
Research Article
A Modified Mixed Ishikawa Iteration for
Common Fixed Points of Two Asymptotically Quasi
Pseudocontractive Type Non-Self-Mappings

Yuanheng Wang and Huimin Shi

Department of Mathematics, Zhejiang Normal University, Zhejiang 321004, China

Correspondence should be addressed to Yuanheng Wang; wangyuanhengmath@163.com

Received 3 January 2014; Accepted 21 February 2014; Published 26 March 2014

Academic Editor: Rudong Chen

Copyright © 2014 Y. Wang and H. Shi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A newmodifiedmixed Ishikawa iterative sequence with error for common fixed points of two asymptotically quasi pseudocontrac-
tive type non-self-mappings is introduced. By the flexible use of the iterative scheme and a new lemma, some strong convergence
theorems are proved under suitable conditions. The results in this paper improve and generalize some existing results.

1. Introduction

Let 𝐸 be a real Banach space with its dual 𝐸∗ and let 𝐶 be a
nonempty, closed, and convex subset of 𝐸. The mapping 𝐽 :

𝐸 → 2
𝐸
∗

is the normalized duality mapping defined by

𝐽 (𝑥) = {𝑥
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖ ⋅
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 , ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩} ,

𝑥 ∈ 𝐸.

(1)

Let 𝑇 : 𝐶 → 𝐸 be a mapping. We denote the fixed point
set of 𝑇 by 𝐹(𝑇); that is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑥 = 𝑇𝑥}. Recall that
a mapping 𝑇 : 𝐶 → 𝐸 is said to be nonexpansive if, for each
𝑥, 𝑦 ∈ 𝐶,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (2)

𝑇 is said to be asymptotically nonexpansive if there exists
a sequence 𝑘

𝑛
⊆ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞ such that

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (3)

A sequence of self-mappings {𝑇
𝑖
}
∞

𝑖=1
on𝐶 is said to be uniform

Lipschitzian with the coefficient 𝐿 if, for any 𝑖 = 1, 2, . . ., the
following holds:

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑖
𝑥 − 𝑇
𝑛

𝑖
𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (4)

𝑇 is said to be asymptotically pseudocontractive if there
exist 𝑘

𝑛
⊆ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞ and 𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦) such that

⟨𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (5)

It is obvious to see that every nonexpansive mapping
is asymptotically nonexpansive and every asymptotically
nonexpansive mapping is asymptotically pseudocontractive.
Goebel and Kirk [1] introduced the class of asymptotically
nonexpansive mappings in 1972. The class of asymptotically
pseudocontractive mappings was introduced by Schu [2]
and has been studied by various authors for its generalized
mappings in Hilbert spaces, Banach spaces, or generalized
topological vector spaces by using the modified Mann or
Ishikawa iteration methods (see, e.g.,[3–21]).

In 2003, Chidume et al. [22] studied fixed points of an
asymptotically nonexpansive non-self-mapping 𝑇 : 𝐶 →

𝐸 and the strong convergence of an iterative sequence {𝑥
𝑛
}

generated by

𝑥
𝑛+1

= 𝑃 ((1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇(𝑃𝑇)

𝑛−1

𝑥
𝑛
) , 𝑛 ≥ 1, 𝑥

1
∈ 𝐶,

(6)

where 𝑃 : 𝐸 → 𝐶 is a nonexpansive retraction.
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In 2011, Zegeye et al. [23] proved a strong convergence of
Ishikawa scheme to a uniformly L-Lipschitzian and asymp-
totically pseudocontractive mappings in the intermediate
sense which satisfies the following inequality (see [24]):

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(⟨𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦, 𝑥 − 𝑦⟩ − 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

) ≤ 0,

∀𝑥, 𝑦 ∈ 𝐶,

(7)

where 𝑘
𝑛
⊆ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞.

Motivated and inspired by the above results, in this
paper, we introduce a new modified mixed Ishikawa iter-
ative sequence with error for common fixed points of two
more generalized asymptotically quasi pseudocontractive
type non-self-mappings. By the flexible use of the iterative
scheme and a new lemma (i.e., Lemma 6 in this paper),
under suitable conditions, we prove some strong convergence
theorems. Our results extend and improve many results of
other authors to a certain extent, such as [6, 8, 14–23].

2. Preliminaries

Definition 1. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸. 𝐶 is said to be a nonexpansive retract
(with 𝑃) of 𝐸 if there exists a nonexpansive mapping 𝑃 :

𝐸 → 𝐶 such that, for all 𝑥 ∈ 𝐶, 𝑃𝑥 = 𝑥. And 𝑃 is called
a nonexpansive retraction.

Let 𝑇 : 𝐶 → 𝐸 be a non-self-mapping (maybe self-
mapping). 𝑇 is called uniformly L-Lipschitzian (with 𝑃) if
there exists a constant 𝐿 > 0 such that
󵄩󵄩󵄩󵄩󵄩
𝑇(𝑃𝑇)

𝑛−1

𝑥 − 𝑇(𝑃𝑇)
𝑛−1

𝑦
󵄩󵄩󵄩󵄩󵄩
≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, 𝑛 ≥ 1.

