price 𝑟. And it can be seen from
Assumption 1 that 𝑅(𝑥, 𝑟) ≥ 0 for 𝑥 > 0, 𝑅(𝑥, 𝑟) ≤ 0 for 𝑥 < 0,
and 𝑅(0, 𝑟) = 0.

LetΠ(𝑝, 𝑟) = 𝑝𝑞(𝑝)+𝑝𝑅(𝑟−𝑝, 𝑟) be the short-term profit
where 𝜋

0
(𝑝) = 𝑝𝑞(𝑝) is the base profit without reference

effect and Π
𝑅
(𝑝, 𝑟) = 𝑝𝑅(𝑟 − 𝑝, 𝑟) is the profit from the

reference effect. Let 𝜅(𝑟) = 𝑅
𝑥
(0, 𝑟) denote the slope of

the reference demand at 𝑥 = 0 when consumers are loss
neutral. Next, we give a typical technical assumption on
Π(𝑝, 𝑟) borrowed from Assumption 3 in [20].

Assumption 2. (a) 𝜋(𝑝) is nonmonotonic and concave in 𝑝.
(b) ∏

𝑝
(𝑟, 𝑟) = 𝜋


(𝑟) − 𝑟𝜅(𝑟) is strictly decreasing in 𝑟. (c)

Π
𝑅
(𝑝, 𝑟) is concave in 𝑝 and supermodular in (𝑝, 𝑟).
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The reference price formation and updating mechanism
in this paper is assumed to be peak-end anchoring, as
shown in Assumption 3, which is the most commonly used
and empirically validated reference price mechanism in the
literature; for example, see [21, 22].

Assumption 3. The reference price updating mechanism is
given by 𝑟

𝑡
= 𝜂𝑚

𝑡−1
+ (1 − 𝜂)𝑝

𝑡−1
where 𝑚

𝑡−1
=

min(𝑚
0
, 𝑝
1
, . . . , 𝑝

𝑡
) = min(𝑚

𝑡−2
, 𝑝
𝑡−1
), 𝑡 > 1, 𝑟

1
= 𝑚
0
, and

the memory parameter 𝜂 ∈ [0, 1] captures the fraction of
consumers anchoring on the lowest price.

Based on this assumption we can know that for 𝜂 = 0 the
model becomes a special case where the consumers anchor
solely on the previous period price.

Given initial conditions 𝑚
0
and 𝑝

0
(we can regard

𝑝
0
as 𝑚
0
), the monopolist maximizes infinite horizon 𝛽-

discounted revenues

V (𝑚
0
, 𝑝
0
) = max
𝑝∈𝑃

∞

∑

𝑡=1

𝛽
𝑡
∏(𝑝

𝑡
, 𝑟
𝑡
) ,

𝑟
𝑡
= 𝜂𝑚
𝑡−1

+ (1 − 𝜂) 𝑝
𝑡−1
, 𝑚

𝑡
= min (𝑚

𝑡−1
, 𝑝
𝑡
) ,

(1)

where 𝛽 ∈ [0, 1] is the firm’s discount factor.
The Bellman equation for this problem is

V (𝑚
𝑡−1
, 𝑝
𝑡−1
) = max
𝑝∈𝑃

∞

∑

𝑡=1

{∏(𝑝
𝑡
, 𝑟
𝑡
)

+𝛽𝑉 (min (𝑝
𝑡
, 𝑚
𝑡−1
) , 𝑝
𝑡
) } .

(2)

We can know from Lemma 1 of [23] that the value
function 𝑉(𝑚, 𝑝) is increasing in both arguments.

The infinite horizonmodel implicitly assumes that lowest
prices can be remembered indefinitely. This is a reasonable
approximation in a context where the frequency of transac-
tions is high relative to the horizon length and the lowest
prices are recalled because of their salience; their extremeness
makes them stand out in the memory process.

Next, we analyze how different payment schemes influ-
ence consumers’ perceived price and perceived consumption
benefit. Table 1 describes, under prepayment scheme and
postpayment scheme, how consumers’ perceived price 𝑝 and
perceived consumption benefit 𝜃 are influenced by pleasure
attenuation coefficient 𝜓, pain buffering coefficient 𝛾, and
consumers’ discount factor𝜑 for product price and consump-
tion benefit because of the separation of consumption and
payment where 𝜓, 𝛾, and 𝜑 ∈ [0, 1].

On the basis of Prelec and Loewenstein’s [9] double-
entry mental accounting model, we can account for Table 1
as follows.

(1) Under prepayment scheme, consumers pay price 𝑝
at first and their prospective accounting will think
of future consumption benefits so that the pain of
payments will be buffered, which leads perceived
payment to be (1−𝛾)𝑝. On the other hand, because of
the delay of consumption, the perceived consumption
benefit will be at discount and will become 𝜑𝜃.

Table 1: Perceived price 𝑝 and perceived consumption benefit 𝜃.

Prepayment Postpayment
Consumption 𝜃 = 𝜑𝜃 𝜃 = (1 − 𝜓)𝜃

Payment 𝑝 = (1 − 𝛾)𝑝 𝑝 = 𝜑𝑝

(2) Under postpayment scheme, consumers obtain con-
sumption benefit 𝜃 at first and the prospective
accounting will consider future payments so that the
pleasure of consumption today will be attenuated,
which leads perceived consumption benefit to be
(1 − 𝜓)𝜃. On the other hand, because of the delay of
payment, the perceived price will be at discount and
will become 𝜑𝑝.

Under the influence of mental accounting, consumers
will make decision depending on perceived price and per-
ceived consumption benefit instead of actual price and con-
sumption benefit. Then we can know that when considering
the dynamic pricing problem with consumers’ double-entry
mental accounting and reference-dependent behavior, the
demand function 𝐷pre(𝑝, 𝑟) and 𝐷post(𝑝, 𝑟) can be expressed
as follows:

𝐷pre (𝑝, 𝑟) = 𝐷 ((1 − 𝛾) 𝑝, 𝑟) ,

𝐷pre (𝑝, 𝑟) = 𝐷 (𝜑𝑝, 𝑟) .

(3)

And accordingly, the updating of reference price is
affected by perceived price instead of actual price; that is,
𝑟
𝑡
= 𝜂𝑚
𝑡−1

+ (1 − 𝜂)𝑝
𝑡−1

,𝑚
𝑡−1

= min(𝑚
𝑡−2
, 𝑝
𝑡−1
).

