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A single species population model is investigated, where the discrete maturation delay and the Ricker birth function are
incorporated.The threshold determining the global stability of the trivial equilibrium and the existence of the positive equilibrium
is obtained. The necessary and sufficient conditions ensuring the local asymptotical stability of the positive equilibrium are given
by applying the Pontryagin’s method. The effect of all the parameter values on the local stability of the positive equilibrium is
analyzed.The obtained results show the existence of stability switch and provide a method of computing maturation times at which
the stability switch occurs. Numerical simulations illustrate that chaos may occur for the model, and the associated parameter
bifurcation diagrams are given for certain values of the parameters.

1. Introduction

The model of a single species population growth is usually
the base of modeling transmission of some infection and
interaction between two or more species. Cooke et al. [1]
proposed the model of a single species population model

𝑑𝑁

𝑑𝑡
= 𝑏𝑒
−𝑑

1
𝜏

𝑒
−𝑎𝑁(𝑡−𝜏)

𝑁 (𝑡 − 𝜏) − 𝑑𝑁 (𝑡) . (1)

Here 𝑁 = 𝑁(𝑡) denotes the mature population of the species;
𝑑
1

and 𝑑 are the death rates of the immature andmature pop-
ulation, respectively; the delay 𝜏 is the maturation time, and
𝑒
−𝑑

1
𝜏 is the probability inwhich an immature individual keeps

surviving tomature; the Ricker function 𝑏𝑒
−𝑎𝑁 represents the

per capita birth rate of mature individuals, which reflects the
dependence of population birth on the density of individuals,
and the parameter 𝑏 is the per capita maximal birth rate.
Model (1) has been applied to describe some epidemiological
and population biological models [1–5].

For model (1), Cooke et al. [1] found the existence of
stability switch as 𝜏 increases, by using the geometricmethod.
Jiang and Zhang [6] theoretically discussed the stability

switch of model (1) by means of the geometric criterion
proposed by Beretta and Kuang [7], where 𝜏 is used as the
bifurcation parameter. Wei and Zou [8] considered the local
and global Hopf bifurcation for (1), where 𝑏 is used as the
bifurcation parameter.

In this paper, our aim is to investigate the stability
of model (1) and completely analyze the effect of all the
parameter values on the stability. By making the suitable
scaling, model (1) is reduced, and the necessary and sufficient
conditions for the stability of the positive equilibrium of
the simplified model are obtained. The stability switch is
also proved theoretically, and the associated conditions are
given. The obtained results supplement the conclusions in
[1, 6, 8], and numerical simulations illustrate the existence of
chaos for certain parameter values.The associated parameter
bifurcation diagrams are plotted for certain values of the
parameters.

The paper is organized as follows. In the next section,
model (1) is reduced, and the stability is analyzed by the
LaSalle’s invariance principle and the Pontryagin’smethod. In
Section 3, the effect of all the parameter values on the stability
of the positive equilibrium is discussed, and the associated
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parameter bifurcation diagrams are given for certain values
of the parameters to show the complexity of dynamical
behaviors of the model. Finally, a brief conclusion is given.

2. Stability Analysis

For (1), making the scaling

𝑁 (𝑡) = 𝑎𝑁 (𝑡) , 𝑡 = 𝑑𝑡, 𝜏 = 𝑑𝜏, (2)

and denoting 𝑏 = 𝑏/𝑑, then dropping their bars yields

𝑑

𝑑𝑡
𝑁 (

𝑡

𝑑
) = 𝑏𝑒

−𝑑

1
𝜏

𝑒
−𝑁((𝑡−𝜏)/𝑑)

𝑁 (
𝑡 − 𝜏

𝑑
) − 𝑁 (

𝑡

𝑑
) . (3)

Denote 𝑁(𝑡/𝑑) still by 𝑁(𝑡), then (3) becomes

𝑑𝑁

𝑑𝑡
= 𝑏𝑒
−𝑑

1
𝜏

𝑒
−𝑁(𝑡−𝜏)

𝑁 (𝑡 − 𝜏) − 𝑁 (𝑡) . (4)

From the biologicalmeaning, the initial conditions for (4)
are given as follows:

𝑁 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0] , (5)

where 𝜙(𝜃) ≥ 0 and 𝜙(0) > 0.
The following theorem establishes the positivity and

boundedness of solutions of (4).

Theorem 1. All solutions of (4) under the initial condition (5)
are positive on [0, +∞) and ultimately bounded.

Proof. Assume that there is 𝑡
1

(𝑡
1

> 0) such that 𝑁(𝑡
1

) = 0;
then it follows from 𝑁(0) > 0 and the continuity of solution
of (4) that there is 𝑡

∗

= inf{𝑡 : 𝑡 > 0, 𝑁(𝑡) = 0} such that
𝑁(𝑡) > 0 for 𝑡 ∈ [0, 𝑡

∗

). So we have 𝑁
󸀠

(𝑡
∗

) ≤ 0. However,
𝑁
󸀠

(𝑡
∗

) = 𝑏𝑒
−𝑑

1
𝜏

𝑁(𝑡
∗

− 𝜏)𝑒
−𝑁(𝑡

∗
−𝜏)

> 0. This contradiction
implies that 𝑁(𝑡) > 0 for 𝑡 > 0. Therefore, all solutions of (4)
under the initial condition (5) are positive on [0, +∞).

