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Echo state networks (ESNs), as efficient and powerful computational models for approximating nonlinear dynamical systems, have
been successfully applied in financial time series forecasting. Reservoir constructions in standard ESNs rely on trials and errors
in real applications due to a series of randomized model building stages. A novel form of ESN with deterministically constructed
reservoir is competitive with standard ESN by minimal complexity and possibility of optimizations for ESN specifications. In this
paper, forecasting performances of deterministic ESNs are investigated in stock price prediction applications.The experiment results
on two benchmark datasets (Shanghai Composite Index and S&P500) demonstrate that deterministic ESNs outperform standard
ESN in both accuracy and efficiency, which indicate the prospect of deterministic ESNs for financial prediction.

1. Introduction

Prediction in financial or stock markets is a challenging
research topic since the stock market is mostly complex
(nonlinear) and volatile. Various technical, fundamental, and
statistical indicators have been proposed; however, none
of them or combination of techniques has been successful
enough.The application of artificial neural network (ANN) in
prediction problems is very promising for its general function
approximation property and effective learning algorithms.
Among them, recurrent neural networks (RNNs) offer arbi-
trary approximation for dynamical systems with arbitrary
precision theoretically compared to other traditional ANNs.
However, it is difficult for traditional RNNs based on gradient
descent approach to develop in application because of slow
convergence and high computational cost. A new form
of RNN training methods, echo state network (ESN), has
been proposed by Jaeger and Haas [1], which is simple and
applicable for time series prediction with high accuracy and
computational efficiency. During these ten years, ESNs have
been applied in many areas, including time series forecasting
[2–7], wireless communication [1], robot control [8], and

speech recognition [9]. Lin et al. investigated the effectiveness
of ESN to predict the future stock prices in a short term.
The experimental results on nearly all stocks in S&P 500
indicated that ESNs outperformed some conventional neural
networks in most cases [10, 11]. Although it is verified that
standard ESNs can predict future stock prices, the parameters
have been determined by trials and errors due to their
randomly constructed reservoir. Recently, a deterministically
constructed form of ESN has been proposed, which has com-
petitive performance with minimum complexity compared
to standard model [12]. Since deterministic ESN model is
relatively new, few application researches have been studied
until now [13, 14]. This study investigates the performance of
deterministic ESN for time series forecasting and its appli-
cation of stock price prediction. The experiments are based
on two benchmark datasets (Shanghai Composite Index and
S&P 500) and three types of deterministic ESNs (DLR,DLRB,
and SCR) are compared with standard ESNs in forecasting
accuracy, stability, and efficiency. The experimental results
demonstrate that deterministic ESNs outperform standard
ESN in both accuracy and efficiency, which indicate the
prospect of deterministic ESNs for financial prediction.
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Figure 1: Architecture of standard ESN [1].

Section 2 briefly introduces standard ESNs and deter-
ministic ESNs; Section 3 presents the experiments and the
comparison results of applying deterministic ESNs for stock
price forecasting on Shanghai Composite Index and S&P 500
stock datasets. Finally, it is concluded in Section 4.

2. Background

2.1. Echo State Networks. Echo state network is a recur-
rent discrete-time neural network with input, internal units
(dynamic reservoir), and output. In the dynamic reservoir,
there are large numbers of sparsely connected neurons where
the weights are random and fixed. The states of the dynamic
reservoir, called “echo states,” reflect history information of
inputs.Thememoryless readout is the only part that needs to
be trained linearly with echo states; thus the training becomes
a simple linear regression, which makes the application of
RNNs fast and easy.

2.1.1. Architecture. Thebasic architecture of ESNwithK input
units, N neurons in the dynamic reservoir, and L output units
is shown in Figure 1.The solid arrows in Figure 1 represent the
synaptic connections whose weights are randomly generated
and fixed, while the dashed arrows are the trainable output
weights.

2.1.2. Training Algorithm

Input. A training set of (input/output) 𝑆 = {(𝑢(𝑛), 𝑑(𝑛)), 𝑛 =
1, 2, . . . , 𝑇}, 𝑢(𝑛), and 𝑑(𝑛) are 𝐾-dimensional and 𝐿-
dimensional vectors.

Output. A trained ESN (𝑊in,𝑊,𝑊fb,𝑊out) is such that its
output 𝑦(𝑛) of the input 𝑢(𝑛) is close to desired output 𝑑(𝑛),
where𝑊in,𝑊,𝑊fb, and𝑊out are input, internal, feedback, and
output weight matrices, respectively, with suitable sizes.