Based on the above assumptions, the monopolist’s profit
Πpre(𝑝, 𝑟) under prepayment scheme is

∏
pre

(𝑝, 𝑟) = 𝑝𝐷pre (𝑝, 𝑟)

=
1

1 − 𝛾
𝜋 (𝑟 − (1 − 𝛾) 𝑝) + 𝑝𝑅 (𝑟 − (1 − 𝛾) 𝑝, 𝑟)

(4)

so that (2) under prepayment scheme can be rewritten as

𝑉pre (𝑟, 𝑝) = max
𝑝∈𝑃

∏
pre

(𝑝, 𝑟) + 𝛽𝑉pre (𝜂𝑟 + (1 − 𝜂) 𝑝) . (5)

Similarly, the monopolist’s profit Πpost(𝑝, 𝑟) under post-
payment scheme is

∏

post
(𝑝, 𝑟) = 𝑝𝐷post (𝑝, 𝑟) =

1

𝜑
𝜋 (𝜑𝑝) + 𝑝𝑅 (𝑟 − 𝜑𝑝, 𝑟) (6)

so that (2) under postpayment scheme can be rewritten as

𝑉post (𝑟, 𝑝) = max
𝑝∈𝑃

∏

post
(𝑝, 𝑟) + 𝛽𝑉post (𝜂𝑟 + (1 − 𝜂) 𝑝) . (7)

We assume consumers are loss neutral; namely, 𝛽
2
= 𝛽
3
.

Then according to Assumption 1 we have

𝐷pre (𝑝, 𝑟) = 𝛽0 − 𝛽1 (1 − 𝛾) 𝑝 + 𝛽2 (𝑟 − (1 − 𝛾) 𝑝) ,

𝐷post (𝑝, 𝑟) = 𝛽0 − 𝛽1𝜑𝑝 + 𝛽2 (𝑟 − 𝜑𝑝) .
(8)
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3. The Two-Period Dynamic Pricing Model

The two-period dynamic pricing model is the simplest and
commonly used in practice. Generally, it is easy to calcu-
late the analytical solution of optimal price path. Also the
obtained properties and conclusions are clear at a glance and
good for interpretation. Hence, we start with studying the
two-period model.

Based on the analysis in Section 2, the single-period
profits under scheme 𝑂, scheme Pre (prepayment scheme),
and scheme Post (postpayment scheme) in two-periodmodel
Π
𝑜
(𝑝
𝑡
, 𝑟
𝑡
), Πpre(𝑝𝑡, 𝑟𝑡), and Πpost(𝑝𝑡, 𝑟𝑡) can expressed below

(𝑡 = 1, 2), respectively:

∏

0

(𝑝
𝑡
, 𝑟
𝑡
) = 𝑝
𝑡
[𝛽
0
− 𝛽
1
𝑝
𝑡
+ 𝛽
2
(𝑟
𝑡
− 𝑝
𝑡
)] , (9)

∏
pre

(𝑝
𝑡
, 𝑟
𝑡
) = 𝑝
𝑡
[𝛽
0
− 𝛽
1
(1 − 𝛾) 𝑝

𝑡
+ 𝛽
2
(𝑟
𝑡
− (1 − 𝛾) 𝑝

𝑡
)] ,

(10)

∏

post
(𝑝
𝑡
, 𝑟
𝑡
) = 𝑝
𝑡
[𝛽
0
− 𝛽
1
𝜑𝑝
𝑡
+ 𝛽
2
(𝑟
𝑡
− 𝜑𝑝
𝑡
)] . (11)

As a result, the two-period dynamic pricingmodels under
scheme 𝑂, scheme Pre, and scheme Post are (𝑡 = 1, 2)

𝑉
0
(𝑚
0
) = sup
𝑝∈𝑃

∏

0

(𝑝
1
, 𝑟
1
) + 𝛽𝑉

0
(𝑝
2
, 𝑟
2
) ,

𝑟
2
= 𝜂𝑚
1
+ (1 − 𝜂) 𝑝

1
, 𝑚
1
= min (𝑚

0
, 𝑝
1
) ,

(12)

𝑉pre (𝑚0) = sup
𝑝∈𝑃

∏
pre

(𝑝
1
, 𝑟
1
) + 𝛽𝑉pre (𝑝2, 𝑟2) ,

𝑟
2
= 𝜂𝑚
1
+ (1 − 𝜂) (1 − 𝛾) 𝑝

1
, 𝑚
1
= min (𝑚

0
, (1 − 𝛾) 𝑝

1
) ,

(13)

𝑉post (𝑚0) = sup
𝑝∈𝑃

∏

post
(𝑝
1
, 𝑟
1
) + 𝛽𝑉post (𝑝2, 𝑟2) ,

𝑟
2
= 𝜂𝑚
1
+ (1 − 𝜂) 𝜑𝑝

1
, 𝑚
1
= min (𝑚

0
, 𝜑𝑝
1
) .

(14)

Proposition 4. Given the initial reference price 𝑚
0
, let

{𝑝
∗

𝑜,1
, 𝑝
∗

𝑜,2
}, {𝑝∗pre,1, 𝑝

∗

pre,2}, and {𝑝
∗

post,1, 𝑝
∗

post,2} be the optimal
price path of models (12), (13), and (14), respectively.

Case 1. If𝑚
0
is large enough satisfying𝑚

0
= max(𝑚

0
, 𝑝, (1 −

𝛾)𝑝
1
, 𝜑𝑝
1
), we obtain

𝑝
∗

pre,1 =
𝑝
∗

0.1

1 − 𝛾
, 𝑝

∗

pre,2 =
𝑝
∗

0.2

1 − 𝛾
𝑝
∗

post,1 =
𝑝
∗

0.1

𝜑
,

𝑝
∗

post,2 =
𝑝
∗

0.2

𝜑
,

(15)

where

𝑝
∗

0,1
=
2 (𝛽
0
+ 𝛽
2
𝑚
0
) (𝛽
1
+ 𝛽
2
) + 𝛽𝛽

0
𝛽
2

4(𝛽
1
+ 𝛽
2
)
2
− 𝛽𝛽
2

2

,

𝑝
∗

0,2
=
𝛽
0
+ 𝛽
2
𝑝
∗

0.1

2 (𝛽
1
+ 𝛽
2
)
.

(16)

Case 2. If 𝑚
0
is small satisfying 𝑚

0
= min(𝑚

0
, 𝑝
1
, (1 −

𝛾)𝑝
1
, 𝛿𝑝
1
), we also have

𝑝
∗

pre,1 =
𝑝
∗

0.1

1 − 𝛾
, 𝑝

∗

pre,2 =
𝑝
∗

0.2

1 − 𝛾
𝑝
∗

post,1 =
𝑝
∗

0.1

𝜑
,

𝑝
∗

post,2 =
𝑝
∗

0.2

𝜑
,

(17)

where

𝑝
∗

0,1
=
2 (𝛽
0
+ 𝛽
2
𝑚
0
) (𝛽
1
+ 𝛽
2
) + 𝛽 (𝛽

0
+ 𝛽
2
𝜂𝑚
0
) 𝛽
2
(1 − 𝜂)

4(𝛽
1
+ 𝛽
2
)
2
− 𝛽𝛽2
2
(1 − 𝜂)

2
,

𝑝
∗

0,2
=
𝛽
0
+ 𝛽
2
(𝜂𝑚
0
+ (1 − 𝜂) 𝑝

∗

0.1
)

2 (1 − 𝛽) (𝛽
1
+ 𝛽
2
)

.