On the other hand, we know that 𝑥𝑒
−𝑥

≤ 𝑒
−1 for 𝑥 > 0;

then, under the initial condition (5), from (4) we have 𝑁
󸀠

≤

𝑏𝑒
−1−𝑑

1
𝜏

− 𝑁. It follows that lim sup
𝑡→+∞

𝑁(𝑡) ≤ 𝑏𝑒
−1−𝑑

1
𝜏;

that is, all solutions of (4) under the initial condition (5) are
ultimately bounded, and the set𝐷 = {𝑁(𝑡) ∈ 𝐶

+

: 0 ≤ 𝑁(𝑡) ≤

𝑏𝑒
−1−𝑑

1
𝜏

} is positively invariant for (4).
The proof of Theorem 1 is complete.

Obviously, (4) always has the trivial equilibrium 𝑁 = 0,
and, when 𝑏𝑒

−𝑑

1
𝜏

> 1, that is, ln 𝑏 − 𝑑
1

𝜏 > 0, (4) also has a
unique positive equilibrium 𝑁

∗

= ln 𝑏 − 𝑑
1

𝜏, where 𝑁
∗

∈ 𝐷

since𝑁
∗

≤ 𝑏𝑒
−1−𝑑

1
𝜏. Notice that 𝑏𝑒

−𝑑

1
𝜏

> 1 implies that 𝑏 > 1.
With respect to the stability of the trivial equilibrium𝑁 =

0, we have the following statement.

Theorem 2. The trivial equilibrium 𝑁 = 0 of (4) is globally
stable as 𝑏𝑒

−𝑑

1
𝜏

≤ 1 and unstable as 𝑏𝑒
−𝑑

1
𝜏

> 1.

Proof. Define a Lyapunov functional 𝐿 = 𝑁 +

𝑏𝑒
−𝑑

1
𝜏

∫
𝑡

𝑡−𝜏

𝑁(𝜃)𝑒
−𝑁(𝜃)

𝑑𝜃, then the derivative of 𝐿 with
respect to 𝑡 along solutions of (4) is given by

𝑑𝐿

𝑑𝑡
= 𝑏𝑒
−𝑑

1
𝜏

𝑁𝑒
−𝑁

− 𝑁. (6)

For 𝑁 ≥ 0,

𝑑𝐿

𝑑𝑡
= 𝑏𝑒
−𝑑

1
𝜏

𝑁𝑒
−𝑁

− 𝑁 ≤ (𝑏𝑒
−𝑑

1
𝜏

− 1) 𝑁. (7)

When 𝑏𝑒
−𝑑

1
𝜏

≤ 1, 𝑑𝐿/𝑑𝑡 ≤ 0 and the equality holds if and
only if 𝑁 = 0. It is easy to know that the largest invariant
set of (4) on the set {(𝑁(𝑡) ∈ 𝐷 : 𝐿

󸀠

(𝑡) = 0)} is the singleton
{𝑂}. It follows by the LaSalle’s invariance principle [9] that the
trivial equilibrium 𝑂 of (4) is globally stable on the set 𝐷 as
𝑏𝑒
−𝑑

1
𝜏

≤ 1.
The characteristic equation of (4) at 𝑁 = 0 is given by

Φ (𝜆) := 𝜆 + 1 − 𝑏𝑒
−𝑑

1
𝜏

𝑒
−𝜆𝜏

= 0. (8)

Since Φ(0) = 1 − 𝑏𝑒
−𝑑

1
𝜏

< 0 for 𝑏𝑒
−𝑑

1
𝜏

> 1, and
lim
𝜆→+∞

Φ(𝜆) = +∞, equation Φ(𝜆) = 0 must have positive
root as 𝑏𝑒

−𝑑

1
𝜏

> 1. Therefore, the trivial equilibrium 𝑁 = 0 of
(4) is unstable as 𝑏𝑒

−𝑑

1
𝜏

> 1.
The proof of Theorem 2 is complete.

Remark 3. From biological meaning, the global stability of
the trivial equilibrium implies the eventual extinction of
the population, and its instability implies the persistence of
the population. Therefore, the population is extinct finally if
𝑏𝑒
−𝑑

1
𝜏

≤ 1 and keeps survival if 𝑏𝑒
−𝑑

1
𝜏

> 1.

In the following we consider the stability of the positive
equilibrium 𝑁 = 𝑁

∗. The linearized equation of (4) at 𝑁 =

𝑁
∗ is given by

𝑑𝑥

𝑑𝑡
= (1 + 𝑑

1

𝜏 − ln 𝑏) 𝑥 (𝑡 − 𝜏) − 𝑥 (𝑡) . (9)

Substituting 𝑥 = 𝑐𝑒
𝜆𝑡 with 𝑐 ̸= 0 into (9), we get the

characteristic equation

𝜆 + 1 − (1 + 𝑑
1

𝜏 − ln 𝑏) 𝑒
−𝜆𝜏

= 0. (10)

Obviously, the root of (10) with 𝜏 = 0 is 𝜆 = − ln 𝑏 < 0 for
𝑏 > 1; that is, the positive equilibrium is locally asymptotically
stable as 𝜏 = 0 and 𝑏 > 1. Therefore, for 𝑏 > 1, with variation
of 𝜏 stability of the positive equilibrium 𝑁

∗ can change only
when the pure imaginary roots of (10) appear.