(8)

𝑇 is said to be asymptotically pseudocontractive (with 𝑃)
if there exist 𝑘

𝑛
⊆ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞ and

∀𝑥, 𝑦 ∈ 𝐶, ∃𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝑇(𝑃𝑇)
𝑛−1

𝑥 − 𝑇(𝑃𝑇)
𝑛−1

𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

. (9)

𝑇 is said to be an asymptotically pseudocontractive type
(with 𝑃) if there exist 𝑘

𝑛
⊆ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞

and ∀𝑥, 𝑦 ∈ 𝐶, 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

lim inf
𝑗(𝑥−𝑦)∈𝐽(𝑥−𝑦)

(⟨𝑇(𝑃𝑇)
𝑛−1

𝑥 − 𝑇(𝑃𝑇)
𝑛−1

𝑦,

𝑗 (𝑥 − 𝑦)⟩ − 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

) ≤ 0.

(10)

𝑇 is said to be an asymptotically quasi pseudocontractive
type (with𝑃) if𝐹(𝑇) ̸= 0, for 𝑝 ∈ 𝐹(𝑇), there exist 𝑘

𝑛
⊆ [1,∞)

with 𝑘
𝑛

→ 1 as 𝑛 → ∞, and, ∀𝑥 ∈ 𝐶, 𝑗(𝑥 − 𝑝) ∈ 𝐽(𝑥 − 𝑝)

such that

lim sup
𝑛→∞

sup
𝑥∈𝐶

lim inf
𝑗(𝑥−𝑝)∈𝐽(𝑥−𝑝)

(⟨𝑇(𝑃𝑇)
𝑛−1

𝑥 − 𝑝, 𝑗 (𝑥 − 𝑦)⟩

− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑝
󵄩󵄩󵄩󵄩

2

) ≤ 0.

(11)

Remark 2. It is clear that every asymptotically pseudocon-
tractive mapping (with 𝑃) is asymptotically pseudocontrac-
tive type (with 𝑃) and every asymptotically pseudocontrac-
tive type (with 𝑃) is asymptotically quasi pseudocontractive
type (with 𝑃). If 𝑇 : 𝐶 → 𝐶 is a self-mapping, then we
can choose 𝑃 = 𝐼 as the identical mapping and we can
get the usual definition of asymptotically pseudocontractive
mapping, and so forth.

Definition 3. Let 𝐶 be a nonexpansive retract (with 𝑃) of
𝐸, let 𝑇

1
, 𝑇
2

: 𝐶 → 𝐸 be two uniformly L-Lipschitzian
non-self-mappings and let 𝑇

1
be an asymptotically quasi

pseudocontractive type (with 𝑃).
The sequence {𝑥

𝑛
} is called the new modified mixed

Ishikawa iterative sequence with error (with 𝑃), if {𝑥
𝑛
} is

generated by

𝑥
𝑛+1

= 𝑃 ((1 − 𝛼
𝑛
− 𝛾
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

× ((1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑦
𝑛
) + 𝛾
𝑛
𝑢
𝑛
) ,

𝑦
𝑛
= 𝑃 ((1 − 𝛼

󸀠

𝑛
− 𝛾
󸀠

𝑛
) 𝑥
𝑛
+ 𝛼
󸀠

𝑛
𝑇
2
(𝑃𝑇
2
)
𝑛−1

× ((1 − 𝛽
󸀠

𝑛
) 𝑥
𝑛
+ 𝛽
󸀠

𝑛
𝑇
2
(𝑃𝑇
2
)
𝑛−1

𝑥
𝑛
) + 𝛾
󸀠

𝑛
V
𝑛
) ,

(12)

where 𝑥
1
∈ 𝐶 is arbitrary, {𝑢

𝑛
} and {V

𝑛
} ⊂ 𝐶 are bounded, and

𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
, 𝛼
󸀠

𝑛
, 𝛽
󸀠

𝑛
, 𝛾
󸀠

𝑛
∈ [0, 1], 𝑛 = 1, 2, . . ..

If 𝛼󸀠
𝑛
= 𝛽
󸀠

𝑛
= 𝛾
󸀠

𝑛
= 0, (12) turns to

𝑥
𝑛+1

= 𝑃 ((1 − 𝛼
𝑛
− 𝛾
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

× ((1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛
) + 𝛾
𝑛
𝑢
𝑛
) ,

(13)

and it is called the new modified mixed Mann iterative
sequence with error (with 𝑃).

If 𝛾
𝑛
= 𝛾
󸀠

𝑛
= 0, (12) becomes

𝑥
𝑛+1

= 𝑃 ( (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

× ((1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑦
𝑛
)) ,

𝑦
𝑛
= 𝑃 ( (1 − 𝛼

󸀠

𝑛
) 𝑥
𝑛
+ 𝛼
󸀠

𝑛
𝑇
2
(𝑃𝑇
2
)
𝑛−1

× ((1 − 𝛽
󸀠

𝑛
) 𝑥
𝑛
+ 𝛽
󸀠

𝑛
𝑇
2
(𝑃𝑇
2
)
𝑛−1

𝑥
𝑛
)) ,

(14)

and it is called the new modified mixed Ishikawa iterative
sequence (with 𝑃).