(1) Initialize a random RNN (𝑊in,𝑊,𝑊fb) which has the
echo state property (ESP); spectral radius of𝑊 should
be smaller than unity.

(2) Activate the reservoir to the dynamic𝑁-dimensional
states 𝑥(𝑛) of the RNN by

𝑥 (𝑛 + 1) = 𝑓 (𝑊𝑥 (𝑛) + 𝑊in𝑢 (𝑛 + 1) + 𝑊fb𝑦 (𝑛)) ,

𝑥 (0) = 0,

(1)

where 𝑓 is a state activation function which is usually
a sigmoid function and 𝑊 is the internal recurrent
connection weight matrix, of which the spectral
radius should be smaller than unity in order to ensure
the ESN to work; in other words,𝑊 should satisfy the
ESP.

(3) Compute the output weights as the linear regression
weights of 𝐿-dimensional outputs 𝑦(𝑛) on the states
𝑥(𝑛) by

𝑦 (𝑛) = 𝑔 (𝑊out (𝑥 (𝑛) : 𝑢 (𝑛))) , (2)

where 𝑔 is an output activation function.

2.2. Deterministic Echo State Networks. As explained pre-
viously, the reservoirs in standard ESNs are constructed
randomly so that it is hard to construct ESN and unlikely to
optimize the setup. To simplify the reservoir construction,
deterministically constructed ESNs (Figure 2) have been
proposed [12].

Three reservoir templates with fixed topologies con-
cerned in this study are described as follows.

(1) Delay line reservoir (DLR): the units in reservoir are
arranged in a line, as shown in Figure 2(a). Obviously,
the reservoir matrix𝑊 has the property that nonzero
values are located on the lower subdiagonal of𝑊; that
is,𝑊
𝑖+1,𝑖
= 𝑟 for 𝑖 = 1, . . . , 𝑁−1, where 𝑟 is the weight

of all the feedforward connections.
(2) DLR with backward connections (DLRB): each neu-

ron in reservoir is connected to both the preceding
neuron and the successive one, as shown in Fig-
ure 2(b). Thus, the lower subdiagonal and upper sub-
diagonal of𝑊 both have nonzero elements,𝑊

𝑖+1,𝑖
= 𝑟

and𝑊
𝑖,𝑖+1
= 𝑏, where 𝑏 is the weight of the feedback

connections.
(3) Simple cycle reservoir (SCR): neurons in reservoir

like in Figure 2(c) are organized in a cycle, where
𝑊
𝑖+1,𝑖
= 𝑟 and𝑊

1,𝑁
= 𝑟.

Except the reservoir construction, the input layer in
deterministic ESN is fully connected to the reservoir and all
the input connections have the same absolute weight value
V > 0 in contrast to randomly generated input weights in
standard ESN. The sign of V is determined randomly by a
random draw from Bernoulli distribution of mean 1/2.

Generally, the deterministic form of ESNs has the fol-
lowing properties, which simplifies the ESN construction by
only setting two free parameters and enables amore thorough
theoretical analysis of the ESN performance [12]:

(1) a simple fixed nonrandom reservoir topology with
full connectivity from inputs to the reservoir,
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Table 1: Comparative results of ESN and DLR by average forecasting accuracy (MSE).

Stocks ESN DLR Performance improvement (%)
r = 0.5 r = 0.7 r = 1

Minsheng Bank 0.010935 0.011121 0.011055 0.011175 −1.10
Sinopec 0.026413 0.011680 0.011059 0.037695 58.13
Baotou Steel Rare Earth 2.083440 2.307846∗ 2.238868∗ 1.987902∗ 4.59
Yangquan Coal Industry 0.210954 0.187878 0.197090 0.225766 10.94
The Gemdale Group 0.025079 0.023939 0.024479 0.025767 4.55
China Shenhua 0.125612 0.116748 0.120193 0.128756 7.06
Western Mining 0.039255 0.033440 0.035893 0.042173 14.81
China Life 0.165341 0.157840 0.160240 0.169839 4.54
Luan Huanneng 0.326770 0.320343 0.322941 0.335372 1.97
PetroChina 0.014539 0.007712 0.009112 0.018609 46.96
China COSCO 0.046103 0.015973 0.020535 0.059996 65.35
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Figure 2: (a) DLR. (b) DLRB. (c) SCR. [12].

(2) a single fixed absolute weight value 𝑟 for all reservoir
connections, and

(3) a single weight value V for input connections, with
aperiodic pattern of input signs.