(18)

Proof. See Appendices A, B, and C.

By Proposition 4, the ratios of each period’s optimal price
to the corresponding period’s optimal price under scheme
𝑂 are identical. In other words, if the optimal price path
under scheme 𝑂 is {𝑝∗

𝑜,1
, 𝑝
∗

𝑜,2
}, the corresponding optimal

paths of scheme Pre will be {𝑝∗
𝑜,1
/(1 − 𝛾), 𝑝

∗

𝑜,2
/(1 − 𝛾)} and

the corresponding optimal paths of scheme Post will be
{𝑝
∗

𝑜,1
/𝜑, 𝑝
∗

𝑜,2
/𝜑}.

After obtaining the optimal price paths, we can compare
firm’s profits under different payment schemes and provide
theoretical support for firm’s decision on how to choose
payment scheme for higher profit.

Proposition 5. Given the initial reference price 𝑚
0
, let

𝑉
∗

0
(𝑚
0
), 𝑉∗pre(𝑚0), and 𝑉

∗

post(𝑚0) be the maximal profit of
models (12), (13), and (14), respectively. They satisfy the
following equations:

𝑉
∗

pre (𝑚0) =
𝑉
∗

0
(𝑚
0
)

1 − 𝛾
, 𝑉

∗

post (𝑚0) =
𝑉
∗

0
(𝑚
0
)

𝜑
. (19)

Proof. See Appendices A, B, and C.

Based on Proposition 5 it is straightforward to draw the
following conclusions.

(1) If 𝜑 > 1 − 𝛾, it will be better for the monopolist
to provide prepayment scheme to consumers, or
postpayment scheme.

For scheme 𝑂, the pleasure of consumption and the pain
of paying are equal. And under scheme Pre, the bigger 𝛾 is,
the more buffered the pain of paying is because of mental
accounting; and the bigger 1 − 𝜑 is, the more attenuated the
pleasure of consumption is because of time discounting. As
a result, 𝜑 > 1 − 𝛾 means the reduced pain is less than the
reduced pleasure, and the benefit outweighs the disadvantage,
which leads to the increasing in demand. And hence, it is
profitable for providing scheme Pre where the firm’s profit
becomes higher. Similarly, we can explain the attractiveness
of scheme Post in the case of 𝜑 ≤ 1 − 𝛾.
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(2) For 𝜑 = 1 − 𝛾, scheme Pre and scheme Post are
indifferent in pricing strategies and profitability.

When 𝜑 = 1 − 𝛾, the effects of pain buffering coefficient
𝛾 and consumers’ discount factor 𝜑 are offset reciprocally.
Consequently, we have 𝑉∗pre(𝑚0) = 𝑉

∗

post(𝑚0).

(3) In general, 𝛾, 𝜑 ∈ [0, 1]; namely, 𝑉∗pre(𝑚0) > 𝑉
∗

0
(𝑚
0
)

and 𝑉
∗

post(𝑚0) > 𝑉
∗

0
(𝑚
0
), so it is usually better to

choose the scheme Pre and scheme Post.

4. The Infinite-Period Dynamic Pricing Model

With the fierce change of the market environment and the
rapid development of Internet, price adjustments become
more andmore frequent and periodicity of pricing is growing
fast. Hence, the pricing strategies and their related properties
of the multiperiod dynamic pricing problem and the infinite-
period dynamic pricing problem are worthy of further study.
In this section, we study the infinite-period dynamic pric-
ing problem considering consumers’ double-entry mental
accounting and reference-dependent behavior.

4.1.The Steady State. This section characterizes the long-term
pricing strategy of the firm facing loss-neutralconsumers
with demand given by Assumption 1 where 𝛽

2
= 𝛽
3
.

First, we will consider the scheme 𝑂 in which case the
Bellman equation is given in (2). To get the steady states of
(2) requires a nonstandard approach, because the transition
in the value function (memory structure) is nonsmooth.
Our analysis is based on a bounding technique [23], which
identifies the steady states of (2) based on those of a series of
smooth problem.

For 𝑤 ∈ [0, 1] and 𝑚 ∈ 𝑃 consider the following smooth
problem with one-dimensional state:

𝑉
V
𝑚
(𝑝
𝑡−1
) = max
𝑝
𝑡
∈𝑃

(1 − 𝑤)∏(𝑝
𝑡
, 𝜂𝑚
𝑡−1

+ (1 − 𝜂) 𝑝
𝑡−1
)

+ 𝑤∏(𝑝
𝑡
, 𝑝
𝑡−1
) + 𝛽𝑉

V
𝑚
(𝑝
𝑡
) .

(20)

We first show that the family 𝑉𝑤
𝑚
, 𝑤 ∈ [0, 1], provides

upper bounds for the value function𝑉. Based on [23], we can
know that for any𝑚 < 𝑝, we have 𝑉(𝑚, 𝑝) ≤ 𝑉𝑤

𝑚
(𝑝).

We next argue that by approximating the value function
𝑉 by a smooth upper bound 𝑉𝑤

𝑚
, for an appropriate subset of

value 𝑉, the firm will charge optimal prices in the long run.
Technically, this amounts to matching supergradients of the
original problem with gradients for an appropriate smooth
upper bound equation (2). We first identify steady states of
problem (20) which will help characterize those of (2).

The structure of the problem leads us to consider
three price-memory scenarios (low, medium, and high):
𝑅
1
= [𝑝, 𝑠], 𝑅

2
= [𝑠, 𝑆], and 𝑅

3
= [𝑠, 𝑆] where the thresholds

𝑠, 𝑆 solve, respectively,

𝜋


0
(𝑝) − 𝛽

2
(1 − 𝛽 (1 − 𝜂) 𝑝) = 0, (21)

𝜋


0
(𝑝) − 𝛽

2
(1 − 𝛽𝑝) = 0, (22)

where 𝜋
0
(𝑝) = 𝑝𝑞(𝑝) represents the base profit.

Uniqueness of 𝑠 and 𝑆 follows because the above left hand
sides (LHS) are strictly decreasing in 𝑝, by concavity of 𝜋

0
(𝑝).