If 𝛽
𝑛
= 𝛽
󸀠

𝑛
= 0, (14) turns to

𝑥
𝑛+1

= 𝑃 ((1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑦
𝑛
) ,

𝑦
𝑛
= 𝑃 ((1 − 𝛼

󸀠

𝑛
) 𝑥
𝑛
+ 𝛼
󸀠

𝑛
𝑇
2
(𝑃𝑇
2
)
𝑛−1

𝑥
𝑛
) ,

(15)

and it is called the new mixed Ishikawa iterative sequence
(with 𝑃).

If 𝑇
1
= 𝑇
2
= 𝑇 : 𝐶 → 𝐶 is a self-mapping and 𝑃 = 𝐼 is

the identical mapping, then (15) is just the modified Ishikawa
iterative sequence

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
𝑛

𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛼

󸀠

𝑛
) 𝑥
𝑛
+ 𝛼
󸀠

𝑛
𝑇
𝑛

𝑥
𝑛
.

(16)
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If 𝛼󸀠
𝑛
= 0, (15) becomes (6), obviously. So, iterative method

(12) is greatly generalized.
The following lemmas will be needed in what follows to

prove our main results.

Lemma 4 (see [19]). Let 𝐸 be a real Banach space. Then, for
all 𝑥, 𝑦 ∈ 𝐸, 𝑗(𝑥+𝑦) ∈ 𝐽(𝑥+𝑦), the following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑥, 𝑗 (𝑥 + 𝑦)⟩ . (17)

Lemma 5 (see [6, 7]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
} be three sequences of

nonnegative numbers satisfying the recursive inequality:

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
+ 𝑐
𝑛
, ∀𝑛 ≥ 𝑛

0
, (18)

where 𝑛
0
is some nonnegative integer. If Σ∞

𝑛=1
𝑏
𝑛
< ∞, Σ∞

𝑛=1
𝑐
𝑛
<

∞, then lim
𝑛→∞

𝑎
𝑛
exists.

Lemma 6. Suppose that 𝜙 : [0, +∞) → [0, +∞) is a strictly
increasing function with 𝜙(0) = 0. Let {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, {𝜆
𝑛
} (0 ≤

𝜆
𝑛
≤ 1) be four sequences of nonnegative numbers satisfying

the recursive inequality:

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
− 𝜆
𝑛
𝜙 (𝑎
𝑛+1

) + 𝑐
𝑛
, ∀𝑛 ≥ 𝑛

0
, (19)

where 𝑛
0
is some nonnegative integer. If Σ∞

𝑛=1
𝑏
𝑛
< ∞, Σ∞

𝑛=1
𝑐
𝑛
<

∞, Σ∞
𝑛=1

𝜆
𝑛
= ∞, then lim

𝑛→∞
𝑎
𝑛
= 0.

Proof. From (19), we get

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
+ 𝑐
𝑛
, ∀𝑛 ≥ 𝑛

0
. (20)

By Lemma 5, we know that lim
𝑛→∞

𝑎
𝑛
= 𝑎 ≥ 0 exists. Let

𝑀 = sup
1≤𝑛≤∞

{𝑎
𝑛
} < ∞. Now we show 𝑎 = 0. Otherwise, if

𝑎 > 0, then ∃𝑛
1
≥ 𝑛
0
, such that 𝑎

𝑛+1
≥ (1/2)𝑎 > 0 when 𝑛 ≥

𝑛
1
. Because 𝜙 is a strictly increasing function, so 𝜙(𝑎

𝑛+1
) ≥

𝜙((1/2)𝑎) > 0. From (19) again, we have

0 < 𝜙 (
1

2
𝑎)

∞

∑

𝑛=1

𝜆
𝑛

= 𝜙(
1

2
𝑎)

𝑛
1

∑

𝑛=1

𝜆
𝑛
+ 𝜙(

1

2
𝑎)

∞

∑

𝑛=𝑛
1
+1

𝜆
𝑛

≤ 𝜙(
1

2
𝑎)

𝑛
1

∑

𝑛=1

𝜆
𝑛
+

∞

∑

𝑛=𝑛
1
+1

𝜆
𝑛
𝜙 (𝑎
𝑛+1

)

≤ 𝜙 (
1

2
𝑎)

𝑛
1

∑

𝑛=1

𝜆
𝑛
+

∞

∑

𝑛=𝑛
1
+1

(𝑎
𝑛
− 𝑎
𝑛+1

)

+

∞

∑

𝑛=𝑛
1
+1

𝑏
𝑛
𝑎
𝑛
+

∞

∑

𝑛=𝑛
1
+1

𝑐
𝑛

≤ 𝜙(
1

2
𝑎)

𝑛
1

∑

𝑛=1

𝜆
𝑛
+ 𝑎
𝑛
1
+1

+ 𝑀

∞

∑

𝑛=1

𝑏
𝑛
+

∞

∑

𝑛=1

𝑐
𝑛
< ∞.

(21)

This is a contradiction with the given condition Σ
∞

𝑛=1
𝜆
𝑛
= ∞.