For the stability of N = N∗, analysis is realized by
considering two cases: 0 < lnb−d

1

𝜏 ≤ 2 and lnb−d
1

𝜏 > 2. For
the case 0 < lnb − d

1

𝜏 ≤ 2, we have the following statement.

Theorem 4. The positive equilibrium 𝑁
∗ of (4) is locally

asymptotically stable if 0 < ln 𝑏 − 𝑑
1

𝜏 ≤ 2.

Proof. Suppose that there is a root of (10) with nonnegative
real part if 0 < ln 𝑏 − 𝑑

1

𝜏 < 2, then denote the root by 𝜆 =

𝛼 + 𝑖𝛽, where 𝛼 ≥ 0. Substituting it into (10) gives

(𝛼 + 1) + 𝑖𝛽 = (1 + 𝑑
1

𝜏 − ln 𝑏) 𝑒
−𝜏(𝛼+𝑖𝛽)

. (11)

Note that 0 < ln 𝑏−𝑑
1

𝜏 < 2 is equivalent to |1+𝑑
1

𝜏−ln 𝑏| <

1; then, for 𝛼 ≥ 0, the norm of the left-hand side of (11) is
not less than one, but the norm of the right-hand side is less
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than one. So the contradiction occurs; that is, the assumption
does not hold. Therefore, all roots of (10) are with negative
real parts as 0 < ln 𝑏 − 𝑑

1

𝜏 < 2.
When ln 𝑏 − 𝑑

1

𝜏 = 2, (10) becomes

𝜆 + 1 + 𝑒
𝜆𝜏

= 0. (12)

Note that 𝜆 = 0 and any pure imaginary number are not the
root of (12) and that (12) with 𝜏 = 0 only has the root 𝜆 = −1;
then all roots of (12) are with negative real parts.

Summarizing the above inferences, the positive equilib-
rium 𝑁

∗ is locally asymptotically stable as 0 < ln 𝑏 − 𝑑
1

𝜏 ≤ 2.
This completes the proof of Theorem 4.

In the following we consider the case ln 𝑏 − 𝑑
1

𝜏 > 2; that
is, 1 + 𝑑

1

𝜏 − ln 𝑏 < −1, by applying the Pontryagin’s method
[10], which is introduced in the appendix.

Let 𝜌 = 𝜆𝜏, then (10) can become

𝑃 (𝜌, 𝑒
𝜌

) := 𝜌𝑒
𝜌

+ 𝜏𝑒
𝜌

− 𝜏 (1 + 𝑑
1

𝜏 − ln 𝑏) = 0. (13)

Separating the real and imaginary parts of 𝑃(𝑖𝜔, 𝑒
𝑖𝜔

) gives

𝑃 (𝑖𝜔, 𝑒
𝑖𝜔

) = 𝐹 (𝜔) + 𝑖𝐺 (𝜔) , (14)

where

𝐹 (𝜔) = − 𝜔 sin𝜔 + 𝜏 [cos𝜔 − (1 + 𝑑
1

𝜏 − ln 𝑏)] ,

𝐺 (𝜔) = 𝜔 cos𝜔 + 𝜏 sin𝜔.

(15)

According to the Pontryagin’s method, we first discuss
zeros of 𝐺(𝜔) and then consider position of the roots of (13)
on the complex plane. With respect to zeros of 𝐺(𝜔) we have
the following statement.

Proposition 5. All zeros of 𝐺(𝜔) are real.

Proof. If 𝑔(𝜔, 𝑢, V) = 𝜔𝑢 + 𝜏V, then 𝐺(𝜔) = 𝑔(𝜔, cos𝜔, sin𝜔)

and the function Φ
(𝑠)

∗

(𝜔) in Theorem 10 in the appendix is
cos𝜔. Therefore, we may take 𝜀 = 0 in Theorem 10. From
Theorem 10, all zeros of 𝐺(𝜔) are real if and only if there are
4𝑘 + 1 real zeros of 𝐺(𝜔) in the interval [−2𝑘𝜋, 2𝑘𝜋] for 𝑘

a sufficiently large integer. Observe that 𝐺(0) = 0 and that
𝜔 = 𝑛𝜋(𝑛 = ±1, ±2, . . .) is not zero of 𝐺(𝜔); then, for 𝜔 ̸= 0,
𝐺(𝜔) = 0 is equivalent to the equation

−
𝜏

𝜔
= cot𝜔. (16)

According to the graphics of functions −𝜏/𝜔 and tan 𝜔

(Figure 1), it is easy to see that (16) has 2𝑘 roots in the
interval (0, 2𝑘𝜋), denoted by 𝜔

𝑛

, 𝑛 = 1, 2, 3, . . . , 2𝑘, and 𝜔
𝑛

∈

((𝑛 − 1/2)𝜋, 𝑛𝜋). Since both functions −𝛾/𝜔 and tan 𝜔 are
odd functions, (16) also has 2𝑘 roots in the interval (2𝑘𝜋, 0),
denoted by 𝜔

−𝑛

, 𝑛 = 1, 2, 3, . . . , 2𝑘, and 𝜔
−𝑛

= −𝜔
𝑛

∈

(−𝑛𝜋, −(𝑛 − 1/2)𝜋). Thus, together with the zero of 𝐺(𝜔),
𝜔 = 0,𝐺(𝜔)has exactly 4𝑘+1 zeros in the interval [−2𝑘𝜋, 2𝑘𝜋]

for 𝑘 any positive integer. It follows from Theorem 10 that
Proposition 5 is true.

y = −
𝜏

𝜔
y

y

= cot𝜔

−2𝜋 −𝜋 o 𝜋 2𝜋 𝜔

Figure 1: The figures of functions 𝑦 = −𝜏/𝜔 and 𝑦 = cot𝜔.