To understand 𝑠, 𝑆 better, we will give Lemma 6 in which (21)
and (22) are special case.

Lemma 6. (a) For 𝑤 ∈ [0, 1] and𝑚 ∈ 𝑃, (2) under scheme 𝑂
admits a unique steady state, which solves

𝜋


0
(𝑝) − 𝛽

2
[(1 − 𝑤) (2 − (1 − 𝜂) (1 + 𝛽) + 𝛽

2
𝑤 (1 − 𝛽))] 𝑝

+ 𝛽
2 (1 − 𝑤) 𝜂𝑚 = 0.

(23)

(b) For any 𝑚 ∈ [𝑠, S], there exists 𝑤 ∈ [0, 1] such that 𝑚
is a steady state of the corresponding equation (20).

Proof. See Lemma 4 of [23].

Denote 𝑝∗∗(𝑚) the unique steady state of problem (20)
for 𝑤 = 0 by Lemma 6(a). 𝑝∗∗(𝑚) solves

𝜋


0
(𝑝) − 𝛽

2
(2 − (1 − 𝜂) (1 + 𝛽)) 𝑝 + 𝛽

2
𝜂𝑚 = 0. (24)

In particular 𝑝∗∗(𝑠) = 𝑠; the thresholds 𝑠 and 𝑆 defined
above correspond to those values𝑚 for which the steady state
of 𝐽𝑤
𝑚
equals𝑚, for𝑤 = 0, respectively,𝑤 = 1. It turns out that

(𝑠, 𝑠) and (𝑆, 𝑆) are steady state of our equation (2). The next
result identifies steady states of (2) based on the steady states
of (20), identified in Lemma 6.

Based on Lemma 6, we can get Proposition 7 which gives
the steady state.

Proposition 7. (a) For 𝑚 ∈ 𝑅
1
, (𝑚, 𝑝∗∗(𝑚)) is a steady state

of (2) where 𝑝∗∗(𝑚) solves (10). (b) For 𝑚 ∈ 𝑅
2
, (𝑚,𝑚) is a

steady state of (6).

Proof. See Appendices A, B, and C.

Proposition 7 suggests to partition the initial states space
into the following region: 𝑅

1𝑎
= {(𝑚, 𝑝) | 𝑝 ≥ 𝑝

∗∗
(𝑚),𝑚 ≤

𝑠}, 𝑅
1𝑏
= {(𝑚, 𝑝) | 𝑝 ≤ 𝑝

∗∗
(𝑚),𝑚 ≤ 𝑠}, 𝑅

2
= {(𝑚, 𝑝) | 𝑝 ≥

𝑝
∗∗
(𝑚), 𝑠 ≤ 𝑚 ≤ 𝑆}, and 𝑅

3
= {(𝑚, 𝑝) | 𝑝 ≥ 𝑚,𝑚 ≥ 𝑆}.

The main results in Proposition 7 are indeed the only
steady state of (2).

The result says that the lower the value of the steady state
is, the more sensitive consumers are to deviations from the
reference price. Furthermore, a more patient firm (higher 𝛽)
charges higher steady state prices.

Based on the analysis above, we can give the similar
conclusions on the scheme Pre and scheme Post. Under the
scheme Pre let us consider the following smooth problem
with one-dimensional state which is similar to (5):

𝑉
V
pre.𝑚 (𝑝𝑡−1) = max

𝑝
𝑡
∈𝑃

(1 − 𝜔)∏
pre

(𝑝
𝑡
, 𝜂𝑚 + (1 − 𝜂) 𝑝

𝑡−1
)

+ 𝜔∏
pre

(𝑝
𝑡
, 𝑝
𝑡−1
) + 𝛽𝑉

V
pre.𝑚 (𝑝𝑡) .

(25)
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Similarly, we can obtain that 𝑉pre𝑉(𝑚, 𝑝) ≤ 𝑉
𝜔

pre.𝑚(𝑝).
Now we get Proposition 8 which gives the steady state of (5).
The proof is similar to Proposition 7 and is omitted here.

Proposition 8. (a) For𝑤 ∈ [0, 1] and𝑝 ∈ 𝑃, (5) under scheme
Pre admits a unique steady state, which solves the following
equations:

1

1 − 𝛾
𝜋


0
((1 − 𝛾) 𝑝)

− 𝛽
2
(1 − 𝛾) [(1 − 𝜔) ((2 − (1 − 𝜂) (1 + 𝛽)) + 𝜔 (1 − 𝛽))] 𝑝

+ 𝛽
2 (1 − 𝜔) 𝜂𝑚 = 0.

(26)

(b) For any 𝑚 ∈ [𝑠pre, 𝑆pre], there exists 𝑤 ∈ [0, 1] such
that𝑚 is a steady state of the corresponding equation (25), and
𝑠pre, 𝑆pre solve the following equations, respectively:

1

1 − 𝛾
𝜋


0
((1 − 𝛾) 𝑝)

− 𝛽
2
(1 − 𝛾) (2 − (1 − 𝜂) (1 + 𝛽)) 𝑝

+ 𝛽
2
𝜂𝑝 = 0;

1

1 − 𝛾
𝜋


0
((1 − 𝛾) 𝑝) − 𝛽

2
(1 − 𝛾) (1 − 𝛽) 𝑝 = 0.

(27)

Also denote by 𝑝∗∗pre(𝑚) the unique steady state of problem
(25) for 𝑤 = 0. By Lemma 6(a), 𝑝∗∗(𝑚) solves

1

1 − 𝛾
𝜋


0
((1 − 𝛾) 𝑝)

− 𝛽
2
(1 − 𝛾) (2 − (1 − 𝜂) (1 + 𝛽)) 𝑝

+ 𝛽
2
𝜂𝑚 = 0.

(28)

Similarly, we can get that (𝑠pre, 𝑠pre) and (𝑆pre, 𝑆pre) are
steady state of our equation (5).

For the scheme Post, we also use the one-dimensional
state which is similar to (7) as follows:

𝑉
V
post.𝑚 (𝑝𝑡−1) = max

𝑝
𝑡
∈𝑃

(1 − 𝜔)∏

post
(𝑝
𝑡
, 𝜂𝑚 + (1 − 𝜂) 𝑝

𝑡−1
)

+ 𝜔∏

post
(𝑝
𝑡
, 𝑝
𝑡−1
) + 𝛽𝑉

V
post.𝑚 (𝑝𝑡) .

(29)

Similarly, we can obtain that 𝑉post𝑉(𝑚, 𝑝) ≤ 𝑉
𝜔

post.𝑚(𝑝).
Now we obtain Proposition 9 which gives the steady state of
(7). The proof is also similar to Proposition 7 and is omitted
here.