3. Stock Price Forecasting Based on
Deterministic Echo State Networks

In this study, to investigate performances of deterministic
ESNs for stock price prediction, three types of determinis-
tic ESNs described previously, DLR, DLRB, and SCR, are
compared to standard ESN. Since stock price fluctuates
violently, in order to make the experiments fair and sound,
two benchmark datasets fromShanghaiComposite Index and
S&P 500 are adopted in this study.

3.1. Experimental Data

1. Shanghai Composite Index Stock Price Dataset. The trading
price data from 14 December, 2007 to 31 December, 2012
(totally 1230 days) of fifty stocks in the benchmark Shanghai
composite index is adopted.

2. S&P 500 Stock Price Dataset. S&P 500 is usually considered
as the benchmark for the United States’ equity performance;
hence it is popular for stock price prediction research.
The trading price data from 1 June, 2010 to 20 February,
2014 (totally 930 days) of 374 stocks in S&P 500 is also
adopted in the experiments. All data come from Yahoo
Finance.

In the experiments, 80% of data points in each stock price
data are adopted as training set, and the remaining 20% are
used for testing.

3.2. Data Preprocessing. In most time series prediction
researches, the original data are usually normalized in order
to make the preprocessed data in a desired range. In this
study, all the original data are normalized as follows:

𝑋 = 𝑘 ×
𝑥 −min (𝑥)

max (𝑥) −min (𝑥)
± 𝑡, (3)

where 𝑥 is the original data, min(𝑥) is theminimumdata, and
max(𝑥) is the maximum value in the data, while 𝑘 and 𝑡 are
two coefficients to make the preprocessed data𝑋 in a desired
range.
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Table 2: Comparative results of ESN and DLRB by average forecasting accuracy (MSE).

Stocks ESN DLRB Performance improvement (%)
r = 0.5, b = 0.05 r = 0.7, b = 0.1 r = 1, b = 0.2

Minsheng Bank 0.010935 0.011139∗ 0.011047∗ 0.010884∗ 0.46
Sinopec 0.026413 0.012175 0.017957 0.500804 53.91
Baotou Steel Rare Earth 2.083440 2.296547∗ 2.227776∗ 1.889110∗ 9.33
Yangquan Coal Industry 0.210954 0.188163 0.202954 0.284849 10.80
The Gemdale Group 0.025079 0.023920 0.024640 0.030820 4.62
China Shenhua 0.125612 0.117322 0.123177 0.139961 6.60
Western Mining 0.039255 0.033725 0.037880 0.079748 14.09
China Life 0.165341 0.158533 0.161766 0.205709 4.12
Luan Huanneng 0.326770 0.319993 0.324581 0.373107 2.07
PetroChina 0.014539 0.007990 0.010373 0.317348 45.05
China COSCO 0.046103 0.016929 0.025623 2.403775 63.28

Table 3: Comparative results of ESN and SCR by average forecasting accuracy (MSE).

Stocks ESN SCR Performance improvement (%)
r = 0.5 r = 0.7 r = 1

Minsheng Bank 0.010935 0.011165∗ 0.011061∗ 0.010842∗ 0.85
Sinopec 0.026413 0.011868 0.014594 0.037969 55.07
Baotou Steel Rare Earth 2.083440 2.350138∗ 2.228629∗ 1.975701∗ 5.17
Yangquan Coal Industry 0.210954 0.187053 0.196191 0.224106 11.33
The Gemdale Group 0.025079 0.023933 0.024412 0.025769 4.57
China Shenhua 0.125612 0.116739 0.120273 0.129783 7.06
Western Mining 0.039255 0.033329 0.035651 0.042433 15.10
China Life 0.165341 0.157979 0.160666 0.169405 4.45
Luan Huanneng 0.326770 0.319483 0.322704 0.334651 2.23
PetroChina 0.014539 0.007842 0.009102 0.018705 46.06
China COSCO 0.046103 0.016163 0.020780 0.063481 64.94

3.3. Prediction Accuracy Evaluation Measure. In this study, a
commonly used measure, mean squared error (MSE) shown
as follows, is utilized to evaluate forecasting accuracy:

MSE = 1
𝑛

𝑛

∑

𝑡=1

(𝑦
𝑡
− 𝑥
𝑡
)
2
, (4)

where 𝑥
𝑡
denotes a given time series, 𝑡 = 1, . . . , 𝑛, 𝑛 ∈ 𝑁, and

𝑦
𝑡
denotes the forecast of value at time 𝑡.