Theorem 9 in Appendix gives the necessary and sufficient
conditions ensuring that all roots of (13) have negative real
parts. So, by applying Theorem 9, we may get the necessary
and sufficient conditions ensuring that 𝑁 = 𝑁

∗ is locally
asymptotically stable. The corresponding result is as follows.

Theorem 6. When ln 𝑏−𝑑
1

𝜏 > 2, the positive equilibrium 𝑁
∗

of (4) is locally asymptotically stable if and only if 1−(1+𝑑
1

𝜏−

ln 𝑏) cos𝜔
1

> 0, where 𝜔
1

is the zero of function 𝐺(𝜔) in the
interval (𝜋/2, 𝜋).

Proof. Proposition 5 has shown that all zeros of𝐺(𝜔) are real,
then according to Theorem 9, we only need to verify that
𝐺
󸀠

(𝜔)𝐹(𝜔) > 0 holds for all zeros of 𝐺(𝜔).
Since

𝐺 (𝜔) = 𝜔 sin𝜔 (cot𝜔 +
𝜏

𝜔
) for 𝜔 ̸= 0; (17)

for each root 𝜔
∗ of (16) we have

𝐺
󸀠

(𝜔
∗

) = −𝜔
∗ sin𝜔

∗

(csc2𝜔∗ +
𝜏

𝜔∗
2

) . (18)

Then, according to the position of zeros of 𝐺(𝜔), we have
𝐺
󸀠

(𝜔
±𝑛

) < 0 for 𝑛 = 1, 3, 5, . . ., and 𝐺
󸀠

(𝜔
±𝑛

) > 0 for 𝑛 =

2, 4, 6, . . ..
Note that the inequality ln 𝑏 − 𝑑

1

𝜏 > 2 is equivalent to the
inequality 1+𝑑

1

𝜏− ln 𝑏 < −1, then cos𝜔−[1+𝑑
1

𝜏− ln 𝑏] > 0.
So 𝐹(𝜔

±𝑛

) > 0 for 𝑛 = 2, 4, 6, . . .. Therefor we have

𝐺
󸀠

(𝜔
±𝑛

) 𝐹 (𝜔
±𝑛

) > 0 for 𝑛 = 2, 4, 6, . . . . (19)

From 𝐺(𝜔) = 0 we get 𝜔 = −𝜏 tan 𝜔. Substituting it into
𝐹(𝜔) gives

𝐹 (𝜔) = 𝜏
1 − (1 + 𝑑

1

𝜏 − ln 𝑏) cos𝜔

cos𝜔
. (20)

Since 𝜔
−𝑛

= −𝜔
𝑛

and 𝐹(𝜔) is an even function of 𝜔, we will
only prove that 𝐹(𝜔

2𝑛+1

) < 0 for 𝑛 = 0, 1, 2, 3, . . ., as 1 − (1 +

𝑑
1

𝜏 − ln 𝑏) cos𝜔
1

> 0.
Let 𝜔
2𝑛+1

= (2𝑛 + 1)𝜋 − 𝜔
2𝑛+1

, then 𝜔
2𝑛+1

∈ (0, 𝜋/2), and
it is easy to see that 𝜔

2𝑛+1

is increasing with increasing of 𝑛.
And

𝐹 (𝜔
2𝑛+1

) = 𝜏
1 − (1 + 𝑑

1

𝜏 − ln 𝑏) cos𝜔
2𝑛+1

cos𝜔
2𝑛+1

= − 𝜏
1 + (1 + 𝑑

1

𝜏 − ln 𝑏) cos𝜔
2𝑛+1

cos𝜔
2𝑛+1

.

(21)
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D1

d1

D2

l1

l2

b1

D3

bO b2

Figure 2:The regions corresponding to stability of equilibria 𝑁 = 0

and 𝑁 = 𝑁
∗ for the given 𝜏, where 𝑙

1

represents the curve 𝑑
1

=

ln 𝑏/𝜏, 𝑙
2

represents the curve 𝑑
1

= (ln 𝑏 − 1 + sec𝜔
1

)/𝜏, 𝑏
1

= 1, and
𝑏
2

= exp(1 − sec𝜔
1

).