Therefore lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 7. Suppose that 𝜙 : [0, +∞) → [0, +∞) is a strictly
increasing function with 𝜙(0) = 0. Let {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, {𝜆
𝑛
} (0 ≤

𝜆
𝑛
≤ 1), {𝜀

𝑛
} be five sequences of nonnegative numbers satisfy-

ing the recursive inequality:

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
− 𝜆
𝑛
𝜙 (𝑎
𝑛+1

) + 𝑐
𝑛
+ 𝜆
𝑛
𝜀
𝑛
, ∀𝑛 ≥ 𝑛

0
,

(22)

where 𝑛
0
is some nonnegative integer. If Σ∞

𝑛=1
𝑏
𝑛
< ∞, Σ∞

𝑛=1
𝑐
𝑛
<

∞, Σ∞
𝑛=1

𝜆
𝑛
= ∞, lim

𝑛→∞
𝜀
𝑛
= 0, then lim

𝑛→∞
𝑎
𝑛
= 0.

Proof. Firstly, we show lim inf
𝑛→∞

𝑎
𝑛
= 𝑎 = 0. If 𝑎 > 0, then,

for arbitrary 𝑟 ∈ (0, 𝑎), ∃𝑛
1

≥ 𝑛
0
, such that 𝑎

𝑛+1
≥ 𝑟 > 0

when 𝑛 ≥ 𝑛
1
. Because 𝜙 is a strictly increasing function and

lim
𝑛→∞

𝜀
𝑛
= 0, so 𝜙(𝑎

𝑛+1
) ≥ 𝜙(𝑟) > 0 and 𝜀

𝑛
≤ (1/2)𝜙(𝑟)

when 𝑛 ≥ 𝑛
1
. From (22), we have

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
− 𝜆
𝑛
𝜙 (𝑎
𝑛+1

) + 𝑐
𝑛
+ 𝜆
𝑛

1

2
𝜙 (𝑎
𝑛+1

)

= (1 + 𝑏
𝑛
) 𝑎
𝑛
−

1

2
𝜆
𝑛
𝜙 (𝑎
𝑛+1

) + 𝑐
𝑛
, ∀𝑛 ≥ 𝑛

1
.

(23)

By Lemma 6, we get 0 = lim
𝑛→∞

𝑎
𝑛
= lim inf

𝑛→∞
𝑎
𝑛
= 𝑎 > 0.

This is contradictory. So, lim inf
𝑛→∞

𝑎
𝑛
= 0.

Secondly, ∀𝜀 > 0, from the given conditions in Lemma 7,
∃𝑛
2
≥ 𝑛
0
, when ∀𝑛 ≥ 𝑛

2
, we have

𝜀
𝑛
≤ 𝜙 (𝜀) ,

∞

∑

𝑛=𝑛
2

𝑏
𝑛
≤ ln 2,

∞

∑

𝑛=𝑛
2

𝑐
𝑛
≤ 𝜀. (24)

On the other hand, since lim inf
𝑛→∞

𝑎
𝑛

= 0, ∃𝑁 ≥ 𝑛
2

such that 𝑎
𝑁

≤ 𝜀. Now we claim

𝑎
𝑘
≤ (𝜀 +

𝑘−1

∑

𝑛=𝑁

𝑐
𝑛
) exp(

𝑘−1

∑

𝑛=𝑁

𝑏
𝑛
) , ∀𝑘 ≥ 𝑁. (25)

In fact, when 𝑘 = 𝑁, (25) holds. Suppose that (25) holds for
𝑘 dose not for 𝑘 + 1. Then

𝑎
𝑘+1

> (𝜀 +

𝑘

∑

𝑛=𝑁

𝑐
𝑛
) exp(

𝑘

∑

𝑛=𝑁

𝑏
𝑛
) . (26)

Furthermore, 𝑎
𝑘+1

> 𝜀, 𝜙(𝑎
𝑘+1

) > 𝜙(𝜀). But by (22), (24), and
the inductive hypothesis, we have

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
− 𝜆
𝑛
𝜙 (𝑎
𝑛+1

) + 𝑐
𝑛
+ 𝜆
𝑛
𝜀
𝑛

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
− 𝜆
𝑛
𝜙 (𝜀) + 𝑐

𝑛
+ 𝜆
𝑛
𝜙 (𝜀)

≤ (1 + 𝑏
𝑛
)(𝜀 +

𝑘−1

∑

𝑛=𝑁

𝑐
𝑛
) exp(

𝑘−1

∑

𝑛=𝑁

𝑏
𝑛
) + 𝑐
𝑛

≤ (𝜀 +

𝑘−1

∑

𝑛=𝑁

𝑐
𝑛
) exp(

𝑘

∑

𝑛=𝑁

𝑏
𝑛
) + 𝑐
𝑛

≤ (𝜀 +

𝑘

∑

𝑛=𝑁

𝑐
𝑛
) exp(

𝑘

∑

𝑛=𝑁

𝑏
𝑛
) .

(27)
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This is a contradiction with (26). So, (25) holds. Whereupon,

lim sup
𝑘→∞

𝑎
𝑘
≤ (𝜀 +

∞

∑

𝑛=𝑁

𝑐
𝑛
) exp(

∞

∑

𝑛=𝑁

𝑏
𝑛
)

≤ 2 (𝜀 + 𝜀) = 4𝜀.

(28)

Therefore, lim sup
𝑘→∞

𝑎
𝑘
= 0 = lim

𝑛→∞
𝑎
𝑛
.

3. Main Results

Now, we are in a position to state and prove the main results
of this paper.