Proposition9. (a) For𝑤 ∈ [0, 1] and𝑝 ∈ 𝑃, (7) under scheme
Post admits a unique steady state, which solves the following
equations:

1

𝛿
𝜋


0
(𝛿𝑝) − 𝛽

2
𝛿 [(1 − 𝜔) (2 − (1 − 𝜂) (1 + 𝛽))

+𝜔 (1 − 𝛽) ] 𝑝 + 𝛽
2
(1 − 𝜔) 𝜂𝑚 = 0.

(30)

(b) For any 𝑚 ∈ [𝑠post, 𝑆post], there exists 𝑤 ∈ [0, 1] such
that𝑚 is a steady state of the corresponding equation (29), and
𝑠post, 𝑆post solve the following equations, respectively:

1

𝛿
𝜋


0
(𝛿𝑝) − 𝛽

2
𝛿 (2 − (1 − 𝜂) (1 + 𝛽)) 𝑝 + 𝛽

2
𝜂𝑝 = 0,

1

𝛿
𝜋


0
(𝛿𝑝) − 𝛽

2
𝛿 (1 − 𝛽) 𝑝 = 0.

(31)

We denote 𝑝∗∗post(𝑚) as the unique steady state of problem
(29) for 𝑤 ∈ [0, 1]. By Lemma 6(a), 𝑝∗∗post(𝑚) solves

1

𝛿
𝜋


0
(𝛿𝑝) − 𝛽

2
𝛿 (2 − (1 − 𝜂) (1 + 𝛽)) 𝑝 + 𝛽

2
𝜂𝑚 = 0. (32)

4.2. The Optimal Policy and Price Paths. This section inves-
tigates the transient pricing policy of the monopolist. Firstly,
we study convergence and monotonicity of the price paths of
(2); then we can use the similar way to analyze (5) and (7),
namely, under the scheme Pre and scheme Post. We start at
an arbitrary initial state (𝑚

0
, 𝑝
0
), in which 𝑚

0
≤ 𝑝
0
and 𝑚

0

can be regarded as 𝑝
0
. The optimal pricing policy of the

monopolist is

𝑝
∗
(𝑚
𝑡−1
, 𝑝
𝑡−1
) = arg max

𝑝
𝑡
∈𝑃

∏(𝑝
𝑡
, 𝜂𝑚 + (1 − 𝜂) 𝑝

𝑡−1
)

+ 𝛽𝑉 (min (𝑚
𝑡−1
, 𝑝
𝑡
) , 𝑝
𝑡
) .

(33)

The optimal price path {𝑝
𝑡
}
𝑡
is given by 𝑝

𝑡
= 𝑝
∗
(𝑚
𝑡−1
, 𝑝
𝑡−1
)

with𝑚
𝑡
= min(𝑚

𝑡−1
, 𝑝
𝑡
), 𝑡 ≥ 1, and the state path is {(𝑚

𝑡
, 𝑝
𝑡
)}.

Our first result in this section shows that if (𝑚
0
, 𝑝
0
) is

in any of the three regions 𝑅
𝑡
, 𝑡 = 1, 2, 3, as defined in

Section 4.1, the state path remains in that region. We can
know that [23] if𝑚

0
∈ 𝑅
1
∪𝑅
2
, then 𝑝

𝑡
≥ 𝑚
0
for all 𝑡. If𝑚

0
∈

𝑅
3
, then𝑚

𝑡
∈ 𝑅
3
for all 𝑡. Under the scheme Pre and scheme

Post, we can get the similar conclusions as Proposition 10 and
the proof is similar to Proposition 7.

Proposition 10. (a) For the scheme Pre, if𝑚
0
∈ 𝑅pre.1 ∪𝑅pre.2,

then 𝑝
𝑡
≥ 𝑚
0
for all 𝑡. If 𝑚

0
∈ 𝑅pre.3, then 𝑚𝑡 ∈ 𝑅pre.3 for all

𝑡, where 𝑅pre.1 = [𝑝, 𝑠pre], 𝑅pre.2 = [𝑠pre, 𝑆pre], 𝑅pre.3 = [𝑠pre, 𝑝],
and 𝑠pre, 𝑆pre are defined in Section 4.1.

(b) For the scheme Post, if 𝑚
0
∈ 𝑅post.1 ∪𝑅post.2, then 𝑝𝑡 ≥

𝑚
0
for all 𝑡. If 𝑚

0
∈ 𝑅post.3, then 𝑚𝑡 ∈ 𝑅post.3 for all 𝑡, where

𝑅post.1 = [𝑝, 𝑠post], 𝑅post.3 = [𝑠post, 𝑝], and 𝑠post, 𝑆post are defined
in Section 4.1.
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The first part of these three propositions shows that if the
initial minimum price 𝑚

0
is not too high, the optimal price

path stays above 𝑚
0
: for the scheme 𝑂, if 𝑚

0
< 𝑆 (for the

scheme Pre, if 𝑚
0
< 𝑆pre; for the scheme Post, if 𝑚

0
< 𝑆post)

the minimal price does not change over time, and so the state
path will remain within the region. On the other hand if the
initial minimal price 𝑚

0
is relatively high, for the scheme

𝑂, if 𝑚
0
> 𝑆 (for the scheme Pre, if 𝑚

0
> 𝑆pre; for the

scheme Post, if 𝑚
0
> 𝑆post), the minimum price decreases

over time, but it never drops below 𝑆 under scheme 𝑂, 𝑆pre
under scheme Pre, and 𝑆post under scheme Post.These results
identify the possible convergence points of the optimal price
paths, starting at any initial state.

Proposition 10 implies that if the optimal price path of (2)
under scheme 𝑂 converges, it converges to a steady state in
the same regions as the initial price path of (𝑚

0
, 𝑚
0
). These

states are (𝑚
0
, 𝑝
∗∗

0
) for 𝑚

𝑜
∈ 𝑅
1
, (𝑚
0
, 𝑚
0
) for 𝑚

𝑜
∈ 𝑅
2
, and

(𝑆, 𝑆) for𝑚
𝑜
∈ 𝑅
3
.

Similarly, for scheme Pre, these steady states are (𝑚
0
, 𝑝
∗∗

pre)

for𝑚
𝑜
∈ 𝑅pre.1, (𝑚0, 𝑚0) 𝑚𝑜 ∈ 𝑅pre.2 and (𝑆, 𝑆) for𝑚𝑜 ∈ 𝑅pre.3;

for scheme Post, these steady states are (𝑚
0
, 𝑝
∗∗

post) for 𝑚𝑜 ∈
𝑅post.1, (𝑚0, 𝑚0) 𝑚𝑜 ∈ 𝑅post.2 and (𝑆, 𝑆) for𝑚𝑜 ∈ 𝑅post.3.