By monotonicity of 𝜔
2𝑛+1

with respect to 𝑛, 1 + (1 + 𝑑
1

𝜏 −

ln 𝑏) cos𝜔
2𝑛+1

is increasing as 𝑛 increases. So 1 + (1 + 𝑑
1

𝜏 −

ln 𝑏) cos𝜔
1

> 0 implies that 1 + (1 + 𝑑
1

𝜏 − ln 𝑏) cos𝜔
2𝑛+1

>

0; that is, 𝐹(𝜔
2𝑛+1

) < 0. Since 1 + (1 + 𝑑
1

𝜏 − ln 𝑏) cos𝜔
1

=

1 − (1 + 𝑑
1

𝜏 − ln 𝑏) cos𝜔
1

, we get 𝐺
󸀠

(𝜔
2𝑛+1

)𝐹(𝜔
2𝑛+1

) > 0 for
𝑛 = 0, 1, 2, . . ., when 1 − (1 + 𝑑

1

𝜏 − ln 𝑏) cos𝜔
1

> 0.
The proof of Theorem 6 is complete.

3. Dependence of Stability of Equilibria on
the Values of Parameters

In the previous section, we have analyzed the stability of
equilibria of (4). In this section, we will investigate the
dependence of stability of equilibria on the values of all
parameters.

For an arbitrary positive number 𝜏, (16) has a unique root
𝜔 in the interval (𝜋/2, 𝜋). This root is only determined by
the value of 𝜏 and is independent of the parameters 𝑏 and
𝑑
1

. Then, for a given positive number 𝜏, the conditions in
Theorem 6 can be expressed in the inequalities ln 𝑏 − 1 +

sec𝜔
1

< 𝑑
1

𝜏 < ln 𝑏 − 2. Combining the condition in
Theorem 4, the positive equilibrium 𝑁 = 𝑁

∗ of (4) is locally
asymptotically stable if and only if ln 𝑏−1+sec𝜔

1

< 𝑑
1

𝜏 < ln 𝑏

for 𝑏 > 1 and 𝑑
1

> 0 and unstable if 𝑑
1

𝜏 < ln 𝑏 − 1 + sec𝜔
1

for 𝑏 > exp(1 − sec𝜔
1

) and 𝑑
1

> 0. Further, according to
Theorems 2, 4, and 6, for an arbitrary given positive number
𝜏, we can determine the stability of equilibria 𝑁 = 0 and
𝑁 = 𝑁

∗ of (4) in the associated region in the 𝑏 − 𝑑
1

plane
(Figure 2). That is, denote

𝐷
1

= {(𝑏, 𝑑
1

) : 𝑏 > 0, 𝑑
1

> 0, 𝑑
1

𝜏 ≥ ln 𝑏} ,

𝐷
2

= {(𝑏, 𝑑
1

) : 𝑏 > 1, 𝑑
1

> 0,

ln 𝑏 − 1 + sec𝜔
1

< 𝑑
1

𝜏 < ln 𝑏} ,

𝐷
3

= {(𝑏, 𝑑
1

) : 𝑏 > exp (1 − sec𝜔
1

) , 𝑑
1

> 0,

𝑑
1

𝜏 < ln 𝑏 − 1 + sec𝜔
1

} ;

(22)

then, for the given 𝜏, when (𝑏, 𝑑
1

) ∈ 𝐷
1

, 𝑁 = 0 is globally
stable; when (𝑏, 𝑑

1

) ∈ 𝐷
2

, 𝑁 = 𝑁
∗ is locally asymptotically

stable, and 𝑁 = 0 is unstable; when (𝑏, 𝑑
1

) ∈ 𝐷
3

, both 𝑁 =

0 and 𝑁 = 𝑁
∗ are unstable. Biologically, the population is

extinct eventually as (𝑏, 𝑑
1

) ∈ 𝐷
1

and persistent as (𝑏, 𝑑
1

) ∈

𝐷
2

⋃ 𝐷
3

.
According to Figure 2, it is obvious that the range of 𝐷

1

,
in which the population is extinct, is enlarging as 𝜏 increases.

From Figure 2, for any given 𝑑
1

and 𝜏, when 𝑏 increases
from zero, (4) first has no positive equilibrium and its trivial
equilibrium is globally stable; when 𝑏 passes through the
curve 𝑙

1

, the trivial equilibrium is unstable, and the positive
equilibrium appears and it is locally asymptotically stable;
when it passes through the curve 𝑙

2

again, both the trivial and
the positive equilibria are unstable. For any given 𝜏, if 0 <

𝑏 ≤ 1, the trivial equilibrium is globally stable for an arbitrary
𝑑
1

; if 1 < 𝑏 ≤ exp(1 − sec𝜔
1

), the locally asymptotically
stable positive equilibrium could disappear as 𝑑

1

increases
and passes through the curve 𝑙

1

; if 𝑏 > exp(1 − sec𝜔
1

),
the stability of the positive equilibrium could change from
unstable to stable, then to disappearing as 𝑑