Theorem 8. Let 𝐶 be nonexpansive retract (with 𝑃) of a
real Banach space 𝐸. Assume that 𝑇

1
, 𝑇
2

: 𝐶 → 𝐸 are
two uniformly L-Lipschitzian non-self-mappings (with 𝑃) and
𝑇
1
is an asymptotically quasi pseudocontractive type with

coefficient numbers {𝑘
𝑛
} ⊂ [1, +∞) : 𝑘

𝑛
→ 1 satisfying

𝐹 = 𝐹(𝑇
1
) ∩ 𝐹(𝑇

2
) ̸= 0. Suppose that {𝑢

𝑛
}, {V
𝑛
} ⊂ 𝐶 are two

bounded sequences; {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛼
󸀠

𝑛
}, {𝛽
󸀠

𝑛
}, {𝛾
󸀠

𝑛
} ⊂ [0, 1] are

six number sequences satisfying the following:

(C1) Σ∞
𝑛=1

𝛼
𝑛
= +∞, Σ∞

𝑛=1
𝛼
2

𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
(𝑘
𝑛
− 1) < +∞;

(C2) 𝛼
𝑛
+ 𝛾
𝑛
≤ 1, 𝛼󸀠

𝑛
+ 𝛾
󸀠

𝑛
≤ 1, Σ∞

𝑛=1
𝛾
𝑛
< +∞;

(C3) Σ∞
𝑛=1

𝛼
𝑛
𝛽
𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
𝛼
󸀠

𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
𝛾
󸀠

𝑛
< +∞.

If 𝑥
1
∈ 𝐶 is arbitrary, then the iterative sequence {𝑥

𝑛
} generated

by (12) converges strongly to the fixed point 𝑥∗ ∈ 𝐹 if and only
if there exists a strictly increasing function 𝜙 : [0, +∞) →

[0, +∞) with 𝜙(0) = 0 such that

lim sup
𝑛→∞

inf
𝑗(𝑥𝑛+1−𝑥

∗

)∈𝐽(𝑥𝑛+1−𝑥
∗

)

[⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

,

𝑗 (𝑥
𝑛+1

− 𝑥
∗

) ⟩− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩) ] ≤ 0.

(29)

Proof. (Adequacy). Let

𝜀
󸀠

𝑛
= inf
𝑗(𝑥𝑛+1−𝑥

∗

)∈𝐽(𝑥𝑛+1−𝑥
∗

)

[⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

,

𝑗 (𝑥
𝑛+1

− 𝑥
∗

) ⟩ − 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩) ] ,

𝜀
𝑛
= max {𝜀󸀠

𝑛
, 0} +

1

𝑛
.

(30)

Then there exists 𝑗(𝑥
𝑛+1

− 𝑥
∗

) ∈ 𝐽(𝑥
𝑛+1

− 𝑥
∗

) such that

⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩) ≤ 𝜀
𝑛
.

(31)

From (29), we know that lim sup
𝑛→∞

𝜀
󸀠

𝑛
≤ 0. So, lim

𝑛→∞
𝜀
𝑛
=

0.
Now, from the given conditions and (12), we can let

𝜎
𝑛
= (1 − 𝛽

𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑦
𝑛
,

𝛿
𝑛
= (1 − 𝛽

󸀠

𝑛
) 𝑥
𝑛
+ 𝛽
󸀠

𝑛
𝑇
2
(𝑃𝑇
2
)
𝑛−1

𝑥
𝑛
,

(32)

and𝑀 = sup
𝑛≥1

{‖𝜇
𝑛
− 𝑥
∗

‖, ‖]
𝑛
− 𝑥
∗

‖} < ∞. Then

󵄩󵄩󵄩󵄩𝛿𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝛽

󸀠

𝑛

󵄩󵄩󵄩󵄩𝑇2 (𝑃𝑇2) 𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛽

󸀠

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛽
󸀠

𝑛
𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ;

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

󸀠

𝑛
− 𝛾
󸀠

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
󸀠

𝑛
𝐿
󵄩󵄩󵄩󵄩𝛿𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛾
󸀠

𝑛

󵄩󵄩󵄩󵄩]𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
󸀠

𝑛
𝛽
󸀠

𝑛
𝐿
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
󸀠

𝑛
𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛾
󸀠

𝑛
𝑀

= (1 + 𝛼
󸀠

𝑛
𝛽
󸀠

𝑛
𝐿
2

+ 𝛼
󸀠

𝑛
𝐿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛾

󸀠

𝑛
𝑀

≤ (1 + 𝐿 + 𝐿
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑀;

󵄩󵄩󵄩󵄩𝜎𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝛽

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑦
𝑛
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛
𝐿
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 + 𝐿) (1 + 𝐿 + 𝐿
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 + 𝐿)𝑀;

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 ≤ 𝛼
𝑛
𝐿
󵄩󵄩󵄩󵄩𝜎𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
󸀠

𝑛
𝐿
󵄩󵄩󵄩󵄩𝛿𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
󸀠

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (𝛾
𝑛
+ 𝛾
󸀠

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (𝛾
𝑛
+ 𝛾
󸀠

𝑛
)𝑀

≤ 𝛼
𝑛
𝐿 [(1 + 𝐿) (1 + 𝐿 + 𝐿

2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ (1 + 𝐿)𝑀]