We now turn to characterize the optimal price paths of
problem (2), namely, under scheme 𝑂 which can also be
applied to scheme Pre and scheme Post. For 𝑚

0
∈ 𝑅
1
∪ 𝑅
2
,

𝑚
𝑡
= 𝑚
0
by Proposition 10, so (2) can be rewritten (with 𝑚

𝑜

as a parameter) as follows:

𝑉
𝑚
0

(𝑝
𝑡−1
) = max
𝑝
𝑡−1>𝑚0

{∏(𝑝
𝑡
, 𝑟
𝑡
) + 𝛽𝑉

𝑚
0

(𝑝
𝑡
)} , (34)

where 𝑟
𝑡
= 𝜂𝑚

0
+ (1 − 𝜂)𝑝

𝑡−1
. That is, 𝑉(𝑚, 𝑝) = 𝑉

𝑚
(𝑝) for

𝑚
0
∈ 𝑅
1
∪ 𝑅
2
and𝑚 < 𝑝. Because∏(𝑝

𝑡
, 𝑟
𝑡
) is supermodular,

the optimal policy in (2) is monotone, so 𝑝
∗

𝑡
(𝑚
0
, 𝑝
𝑡−1
) is

increasing in 𝑝
𝑡−1

. There, the optimal path is monotonic in
a bounded interval and hence converges to a steady state
(𝑚
0
, 𝑝
∗∗
(𝑚
0
)).

For 𝑚
𝑜
∈ 𝑅
3
, we can get from Proposition 3 of [23] that

the optimal price path is decreasing to 𝑆, by supermodularity
of ∏(𝑝

𝑡
, 𝑟
𝑡
). Based on the analysis above, we can get the

following conclusions.
Given initial state (𝑚

0
, 𝑝
0
) and scheme 𝑂, the optimal

price path of (2) converges monotonically to a steady state,
which is (a

1
) 𝑝∗∗(𝑚

0
) if 𝑚

𝑜
∈ 𝑅
1
; (b
1
) 𝑚
𝑜
, if 𝑚
𝑜
∈ 𝑅
2
; (c
1
)

𝑆, if 𝑚
𝑜
∈ 𝑅
3
. Under scheme Pre, the optimal price path of

(5) converges monotonically to a steady state, which is (a
2
)

𝑝
∗∗

pre(𝑚0), if 𝑚𝑜 ∈ 𝑅pre.1; (b2) 𝑚𝑜, if 𝑚𝑜 ∈ 𝑅pre.2; (c2) 𝑆pre, if
𝑚
𝑜
∈ 𝑅pre.3. Under scheme Post, the optimal price path of

(7) converges monotonically to a steady state, which is (a
3
)

𝑝
∗∗

post(𝑚0), if 𝑚𝑜 ∈ 𝑅post.1; (b3) 𝑚𝑜, if 𝑚𝑜 ∈ 𝑅post.2; (c3) 𝑆post, if
𝑚
𝑜
∈ 𝑅post.3.

5. Numerical Examples

Based on Section 4, we know that in order to get the steady
states under three schemes, respectively, we should know
the 𝑝∗∗(𝑚

0
), 𝑠 𝑆 under scheme 𝑂, 𝑝∗∗pre(𝑚0), 𝑠pre 𝑆pre under

scheme Pre, and 𝑝∗∗post(𝑚0), 𝑠post 𝑆post under scheme Post.

According to (21), (22), and (24), we have

𝑝
∗∗
(𝑚
0
) =

𝛽
0
+ 𝛽
2
𝜂𝑚
0

2𝛽
1
+ 𝛽
2
(2 − (1 − 𝜂) (1 + 𝛽))

,

𝑠 =
𝛽
0

2𝛽
1
+ 𝛽
2
(1 − 𝛽 (1 − 𝜂))

,

𝑆 =
𝛽
0

2𝛽
1
+ 𝛽
2
(1 − 𝛽)

.

(35)

Based on Proposition 8 and (28), we have

𝑝
∗

pre (𝑚0) =
𝛽
0
+ 𝛽
2
𝜂𝑚
0

2 (1 − 𝛾) 𝛽
1
+ 𝛽
2
(1 − 𝛾) (2 − (1 − 𝜂) (1 + 𝛽))

,

𝑠pre =
𝛽
0

2 (1 − 𝛾) 𝛽
1
+ 𝛽
2
(1 − 𝛾) (1 − 𝛽 (1 − 𝜂))

,

𝑆pre =
𝛽
0

2 (1 − 𝛾) 𝛽
1
+ 𝛽
2
(1 − 𝛾) (1 − 𝛽)

.

(36)

Based on Proposition 9 and (32), we have

𝑝
∗

Post (𝑚0) =
𝛽
0
+ 𝛽
2
𝜂𝑚

2𝛿𝛽
1
+ 𝛽
2
𝛿 (1 − 𝛾) (1 − 𝛽)

,

𝑠post =
𝛽
0

2𝛿𝛽
1
+ 𝛽
2
𝛿 (1 − 𝛾) (1 − 𝛽)

,

𝑆post =
𝛽
0

2𝛿𝛽
1
+ 𝛽
2
𝛿 (1 − 𝛽)

.

(37)

In order to analyze how the steady states under three
schemes change with the parameters, we set 𝛽 = 0.95,
𝛽
0
= 20, 𝛽

1
= 20, 𝛽

2
= 40, 𝛾 = 0.3, 𝜑 = 0.6, 𝜂 = 0.5, and

𝑝 = [𝑝, 𝑝] = [0.2, 1]. Then we can get Figures 1–3.
From Figure 1, we know that under scheme 𝑂, 𝑠 = 0.33,

𝑆 = 0.48; namely, 𝑅
1

= [0.2, 0.33], 𝑅
2

= [0.33, 0.48],
and 𝑅

3
= [0.48, 1] which means if 𝑚

𝑜
≥ 0.48, the steady

price will be 0.48; if 0.33 < 𝑚
0
< 0.48, the steady price will

be 𝑚
𝑜
; and if 𝑚

0
< 0.33, 𝑝∗∗(𝑚

0
) will be the steady state.

From Figure 2, we can see under scheme Pre 𝑠pre = 0.47,
𝑆pre = 0.68, which means if 𝑚

𝑜
≥ 0.68, the steady price will

be 0.68; if 0.47 ≤ 𝑚
𝑜
< 0.68, the steady price will be 𝑚

𝑜
; and

if𝑚
𝑜
< 0.47, 𝑝∗∗(𝑚

0
) will be the steady state. Figure 3 shows

that if 0.55 ≤ 𝑚
𝑜
< 0.79, the steady price will be 𝑚

𝑜
< 0.55,

and 𝑝∗∗(𝑚
0
) will be the steady state.