1

increases and
passes through the curves 𝑙

2

and 𝑙
1

.
On the other hand, for the given 𝑏 and 𝑑

1

, how does the
value of 𝜏 affect the stability of equilibria𝑁 = 0 and𝑁 = 𝑁

∗?
From Theorems 2 and 4, 𝑁 = 0 is globally stable if and

only if 𝜏 ≥ ln 𝑏/𝑑
1

; 𝑁 = 𝑁
∗ is locally asymptotically stable if

0 < (ln 𝑏 − 2)/𝑑
1

≤ 𝜏 < ln 𝑏/𝑑
1

. Then, how is the situation
0 < 𝜏 < (ln 𝑏 − 2)/𝑑

1

?
We define function 𝐻(𝜔) := sec𝜔 + 𝑑

1

𝜔 cot𝜔 − (1 − ln 𝑏)

for 𝜔 ∈ (𝜋/2, 𝜋). Straightforward computation yields

𝐻
󸀠

(𝜔) = sec𝜔 tan 𝜔 + 𝑑
1

(cot𝜔 − 𝜔 csc2𝜔) ,

𝐻
󸀠󸀠

(𝜔) = sec𝜔 (2 tan2𝜔 + 1) + 2𝑑
1

csc2𝜔 (𝜔 cot𝜔 − 1) < 0

(23)

for 𝜔 ∈ (𝜋/2, 𝜋), where both 𝐻(𝜔) and 𝐻
󸀠

(𝜔) are continuous
in the interval (𝜋/2, 𝜋).

Note that

lim
𝜔→(𝜋/2)

+

𝐻 (𝜔) = lim
𝜔→𝜋

−

𝐻 (𝜔) = −∞,

lim
𝜔→(𝜋/2)

+

𝐻
󸀠

(𝜔) = +∞, lim
𝜔→𝜋

−

𝐻
󸀠

(𝜔) = −∞,

(24)

then function𝐻(𝜔)has a unique extreme point in the interval
(𝜋/2, 𝜋), denoted by 𝜔

∗, and its maximum is 𝐻(𝜔
∗

).
We further discuss function 𝐻(𝜔) for 𝜔 ∈ (𝜋/2, 𝜔) ⊂

(𝜋/2, +∞), where 𝜔 is the root of equation −(ln 𝑏 − 2)/𝑑
1

=

𝜔 cot𝜔 in the interval (𝜋/2, 𝜋) for ln 𝑏 > 2. Here, 𝐻(𝜔) =

sec𝜔+1 < 0.Therefore, with respect to sign of function𝐻(𝜔)

in (𝜋/2, 𝜔), we have the following statements.

If 𝜔 ≤ 𝜔
∗, 𝐻(𝜔) < 0 for 𝜔 ∈ (𝜋/2, 𝜔);

If 𝜔 > 𝜔
∗ and 𝐻(𝜔

∗

) < 0, 𝐻(𝜔) < 0 for 𝜔 ∈ (𝜋/2, 𝜔);
If 𝜔 > 𝜔

∗ and 𝐻(𝜔
∗

) > 0, 𝐻(𝜔) has exactly two zeros
in the interval (𝜋/2, 𝜔), 𝜔

∗

1

and 𝜔
∗

2

(𝜔∗
1

< 𝜔
∗

2

), such
that𝐻(𝜔) < 0 for𝜔 ∈ (𝜋/2, 𝜔

∗

1

) ⋃(𝜔
∗

2

, 𝜔) and𝐻(𝜔) >

0 for (𝜔
∗

1

, 𝜔
∗

2

).
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Figure 3: The solution curves of (4) with 𝑏 = 750 and 𝑑
1

= 0.5. Correspondingly, (ln 𝑏 − 2)/𝑑
1

= 9.2401464, 𝜏
∗

1

= 0.3271975, and 𝜏
∗

2

=

9.1459110. In (a), we choose 𝜏 = 0.29 < 𝜏
∗

1

, then𝑁
∗

= 6.47507321, which is locally asymptotically stable. In (b), we choose 𝜏 = 1.5 ∈ (𝜏
∗

1

, 𝜏
∗

2

),
then𝑁

∗

= 5.87007321which is unstable, and there is a periodic solution for (4). In (c), we choose 𝜏 = 6.10 ∈ (𝜏
∗

1

, 𝜏
∗

2

), then𝑁
∗

= 3.57007321,
and chaos occurs for (4). In (d), we choose 𝜏 = 6.10 > 𝜏

∗

2

, then 𝑁
∗

= 2.00257321, which is locally asymptotically stable.

For function 𝜔 = 𝜔(𝜏) ∈ (𝜋/2, 𝜋) defined by (16) for
𝜏 ∈ (0, +∞), it is continuous and increasing in the interval
(0, +∞), since it follows from (16) that

𝑑𝜔

𝑑𝜏
= −

1

cot𝜔 − 𝜔 csc2𝜔
> 0 (25)

for 𝜔 ∈ (𝜋/2, 𝜋). And it is easy to know that lim
𝜏→0

+𝜔(𝜏) =

𝜋/2 and lim
𝜏→+∞

𝜔(𝜏) = 𝜋. Further, according to the
properties of function 𝜔 = 𝜔(𝜏) and the definition of 𝜔, for
the given 𝑏 and 𝑑

1

, 𝜔(𝜏) changes from 𝜋/2 to 𝜔 as 𝜏 increases
from 0 to (ln 𝑏 − 2)/𝑑

1

. Since cos𝜔 < 0 for 𝜔 ∈ (𝜋/2, 𝜋), the
signs of functions 𝐻(𝜔) and 1 − (1 − 𝑑

1

𝜔 cot𝜔 − ln 𝑏) cos𝜔

are opposite. Notice that 𝜏 and𝜔(𝜏) satisfy (16), then function
𝐻(𝜔)has the opposite sign to function 1−(1+𝑑

1

𝜏−ln 𝑏) cos𝜔.
Denoting the values of 𝜏 corresponding to 𝜔

∗

1

and 𝜔
∗

2

by 𝜏
∗

1

and 𝜏
∗

2

, respectively, from Theorems 4 and 6 we have the
following results.