+ 𝛼
󸀠

𝑛
𝐿 [(1 + 𝛽

󸀠

𝑛
𝐿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩]

+ (𝛼
𝑛
+ 𝛼
󸀠

𝑛
+ 𝛾
𝑛
+ 𝛾
󸀠

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (𝛾
𝑛
+ 𝛾
󸀠

𝑛
)𝑀

≤ [𝛼
𝑛
𝐿 (1 + 𝐿) (1 + 𝐿 + 𝐿

2

) + 𝛼
󸀠

𝑛
𝐿 (1 + 𝛽

󸀠

𝑛
𝐿)

+ 𝛼
𝑛
+ 𝛼
󸀠

𝑛
+ 𝛾
𝑛
+ 𝛾
󸀠

𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ (𝛼
𝑛
𝐿 (1 + 𝐿) + 𝛾

𝑛
+ 𝛾
󸀠

𝑛
)𝑀;

󵄩󵄩󵄩󵄩𝜎𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑡

𝑛
,

(33)
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where

𝑠
𝑛
= 𝛼
𝑛
𝐿 (1 + 𝐿) (1 + 𝐿 + 𝐿

2

) + 𝛼
󸀠

𝑛
𝐿 (1 + 𝛽

󸀠

𝑛
𝐿) + 𝛼

𝑛

+ 𝛼
󸀠

𝑛
+ 𝛾
𝑛
+ 𝛾
󸀠

𝑛
+ 𝛽
𝑛
(1 + 𝐿) (1 + 𝐿 + 𝐿

2

) ;

𝑡
𝑛
= [𝛼
𝑛
𝐿 (1 + 𝐿) + 𝛾

𝑛
+ 𝛾
󸀠

𝑛
+ 𝛽
𝑛
(1 + 𝐿)]𝑀.

(34)

So, by Lemma 4,

2𝛼
𝑛
⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝜎
𝑛
− 𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

≤ 2𝛼
𝑛
𝐿
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜎𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩

≤ 2𝛼
𝑛
𝐿
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 [𝑠𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑡
𝑛
] ;

(35)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
− 𝛾
𝑛
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝜎
𝑛
− 𝑥
∗

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

+ 2𝛾
𝑛
⟨𝜇
𝑛
− 𝑥
∗

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

≤ (1 − 𝛼
𝑛
− 𝛾
𝑛
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝜎
𝑛
− 𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

,

𝑗 (𝑥
𝑛+1

− 𝑥
∗

) ⟩

+ 2𝛼
𝑛
⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

+ 2𝛾
𝑛
𝑀

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(36)

For the third in (36), we have

2𝛼
𝑛
⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

= 2𝛼
𝑛
𝑑
𝑛
+ 2𝛼
𝑛
[𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− 𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)]

≤ 2𝛼
𝑛
𝜀
𝑛
+ 2𝛼
𝑛
[𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− 𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩)] ,

(37)

where

𝑑
𝑛
= ⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

, 𝑗 (𝑥
𝑛+1

− 𝑥
∗

)⟩

− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩) ≤ 𝜀
𝑛
.

(38)

Substituting (35) into (36), we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝜀
𝑛

+ 2𝛼
𝑛
𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜙 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩)

+ 2𝛼
𝑛
𝐿 (𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑡

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 2𝛾
𝑛
𝑀

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(39)

Let 𝑎
𝑛
= ‖𝑥
𝑛
− 𝑥
∗

‖
2, 𝜑(𝑡) = 2𝜙(√𝑡), and

𝜉
𝑛
= 𝐿𝛼
𝑛
𝑠
𝑛

= 𝐿
2

𝛼
2

𝑛
(1 + 𝐿) (1 + 𝐿 + 𝐿

2

)

+ 𝛼
𝑛
𝛼
󸀠

𝑛
𝐿
2

(1 + 𝛽
󸀠

𝑛
𝐿) + 𝛼

2

𝑛
𝐿 + 𝛼
𝑛
𝛼
󸀠

𝑛
𝐿 + 𝐿𝛼

𝑛
𝛾
𝑛

+ 𝐿𝛼
𝑛
𝛾
󸀠

𝑛
+ 𝐿𝛼
𝑛
𝛽
𝑛
(1 + 𝐿) (1 + 𝐿 + 𝐿

2

) ,

(40)

𝜌
𝑛
= 𝐿𝛼
𝑛
𝑡
𝑛
+ 𝑀𝛾
𝑛

= [𝛼
2

𝑛
𝐿
2

(1 + 𝐿) + 𝐿𝛼
𝑛
𝛾
𝑛
+ 𝐿𝛼
𝑛
𝛾
󸀠

𝑛
+ 𝛼
𝑛
𝛽
𝑛
(𝐿 + 𝐿

2

)]𝑀

+ 𝛾
𝑛
𝑀.