With further analysis, we can find out that 𝑠pre = 𝑠/(1−𝛾)
and 𝑠post = 𝑠/𝜑 and 𝑆pre = 𝑠/(1−𝛾) and 𝑆post = 𝑆/𝜑which can
also be obtained in two-period dynamic pricing model. And
under scheme 𝑂, scheme Pre, and scheme Post, the steady
price converges monotonically. Besides, the characteristics of
the convergence depend on𝑚

0
.

Next, wewill investigate how themonopolist’s steady state
under scheme Pre varies with the pain buffering coefficient 𝛾
and moreover how the steady state under scheme Post varies
with the consumers’ discount factor 𝜑. Firstly, we should set
the value of 𝑚

0
. For the characteristics of convergence, we
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Figure 1: The steady price under scheme 𝑂.
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Figure 2: The steady state under scheme Pre.

just consider the case when the value of 𝑚
𝑜
is small, such as

0.3. Then we can get Figures 4 and 5.
From Figure 4, we know that the bigger pain buffering

coefficient 𝛾 is, the higher the steady price under the scheme
Pre is, whichmeans that if the pain felt by consumers ismuch,
the firm will be better to set the price high when they choose
the scheme Pre. From Figure 5 we see that the less discount
factor 𝜑 is, the higher the steady price under the scheme Post
is, which means that if consumers perceive a little discount,
the firm will be better to set the price high when they choose
the scheme Post.

6. Conclusion

This paper provides a new product demand forecasting
and pricing model for consumers with double-entry men-
tal accounting and peak-end anchoring model. With the
assumption of linear demand, the model derives the steady
price for three different payment schemes for two- and
infinite-period, respectively. In infinite-period model, the
characteristic of the steady state under different scheme has
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Figure 3: The steady state under scheme Post.

p
∗ pr
e(
𝛾
)

3

2.5

2

1.5

1

0.5

0
0.1

𝛾

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4: The steady state changing with 𝛾 under scheme Pre.

something to dowith𝑚
0
; the firm should set different scheme

based on𝑚
0
to makemore profit. Besides, how the long-term

profits of different schemes change with double-entry mental
accounting’s parameters and the advice about how to choose
the best payment scheme for higher profits are provided via
numerical analysis.

We demonstrate that consumers’ mental accounting has
significant impacts on product demand. It is necessary for a
strategic company to consider it to get an accurate prediction
of product demand. Future research can explore modeling
consumers’ mental accounting in other ways; for example,
explore how reference price adaption is influenced by mental
accounting [7].

Appendices

A. The Proof of Proposition 4

Case 1. Because 𝑚
0
= max(𝑚

0
, 𝑝
1
, (1 − 𝛾)𝑝

1
, 𝛿𝑝
1
), in the

scheme 𝑂, we have 𝑚
1
= min(𝑚

0
, 𝑝
1
) = 𝑝

1
, 𝑟
2
= 𝜂𝑚

1
+

(1 − 𝜂)𝑝
1
= 𝑝
1
.
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Then, we can solve model (12) through backward induc-
tion.

Firstly, let 𝜕Π
𝑜
(𝑝
2
, 𝑟
2
)/𝜕𝑝
2
= 0 and we can get the second

period’s optimal price formation: 𝑝∗
0.2

= (𝛽
0
+ 𝛽
2
𝑝
1
)/2(𝛽
1
+

𝛽
2
).
Secondly, substituting 𝑝

∗

0.2
into model (12) and letting

𝜕𝑉
0
(𝑟
1
)/𝜕𝑝
1
= 0 give the first period’s specific optimal price

𝑝
∗

0.1
= (2(𝛽

0
+ 𝛽
2
𝑚
0
)(𝛽
1
+ 𝛽
2
) + 𝛽𝛽

0
𝛽
2
)/(4(𝛽

2
+ 𝛽
2
)
2
− 𝛽𝛽
2

2
).

Thirdly, substitute the specific 𝑝∗
𝑜,1

into formation 𝑝
∗

𝑜,2
,

and we can obtain the second period’s specific optimal price
𝑝
∗

0.2
= (𝛽
0
+ 𝛽
2
𝑝
∗

0.1
)/2(𝛽
1
+ 𝛽
2
).

In the scheme Pre, we also have 𝑚
1
= min(𝑚

0
, 𝑝
1
) = 𝑝
1
;

then 𝑟
2
= 𝜂𝑚

1
+ (1 − 𝜂)(1 − 𝛾)𝑝

1
= (1 − 𝛾)𝑝

1
. Using the

same ways above, we have 𝑝∗pre.1 = (2(𝛽
0
+ 𝛽
2
𝑚
0
)(𝛽
1
+ 𝛽
2
) +

𝛽𝛽
0
𝛽
2
)/(4(1−𝛾)(𝛽

2
+ 𝛽
2
)
2
−(1−𝛾)𝛽𝛽

2

2
), 𝑝∗pre.2 = (𝛽0 +𝛽2(1−

𝛾)𝑝
1
)/(2(1 − 𝛾)(𝛽

1
+ 𝛽
2
)).

In the scheme Post, we have 𝑟
2
= 𝜂𝑚

1
+ (1 − 𝜂)𝛿𝑝

1
=

𝛿𝑝
1
; similarly, we have 𝑝∗post.1 = (2(𝛽

0
+ 𝛽
2
𝑚
0
)(𝛽
1
+ 𝛽
2
) +

𝛽𝛽
0
𝛽
2
)/(4𝛿(𝛽

2
+ 𝛽
2
)
2
−𝛿𝛽𝛽

2

2
), 𝑝∗post.2 = (𝛽0 +𝛽2𝛿𝑝1)/2𝛿(𝛽1 +

𝛽
2
). So we have 𝑝∗pre.1 = 𝑝

∗

0.1
/(1 − 𝛾), 𝑝∗pre.2 = 𝑝

∗

0.2
/(1 − 𝛾),

𝑝
∗

post.1 = 𝑝
∗

0.1
/𝛿, and 𝑝∗post.2 = 𝑝

∗

0.2
/𝛿.

Case 2. Because of 𝑚
0
= min(𝑚

0
, 𝑝
1
, (1 − 𝛾)𝑝

1
, 𝛿𝑝
1
) in the

scheme𝑂, we have𝑚
1
= min(𝑚

0
, 𝑝
1
) = 𝑚

0
; then 𝑟

2
= 𝜂𝑚
1
+

(1 − 𝜂)𝑝
1
= 𝜂𝑚
0
+ (1 − 𝜂)𝑝

1
.