Theorem 7. The positive equilibrium 𝑁 = 𝑁
∗ of (4) is

locally asymptotically stable if one of the following conditions
is satisfied:

(i) (ln 𝑏 − 2)/𝑑
1

≤ 𝜏 < ln 𝑏/𝑑
1

;
(ii) 𝜔 ≤ 𝜔

∗ and 0 < 𝜏 < (ln 𝑏 − 2)/𝑑
1

;
(iii) 𝜔 > 𝜔

∗, 𝐻(𝜔
∗

) < 0, and 0 < 𝜏 < (ln 𝑏 − 2)/𝑑
1

;
(iv) 𝜔 > 𝜔

∗, 𝐻(𝜔
∗

) > 0, and 0 < 𝜏 < 𝜏
∗

1

;
(v) 𝜔 > 𝜔

∗, 𝐻(𝜔
∗

) > 0, and 𝜏
∗

2

< 𝜏 < (ln 𝑏 − 2)/𝑑
1

.
The positive equilibrium 𝑁 = 𝑁

∗ of (4) is unstable if 𝜔 >

𝜔
∗, 𝐻(𝜔

∗

) > 0 and 𝜏
∗

1

< 𝜏 < 𝜏
∗

2

.

Additionally, the condition for the existence of the posi-
tive equilibrium 𝑁 = 𝑁

∗ is 𝜏 < ln 𝑏/𝑑
1

, so we can also give
the other kinds of expressions with respect to Theorem 7 in
the following.

Theorem 8. Only if the positive equilibrium 𝑁 = 𝑁
∗ of

(4) exists, it is locally asymptotically stable when one of the
following conditions is satisfied:

(i) 𝑏 ≤ 𝑒
2;

(ii) 𝑏 > 𝑒
2 and 𝜔 ≤ 𝜔

∗;
(iii) 𝑏 > 𝑒

2, 𝜔 > 𝜔
∗, and 𝐻(𝜔

∗

) < 0.



6 Abstract and Applied Analysis

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Figure 4: The bifurcation diagram of the parameter 𝜏 as 𝑏 = 750

and 𝑑
1

= 0.5.

When the positive equilibrium 𝑁 = 𝑁
∗ of (4) exists, with

increasing of 𝜏 its stability can change from stable to unstable
and to stable again when the conditions: 𝑏 > 𝑒

2

, 𝜔 > 𝜔
∗, and

𝐻(𝜔
∗

) > 0 are satisfied. And the change occurs in turn as 𝜏

passes through 𝜏
∗

1

and 𝜏
∗

2

.

Theorem 7 or 8 shows that the stability of the positive
equilibrium 𝑁 = 𝑁

∗ of (4) does not change with variation
of value of 𝜏 as one of the first three conditions in them
is satisfied and that 𝑁 = 𝑁

∗ can undergo the stability
switch with increasing of 𝜏 as 𝜔 > 𝜔

∗ and 𝐻(𝜔
∗

) > 0.
And the stability switch happens at 𝜏 = 𝜏

∗

1

and 𝜏 = 𝜏
∗

2

.
Correspondingly, it can be verified that the Hopf bifurcation
also occurs at 𝜏 = 𝜏

∗

1

and 𝜏 = 𝜏
∗

2

. Numerical simulations
illustrate the existence of periodic solution and chaos as 𝜏 ∈

(𝜏
∗

1

, 𝜏
∗

2

) (Figure 3).
On the other hand, when the parameters 𝜏, 𝑑

1

, and 𝑏 are
used as the bifurcation parameter respectively, the associated
parameter bifurcation diagrams are given in Figures 4, 5, and
6, respectively. They may show the complexity of dynamic
behaviors of model (5), including chaos.

4. Conclusion

In this paper, we first proved the positivity and the ultimate
boundedness of model (1) and obtained the threshold deter-
mining the global stability of the trivial equilibrium and the
existence of the positive equilibrium. Next, the stability of the
positive equilibrium is investigated by means of Pontryagin’s
method, and the necessary and sufficient conditions ensuring
the local stability of the positive equilibrium are obtained.
Lastly, the dependence of stability of the positive equilibrium
on the parameter values is analyzed, and the stability switch
with variation of thematuration time is discussed completely.
Additionally, numerical simulations exhibit that chaos may
occur for certain parameter values and show that the local
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Figure 5: The bifurcation diagram of the parameter 𝑑
1

as 𝑏 = 750

and 𝜏 = 6.1.

asymptotical stability of the positive equilibrium implies its
global stability. These results of numerical simulations need
to be further proved rigorously. On the other hand, in order
to show the dynamic complexity of (1), we also gave the
associated parameter bifurcation diagram.

Appendix

We here introduce a method for determining when the roots
of characteristic equation 𝑃(𝑧, 𝑒

𝑧

) = 0 are in the left half-
plane, where 𝑃(𝑧, 𝑤) is a polynomial in 𝑧, 𝑤. The method is
due to Pontryagin [10], which is referred to as the Pontryagin’s
method.