(41)

Then (39) becomes

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
)
2

𝑎
𝑛
+ 2𝛼
𝑛
𝜀
𝑛
+ 2𝛼
𝑛
𝑘
𝑛
𝑎
𝑛+1

− 𝛼
𝑛
𝜑 (𝑎
𝑛+1

)

+ 2 (𝜉
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝜌

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(42)

By using 2𝑎𝑏 ≤ 𝑎
2

+ 𝑏
2, we have

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
)
2

𝑎
𝑛
+ 2𝛼
𝑛
𝜀
𝑛
+ 2𝛼
𝑛
𝑘
𝑛
𝑎
𝑛+1

− 𝛼
𝑛
𝜑 (𝑎
𝑛+1

) + 𝜉
𝑛
(𝑎
𝑛
+ 𝑎
𝑛+1

) + 𝜌
𝑛
(1 + 𝑎

𝑛+1
)

= (1 − 2𝛼
𝑛
+ 𝛼
2

𝑛
+ 𝜉
𝑛
) 𝑎
𝑛
+ (2𝛼
𝑛
𝑘
𝑛
+ 𝜉
𝑛
+ 𝜌
𝑛
) 𝑎
𝑛+1

− 𝛼
𝑛
𝜑 (𝑎
𝑛+1

) + 2𝛼
𝑛
𝜀
𝑛
+ 𝜌
𝑛
.

(43)

From (40), (41), and the given conditions, we know

∞

∑

𝑛=1

𝛼
2

𝑛
< +∞,

∞

∑

𝑛=1

𝜉
𝑛
< +∞,

∞

∑

𝑛=1

𝜌
𝑛
< +∞. (44)

Then, lim
𝑛→∞

(2𝛼
𝑛
𝑘
𝑛
+ 𝜉
𝑛
+ 𝜌
𝑛
) = 0. Therefore ∃𝑛

0
, when

𝑛 ≥ 𝑛
0
, 2𝛼
𝑛
𝑘
𝑛
+ 𝜉
𝑛
+ 𝜌
𝑛
≤ 1/2. Let

𝑏
𝑛
=

1 − 2𝛼
𝑛
+ 𝛼
2

𝑛
+ 𝜉
𝑛

1 − 2𝛼
𝑛
𝑘
𝑛
− 𝜉
𝑛
− 𝜌
𝑛

− 1 =
2𝛼
𝑛
(𝑘
𝑛
− 1) + 𝛼

2

𝑛
+ 2𝜉
𝑛
+ 𝜌
𝑛

1 − 2𝛼
𝑛
𝑘
𝑛
− 𝜉
𝑛
− 𝜌
𝑛

;

𝑐
𝑛
=

𝜌
𝑛

1 − 2𝛼
𝑛
𝑘
𝑛
− 𝜉
𝑛
− 𝜌
𝑛

.

(45)

So, when 𝑛 ≥ 𝑛
0
, we get

0 ≤ 𝑏
𝑛
≤ 2 [2𝛼

𝑛
(𝑘
𝑛
− 1) + 𝛼

2

𝑛
+ 2𝜉
𝑛
+ 𝜌
𝑛
] , 0 ≤ 𝑐

𝑛
≤ 2𝜌
𝑛
.

(46)

From (44) and the given conditions, we have∑∞
𝑛=𝑛
0

𝑏
𝑛
< +∞,

∑
∞

𝑛=𝑛
0

𝑐
𝑛
< +∞. On the other hand, from (43), we have

𝑎
𝑛+1

≤ (1 + 𝑏
𝑛
) 𝑎
𝑛
− 𝛼
𝑛
𝜑 (𝑎
𝑛+1

) + 4𝛼
𝑛
𝜀
𝑛
+ 𝑐
𝑛
, ∀𝑛 ≥ 𝑛

0
.

(47)
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By Lemma 7, we at last get

lim
𝑛→∞

𝑎
𝑛
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= 0; (48)

for example, lim
𝑛→∞

𝑥
𝑛
= 𝑥
∗

∈ 𝐹 = 𝐹(𝑇
1
) ∩ 𝐹(𝑇

2
).

(Necessity). Suppose that lim
𝑛→∞

𝑥
𝑛
= 𝑥
∗

∈ 𝐹. Then we can
choose an arbitrary continuous strictly increasing function
𝜙 : [0, +∞) → [0, +∞) with 𝜙(0) = 0, such as 𝜙(𝑡) = 𝑡.
We can get lim

𝑛→∞
𝜙(‖𝑥
𝑛+1

− 𝑥
∗

‖) = 0.
Because 𝑇

1
is an asymptotically quasi pseudocontractive

type (with 𝑃), by (11) in Definition 1, for any 𝑝 ∈ 𝐹(𝑇
1
) ⊇ 𝐹,

we have

lim sup
𝑛→∞

sup
𝑥∈𝐶

lim inf
𝑗(𝑥−𝑝)∈𝐽(𝑥−𝑝)

(⟨𝑇(𝑃𝑇)
𝑛−1

𝑥 − 𝑝, 𝑗 (𝑥 − 𝑦)⟩

− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑝
󵄩󵄩󵄩󵄩

2

) ≤ 0.

(49)

So,

lim sup
𝑛→∞

inf
𝑗(𝑥𝑛+1−𝑥

∗

)∈𝐽(𝑥𝑛+1−𝑥
∗

)

[⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

,

𝑗 (𝑥
𝑛+1

− 𝑥
∗

) ⟩− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1− 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩) ]

= lim sup
𝑛→∞

inf
𝑗(𝑥𝑛+1−𝑥

∗

)∈𝐽(𝑥𝑛+1−𝑥
∗

)

[⟨𝑇
1
(𝑃𝑇
1
)
𝑛−1

𝑥
𝑛+1

− 𝑥
∗

,

𝑗 (𝑥
𝑛+1

− 𝑥
∗

) ⟩

− 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

]

+ lim
𝑛→∞

𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩) ≤ 0 + 0 = 0;

(50)

that is, (29) holds.This completes the proof ofTheorem8.