Using the same ways above, we can get

𝑝
∗

0.1
=
2 (𝛽
0
+ 𝛽
2
𝑚
0
) (𝛽
1
+ 𝛽
2
) + 𝛽 (𝛽

0
+ 𝛽
2
𝜂𝑚
0
) 𝛽
2
(1 − 𝜂)

4(𝛽
2
+ 𝛽
2
)
2
− 𝛽𝛽2
2
(1 − 𝜂)

2
,

𝑝
∗

0.2
=
𝛽
0
+ 𝛽
2
[𝜂𝑚
0
+ (1 − 𝜂) 𝑝

1
]

2 (𝛽
1
+ 𝛽
2
)

,

𝑝
∗

pre.1=
2 (𝛽
0
+ 𝛽
2
𝑚
0
) (𝛽
1
+ 𝛽
2
) + 𝛽 (𝛽

0
+ 𝛽
2
𝜂𝑚
0
) 𝛽
2
(1 − 𝜂)

4(𝛽
2
+ 𝛽
2
)
2
(1 − 𝛾) − 𝛽𝛽2

2
(1 − 𝜂)

2
(1 − 𝛾)

,

𝑝
∗

pre.2 =
𝛽
0
+ 𝛽
2
[𝜂𝑚
0
+ (1 − 𝜂) (1 − 𝛾) 𝑝

1
]

2 (1 − 𝛾) (𝛽
1
+ 𝛽
2
)

,

𝑝
∗

post.1

=
2 (𝛽
0
+ 𝛽
2
𝑚
0
) (𝛽
1
+ 𝛽
2
) + 𝛽 (𝛽

0
+ 𝛽
2
𝜂𝑚
0
) 𝛽
2
(1 − 𝜂) 𝛿

4(𝛽
2
+ 𝛽
2
)
2
𝛿 − 𝛽𝛽2

2
(1 − 𝜂)

2
𝛿

,

𝑝
∗

post.2 =
𝛽
0
+ 𝛽
2
[𝜂𝑚
0
+ (1 − 𝜂) 𝛿𝑝

1
]

2𝛿 (𝛽
1
+ 𝛽
2
)

.

(A.1)

So we also can get 𝑝∗pre.1 = 𝑝
∗

0.1
/(1 − 𝛾), 𝑝∗pre.2 = 𝑝

∗

0.2
/(1 − 𝛾),

𝑝
∗

post.1 = 𝑝
∗

0.1
/𝛿, and 𝑝∗post.1 = 𝑝

∗

0.1
/𝛿.

B. The Proof of Proposition 5

In Case 1 of Proposition 4, namely, 𝑚
0
= max(𝑚

0
, 𝑝
1
, (1 −

𝛾)𝑝, 𝛿𝑝
1
), we have 𝑟

2
= 𝑝
1
. According to 𝑝

∗

𝑜,1
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∗
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, the
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Figure 5: The steady state changing with 𝜑 under scheme Post.

maximum profit of model (12) is 𝑉∗
0
(𝑚
0
) = ∏

0
(𝑝
∗

0.1
, 𝑟
∗

1
) +

𝛽∏
0
(𝑝
∗

0.2
, 𝑟
∗

2
), where 𝑟

1
= 𝑚
0
and 𝑟∗
2
= 𝑝
∗

0.1
.

According to model (13), we have

𝑉
∗

pre (𝑚0) = 𝑝
∗

pre.1 [𝛽0 − (1 − 𝛾) 𝑝
∗

pre.1

+𝛽
2
(𝑟
1
− (1 − 𝛾) 𝑝

∗

pre.1)]

+ 𝛽𝑝
∗

pre.2 [𝛽0 − 𝛽1 (1 − 𝛾) 𝑝
∗

pre.2

+𝛽
2
(𝑟
2
− (1 − 𝛾) 𝑝

∗

pre.2)] .

(B.1)

Substituting 𝑝∗pre.1 = 𝑝
∗

0.1
/(1 − 𝛾), 𝑝∗pre.2 = 𝑝

∗

0.2
/(1 − 𝛾) into

𝑉
∗

pre(𝑚0), we obtain

𝑉
∗

pre (𝑚0) =
𝑝
∗

0.1

1 − 𝛾
[𝛽
0
− 𝛽
1
𝑝
∗

0.1
+ 𝛽
2
(𝑟
1
− (1 − 𝛾) 𝑝

∗

0.1
)]

+ 𝛽
𝑝
∗

0.2

1 − 𝛾
[𝛽
0
− 𝛽
1
𝑝
∗

0.2
+ 𝛽
2
(𝑝
∗

0.1
− 𝑝
∗

0.2
)]

=
𝑉
∗

0
(𝑚
0
)

1 − 𝛾
.

(B.2)

Similarly, we can get 𝑉∗post(𝑚0) = 𝑉
∗

0
(𝑚
0
)/𝜑.

C. Proof Proposition 7

We first show that 𝑝∗∗(𝑚), as defined by (24), is feasible; that
is, 𝑝∗∗(𝑚) ≥ 𝑚 for𝑚 ∈ [𝑝, 𝑠]. Note that 𝑝∗∗(𝑚) is increasing
in𝑚 and single-crosses the single identity line from above at
𝑠, defined by (21). Feasibility follows because (24) has a unique
positive solution 𝑝∗∗(𝑝) at𝑚 = 0.

For 𝑚 ∈ [𝑝, 𝑠], the constant pricing policy 𝑝 ≡ 𝑝
∗∗
(𝑚)

is optimal for problem (20) with 𝑤 = 0 and feasible for
(2). Because 𝑚 ≤ 𝑠,min(𝑚, 𝑝∗∗(𝑚)) = 𝑚 and 𝑟 = 𝜂𝑚 +
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(1 − 𝜂)𝑝
∗∗
(𝑚) ≤ 𝑝

∗∗
(𝑚), which implies ∏(𝑝

𝑡
, 𝑟
𝑡
) = (1 −

𝜔)∏(𝑝
𝑡
, 𝜂𝑚 + (1 − 𝜂)𝑝

𝑡−1
) + 𝜔∏(𝑝

𝑡
, 𝑝
𝑡−1
) = ∏(𝑝

𝑡
, 𝜂𝑚 + (1 −

𝜂)𝑝
𝑡−1
). This constant pricing policy yields the same value in

both problems, so it is also optimal for (2), and (𝑚, 𝑝∗∗(𝑚))
is a steady state of (2).

For ∈ [𝑠, 𝑆], the constant pricing policy 𝑝
𝑡
≡ 𝑚 is optimal

for (20), is feasible for (2), and yields the same value in both
problems. Therefore (𝑚,𝑚) is the steady state of (2).
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