Suppose that 𝑃(𝑧, 𝑤) is a polynomial in 𝑧, 𝑤,

𝑃 (𝑧, 𝑤) =

𝑟

∑

𝑚=0

𝑠

∑

𝑛=0

𝑎
𝑚𝑛

𝑧
𝑚

𝑤
𝑛

, (A.1)

where 𝑎
𝑟𝑠

𝑧
𝑟

𝑤
𝑠 is called the principal term of the polynomial if

𝑎
𝑟𝑠

̸= 0 and, if, for each other term 𝑎
𝑚𝑛

𝑧
𝑚

𝑤
𝑛 with 𝑎

𝑚𝑛

̸= 0, we
have either 𝑟 > 𝑚, 𝑠 > 𝑛, 𝑟 = 𝑚, 𝑠 > 𝑛, or 𝑟 > 𝑚, 𝑠 = 𝑛. Clearly,
not every polynomial has a principal term.

Theorem 9. Let Δ(𝑧) = 𝑃(𝑧, 𝑒
𝑧

), where 𝑃(𝑧, 𝑤) is a poly-
nomial with principal term. Suppose that Δ(𝑖𝑦), y ∈ R, is
separated into its real and imaginary parts, Δ = 𝐹(𝑦) + 𝑖𝐺(𝑦).
If all zeros of Δ(𝑧) have negative real parts, then the zeros of
𝐹(𝑦) and 𝐺(𝑦) are real, simple, and alternate and

𝐺
󸀠

(𝑦) 𝐹 (𝑦) − 𝐺 (𝑦) 𝐹
󸀠

(𝑦) > 0 (A.2)

for 𝑦 ∈ R. Conversely, all zeros of Δ(𝑧) will be in the left
half-plane provided that either of the following conditions is
satisfied.

(i) All the zeros of 𝐹(𝑦) and 𝐺(𝑦) are real, simple, and
alternate and inequality (A.2) is satisfied for at least
one 𝑦.

(ii) All the zeros of 𝐹(𝑦) are real and, for each zero,
inequality (A.2) is satisfied.
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Figure 6: The bifurcation diagrams of the parameter 𝑏 as 𝑑
1

= 0.6 and 𝜏 = 5.6. Here, corresponding to Figures (a), (b), and (c), the values
of 𝑏 are chosen in three intervals, [180, 260], [420, 470], and [530, 560], respectively. From them we can see that the bifurcation features
corresponding to the different intervals are distinct.

(iii) All the zeros of 𝐺(𝑦) are real and, for each zero,
inequality (A.2) is satisfied.

On the other hand, in order to prove that all the zeros of
𝐹(𝑦) or 𝐺(𝑦) are real, we need the following results. Suppose
that 𝑓(𝑧, 𝑢, V) is a polynomial in 𝑧, 𝑢, V with real coefficients
which has the form

𝑓 (𝑧, 𝑢, V) =

𝑟

∑

𝑚=0

𝑠

∑

𝑛=0

𝑧
𝑚

𝜙
(𝑛)

𝑚

(𝑢, V) , (A.3)

where 𝜙
(𝑛)

𝑚

(𝑢, V) is a homogeneous polynomial of degree 𝑛 in
𝑢, V.The principal term in the polynomial𝑓(𝑧, 𝑢, V) is defined
as the term 𝑧

𝑟

𝜙
(𝑠)

𝑟

(𝑢, V) for which either 𝑟 > 𝑚, 𝑠 > 𝑛,𝑟 = 𝑚,
𝑠 > 𝑛, or 𝑟 > 𝑚, 𝑠 = 𝑛 for all other terms in (A.3).

Let 𝑧
𝑟

𝜙
(𝑠)

𝑟

(𝑢, V) denote the principal term of 𝑓(𝑧, 𝑢, V) in
(A.3); let 𝜙

(𝑠)

∗

(𝑢, V) denote the coefficient of 𝑧
𝑟 in 𝑓(𝑧, 𝑢, V),

𝜙
(𝑠)

∗

(𝑢, V) =

𝑠

∑

𝑛=0

𝜙
(𝑛)

𝑟

(𝑢, V) , (A.4)

and let

Φ
(𝑠)

∗

(𝑧) = 𝜙
(𝑠)

∗

(cos 𝑧, sin 𝑧) . (A.5)

Theorem 10. Let 𝑓(𝑧, 𝑢, V) be a polynomial with principal
term 𝑧

𝑟

𝜙
(𝑠)

𝑟

(𝑢, V). If 𝜀 is such that Φ
(𝑠)

∗

(𝜀 + 𝑖𝑦) ̸= 0, 𝑦 ∈ R,
then, for sufficiently large integers 𝑘, the function 𝐹(𝑧) =

𝑓(𝑧, cos 𝑧, sin 𝑧) will have exactly 4𝑘𝑠 + 𝑟 zeros in the strip
−2𝑘𝜋 + 𝜀 ≤ Re 𝑧 ≤ 2𝑘𝜋 + 𝜀. Conversely, the function 𝐹(𝑧) will
have only real roots if and only if, for sufficiently large integer 𝑘,
it has exactly 4𝑘𝑠+𝑟 roots in the strip−2𝑘𝜋+𝜀 ≤ Re 𝑧 ≤ 2𝑘𝜋+𝜀.
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