Combining with Theorem 8 and Definition 3, we have
some results as follows.

Theorem 9. Let 𝐶 be nonexpansive retract (with 𝑃) of a real
Banach space 𝐸. Assume that 𝑇

1
, 𝑇
2

: 𝐶 → 𝐸 are two
uniformly L-Lipschitzian non-self-mappings (with 𝑃) and 𝑇

1
is

an asymptotically quasi pseudocontractive type with coefficient
numbers {𝑘

𝑛
} ⊂ [1, +∞) : 𝑘

𝑛
→ 1 satisfying 𝐹 = 𝐹(𝑇

1
) ∩

𝐹(𝑇
2
) ̸= 0. Suppose that {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛼
󸀠

𝑛
}, {𝛽
󸀠

𝑛
} ⊂ [0, 1] are four

number sequences satisfying the following:

(C1) Σ∞
𝑛=1

𝛼
𝑛
= +∞, Σ∞

𝑛=1
𝛼
2

𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
(𝑘
𝑛
− 1) < +∞;

(C2) Σ∞
𝑛=1

𝛼
𝑛
𝛽
𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
𝛼
󸀠

𝑛
< +∞.

If 𝑥
1
∈ 𝐶 is arbitrary, then the iterative sequence {𝑥

𝑛
} generated

by (14) converges strongly to the fixed point 𝑥∗ ∈ 𝐹 if and only
if there exists a strictly increasing function 𝜙 : [0, +∞) →

[0, +∞) with 𝜙(0) = 0 such that (29) holds.

Theorem 10. Let 𝐶 be nonexpansive retract (with 𝑃) of a real
Banach space 𝐸. Assume that 𝑇

1
, 𝑇
2

: 𝐶 → 𝐸 are two

uniformly L-Lipschitzian non-self-mappings (with 𝑃) and 𝑇
1
is

an asymptotically quasi pseudocontractive type with coefficient
numbers {𝑘

𝑛
} ⊂ [1, +∞) : 𝑘

𝑛
→ 1 satisfying 𝐹 = 𝐹(𝑇

1
) ∩

𝐹(𝑇
2
) ̸= 0. Suppose that {𝛼

𝑛
}, {𝛼
󸀠

𝑛
} ⊂ [0, 1] are two number

sequences satisfying the following:

(C1) Σ∞
𝑛=1

𝛼
𝑛
= +∞, Σ∞

𝑛=1
𝛼
2

𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
(𝑘
𝑛
− 1) < +∞;

(C2) Σ∞
𝑛=1

𝛼
𝑛
𝛼
󸀠

𝑛
< +∞.

If 𝑥
1
∈ 𝐶 is arbitrary, then the iterative sequence {𝑥

𝑛
} generated

by (15) converges strongly to the fixed point 𝑥∗ ∈ 𝐹 if and only
if there exists a strictly increasing function 𝜙 : [0, +∞) →

[0, +∞) with 𝜙(0) = 0 such that (29) holds.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸. Assume that 𝑇 : 𝐶 → 𝐶 is uniformly
L-Lipschitzian self-mappings and asymptotically quasi pseudo-
contractive type with coefficient numbers {𝑘

𝑛
} ⊂ [1, +∞) :

𝑘
𝑛

→ 1 satisfying 𝐹 = 𝐹(𝑇) ̸= 0. Suppose that {𝛼
𝑛
}, {𝛼
󸀠

𝑛
} ⊂

[0, 1] are two number sequences satisfying the following:

(C1) Σ∞
𝑛=1

𝛼
𝑛
= +∞, Σ∞

𝑛=1
𝛼
2

𝑛
< +∞, Σ∞

𝑛=1
𝛼
𝑛
(𝑘
𝑛
− 1) < +∞;

(C2) Σ∞
𝑛=1

𝛼
𝑛
𝛼
󸀠

𝑛
< +∞.

If 𝑥
1
∈ 𝐶 is arbitrary, then the iterative sequence {𝑥

𝑛
} generated

by (16) converges strongly to the fixed point 𝑥∗ ∈ 𝐹 if and only
if there exists a strictly increasing function 𝜙 : [0, +∞) →

[0, +∞) with 𝜙(0) = 0 such that (29) holds.

Remark 12. Our research and results in this paper have the
following several advantaged characteristics. (a)The iterative
scheme is the new modified mixed Ishikawa iterative scheme
with error on two mappings 𝑇

1
, 𝑇
2
. (b) The common fixed

point 𝑥
∗

∈ 𝐹 = 𝐹(𝑇
1
) ∩ 𝐹(𝑇

2
) is studied. (c) The

research object is the very generalized asymptotically quasi
pseudocontractive type (with 𝑃) non-self-mapping. (d) The
tool used by us is the very powerful tool: Lemma 7. So,
our results here extend and improve many results of other
authors to a certain extent, such as [6, 8, 14–23], and the proof
methods are very different from the previous.
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