3.4. Experiments and Results

3.4.1. Experiments on Shanghai Composite Index Stock Price
Dataset. In this experiment, each ESN model (standard
ESN, DLR, DLRB, and SCR) is built with 96 internal units
and spectral radius is set to be 0.8. For each stock in this
dataset, the next trading day closing price is predicted by
its previous 30 closing prices. These forecasting models are
investigated according to different values of input weight
matrix𝑊in.

Random Input Weight Matrix 𝑊in. The input weight matrix
𝑊in is randomly set to be in the uniform distributed interval

of [−1, 1]. The parameter 𝑟 in internal weight matrix 𝑊 of
DLR, DLRB, and SCR models is set to be 0.5, 0.7, and 1.0,
respectively. Accordingly, the parameter 𝑏 in 𝑊 of DLRB is
set to be 0.05, 0.1, and 0.2.

Because of the randomness of 𝑊in, each forecasting
model is tested for 1000 times. Each deterministic ESN
model is compared with standard ESN model by average
forecasting accuracy. The experimental results are shown
in Tables 1, 2, and 3. In these tables, the stocks of which
the predicting performances are improved as the parameters
increase are italic, while reduced ones are with asterisks.
From the comparative results, the forecasting performances
of DLR, DLRB, and SCR are increased by 19.90%, 19.48%,
and 19.71%, respectively, which indicate that the deterministic
ESNs outperform the standard ESN in forecasting accuracy.
In addition, it is found that the forecasting performances of
deterministic ESNs tend to change in one direction (increase
or decrease) as the parameter values increase.

Deterministic Input Weight Matrix 𝑊in. The forecasting per-
formances of these ESN models are compared under the
condition of the same 𝑊in value. In this experiment, all the
values in𝑊in are V = 0.5, and the sign of V is the probability
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Table 4: Comparison of ESN and three deterministic ESN models by average forecasting accuracy (MSE) and stability improvement (%).

Stocks Average forecasting accuracy Stability improvement (%)
ESN DLR DLRB SCR DLR DLRB SCR

Minsheng Bank 0.01097 0.01118 0.01121 0.01118 −11.83 −30.99 −9.66
Sinopec 0.02155 0.01092 0.01125 0.01089 98.04 98.13 98.38
Baotou Steel Rare Earth 2.18330 2.36140 2.32180 2.35490 −42.67 −19.43 −42.68
Yangquan Coal Industry 0.20609 0.18508 0.18552 0.18415 69.47 66.43 67.29
The Gemdale Group 0.02499 0.02383 0.02385 0.02382 42.46 43.31 46.34
China Shenhua 0.12363 0.11524 0.11603 0.11537 67.26 60.85 65.96
Western Mining 0.03783 0.03275 0.03313 0.03278 81.06 78.36 79.57
China Life 0.16336 0.15640 0.15747 0.15717 39.28 42.17 36.40
Luan Huanneng 0.32304 0.31968 0.31931 0.31875 40.16 45.31 47.00
PetroChina 0.01200 0.00745 0.00756 0.00745 97.60 97.16 97.51
China COSCO 0.03419 0.01448 0.01492 0.01460 98.86 98.74 98.72

Table 5: Comparisons of average forecasting accuracy (MSE) and running time (s).

Stocks Average forecasting accuracy (r = 0.5, b = 0.05, v = ±0.5) Average running time (s)
ESN DLR DLRB SCR ESN DLR DLRB SCR

“A” 3.814025 2.947236 2.87385 3.042726 0.1441 0.1103 0.1093 0.1134
“ALL” 0.729146 0.737923 0.71832 0.730556 0.1428 0.1092 0.1089 0.1087
“BAX” 0.47736 0.504663 0.504453 0.496313 0.1422 0.1097 0.1100 0.1094
“CAT” 1.227007 1.21849 1.221667 1.221545 0.1428 0.1091 0.1094 0.1092
“COH” 0.702417 0.670763 0.673214 0.67075 0.1424 0.1091 0.1099 0.1095
“DF” 0.23828 0.262445 0.262805 0.264985 0.1422 0.1095 0.1093 0.1089
“EIX” 0.21518 0.224842 0.225257 0.224794 0.1440 0.1094 0.1095 0.1098
“FMC” 1.02408 1.04685 1.034131 1.026145 0.1434 0.1092 0.1091 0.1091
“HD” 4.05567 4.809645 4.593392 4.835269 0.1396 0.1093 0.1092 0.1093
“IFF” 2.963587 2.798408 2.70644 2.977701 0.1420 0.1082 0.1082 0.1083
“KIM” 0.04468 0.045833 0.045762 0.045979 0.1440 0.1094 0.1094 0.1090
“LXK” 0.51446 0.522021 0.523765 0.521172 0.1446 0.1088 0.1087 0.1088
“MS” 0.28087 0.324216 0.323608 0.319095 0.1445 0.1094 0.1088 0.1082
“OI” 0.558538 0.476727 0.480012 0.47534 0.1450 0.1095 0.1100 0.1085
“PKI” 3.549767 2.748976 2.64719 2.657761 0.1446 0.1104 0.1094 0.1094
“RL” 6.35157 6.377153 6.40885 6.409925 0.1454 0.1101 0.1102 0.1102
“SRE” 7.084271 6.978886 6.78874 7.210348 0.1497 0.1095 0.1109 0.1099
“TER” 0.105475 0.104689 0.10413 0.106195 0.1421 0.1094 0.1099 0.1097
“VAR” 1.697554 1.58872 1.617942 1.613488 0.1444 0.1107 0.1103 0.1094
“WY” 0.15677 0.16673 0.165503 0.166299 0.1441 0.1094 0.1091 0.1093
“WYN” 1.538461 1.378661 1.35106 1.37561 0.1438 0.1095 0.1095 0.1092
“XEL” 0.05319 0.05395 0.053997 0.05375 0.1415 0.1084 0.1086 0.1091
“XOM” 1.870293 1.827589 1.824464 1.80176 0.1405 0.1089 0.1089 0.1086
“XRX” 0.06333 0.073928 0.073774 0.073895 0.1401 0.1086 0.1089 0.1086
“YUM” 2.818102 2.876777 2.806851 2.79861 0.1407 0.1089 0.1085 0.1086

of 50% randomly determined. In DLR, DLRB, and SCR, all
the values in internal weight matrix 𝑊 are 𝑟 = 0.5 and the
feedback connection values in 𝑊 of DLRB are 𝑏 = 0.05.
The average forecasting accuracy in MSE for 1000 times tests
for each ESN model is shown in Table 4, which indicates
that SCR, DLR, and DLRB outperform standard ESN in
average accuracy by 15.94%, 15.93%, and 15.51%, respectively.

During the experiment, for the first 500 tests, it is found
that the values of forecasting accuracy (MSE) for the ESN
models differ significantly, which indicate that the forecasting
performances of the ESN models are unstable. To further
investigate the stability, another 500 tests have been done,
of which the results also show the instability. Therefore, the
stability of each ESN model is evaluated by MSE for the 1000
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tests. As shown in Table 4, compared to the standard ESN
model, the stabilities of SCR, DLRB, and DLR models are
improved by 53.17%, 52.73%, and 52.70%, respectively.

3.4.2. Experiments on S&P 500 Stock Price Dataset. The fore-
casting models in this experiment are constructed the same
as the experiment described in Section 3.4.1.This experiment
aims to further investigate the forecasting performance of
each ESN model for various stocks since there are more
representative stocks in S&P 500 dataset than in Shanghai
Composite Index dataset. Meanwhile, time complexities are
compared by computing the average running time. The
experimental results are shown inTable 5 partly. Although the
ESN models perform competitively in forecasting accuracy,
the deterministic ESN models have obvious advantages in
efficiency which is indicated by the average time saving
of 23.46%, 23.45%, and 23.41% for SCR, DLRB, and DLR,
respectively.

4. Conclusions

A new method for stock price forecasting by applying
deterministic ESN models is presented in this paper. In
standard ESNs, the reservoirs are randomly constructed,
which makes researchers and practitioners rely on trials
and errors. Differently, the deterministic ESNs have their
reservoirs constructed deterministically so that the structures
of ESN models are simple and easy to be applied. Therefore,
deterministic ESNs (three typical types) have been applied
to predict stock price. The forecasting performances have
been investigated on two benchmark datasets (Shanghai
Composite Index and S& P500). The experimental results on
Shanghai Composite Index dataset show that deterministic
ESNs outperform standard ESN in accuracy by about 20%
and stability by 52% averagely. Further investigation on S&P
500 dataset shows that the deterministic ESNs have improve-
ment in efficiency by about 23% while having insignificant
improvement in forecasting accuracy. Since deterministic
ESNs have advantages of higher forecasting accuracy and
efficiency as indicated by the experimental results, they have
great prospects in applications of stock price prediction and
even other time series forecasting applications. In this work,
the deterministic ESN models are constructed by hand. The
problem of parameter settings will be considered in future
work by applying optimization algorithms.
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[14] P. Tiňo and A. Rodan, “Short term memory in input-driven
linear dynamical systems,” Neurocomputing, vol. 112, pp. 58–63,
2013.


