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LetA and B be two nonempty subsets of a Banach spaceX. Amapping T :𝐴∪𝐵 → 𝐴∪𝐵 is said to be cyclic relatively nonexpansive
if T(A) ⊆ 𝐵 and T(B) ⊆ 𝐴 and ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all (𝑥,𝑦) ∈ 𝐴 × 𝐵. In this paper, we introduce a geometric notion of
seminormal structure on a nonempty, bounded, closed, and convex pair of subsets of a Banach spaceX. It is shown that if (A, B) is a
nonempty, weakly compact, and convex pair and (A, B) has seminormal structure, then a cyclic relatively nonexpansive mapping T
: 𝐴∪𝐵 → 𝐴∪𝐵 has a fixed point. We also discuss stability of fixed points by using the geometric notion of seminormal structure.
In the last section, we discuss sufficient conditions which ensure the existence of best proximity points for cyclic contractive type
mappings.

1. Introduction

Let 𝑋 be a Banach space and 𝐶 ⊆ 𝑋. Recall that a mapping
𝑇 : 𝐶 → 𝐶 is nonexpansive provided that ‖𝑇𝑥−𝑇𝑦‖ ≤ ‖𝑥−𝑦‖

for all 𝑥, 𝑦 ∈ 𝐶. A closed convex subset𝐶 of a Banach space𝑋
has normal structure in the sense of Brodskii and Milman [1]
if for each bounded, closed, and convex subset 𝐷 of 𝐶 which
contains more than one point, there exists a point 𝑥 ∈ 𝐷

which is not a diametral point; that is,

sup {
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐷} < diam (𝐷) , (1)

where diam(𝐷) is the diameter of𝐷. The set 𝐶 is said to have
fixed point property (FPP) if every nonexpansivemapping𝑇 :

𝐶 → 𝐶 has a fixed point. In 1965, Kirk proved the following
famous fixed theorem.

Theorem 1 (see [2]). Let 𝐶 be a nonempty, weakly compact,
and convex subset of a Banach space 𝑋. If 𝐶 has normal
structure, then 𝐶 has the FPP.

We mention that every compact and convex subset of a
Banach space 𝑋 has normal structure (see [3]) and so has
the FPP.Moreover, every bounded, closed, and convex subset
of a uniformly convex Banach space 𝑋 has normal structure

(see [4]) and then by Theorem 1 has the FPP. It is interesting
to note that there exists a weakly compact and convex subset
𝐶 of 𝐿1[0, 1] which does not have the fixed point property
(see [5] for more information). In particular, 𝐶 cannot have
normal structure.

In the current paper, we introduce a geometric notion
of seminormal structure on a nonempty, closed, and convex
pair of subsets of a Banach space 𝑋 and present a new fixed
point theorem which is an extension of Kirk’s fixed point
theorem. We also study the stability of fixed points by using
this geometric property. Finally, we establish a best proximity
point theorem for a new class of mappings.

2. Preliminaries

In [6], Kirk et al. obtained an interesting extension of Banach
contraction principle as follows.

Theorem 2 (see [6]). Let 𝐴 and 𝐵 be nonempty closed subsets
of a complete metric space (𝑋, 𝑑). Suppose that 𝑇 : 𝐴 ∪ 𝐵 →

𝐴 ∪ 𝐵 is a cyclic mapping, that is, 𝑇(𝐴) ⊆ 𝐵 and 𝑇(𝐵) ⊆ 𝐴. If

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝑥, 𝑦) , (2)
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for some 𝛼 ∈ (0, 1) and for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑇 has a unique
fixed point in 𝐴 ∩ 𝐵.

An interesting feature about the above observation is that
continuity of 𝑇 is no longer needed. Indeed, simple examples
can be constructed showing that discontinuousmappings can
satisfy all the assumptions.

Let 𝐴 and 𝐵 be two nonempty subsets of a normed linear
space 𝑋. A mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said to be
cyclic relatively nonexpansive if 𝑇 is cyclic and ‖𝑇𝑥 − 𝑇𝑦‖ ≤

‖𝑥 − 𝑦‖ whenever 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. It is clear that the
class of cyclic relatively nonexpansive mappings contains the
class of nonexpansivemappings as a subclass. Indeed, a cyclic
relatively nonexpansive mapping need not to be continuous
in general. Of course, if 𝐴 ∩ 𝐵 ̸= 0, then the cyclic relatively
nonexpansive mapping 𝑇 restricted to𝐴∩𝐵 is nonexpansive.
If 𝐴 ∩ 𝐵 = 0 then the fixed point equation 𝑇𝑥 = 𝑥 cannot
have a solution; instead it is interesting to study the existence
of best proximity points; that is, a point 𝑝 ∈ 𝐴 ∪ 𝐵 such that
󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑝

󵄩󵄩󵄩󵄩 = dist (𝐴, 𝐵) := inf {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} . (3)

The relevance of best proximity points is that they provide
optimal solutions for the problem of best approximation
between two sets. Existence of best proximity points for
cyclic relatively nonexpansive mappings was first studied
in [7]. Afterwards, Eldred and Veeramani [8] studied the
existence, uniqueness, and convergence of a best proximity
point for cyclic contraction mappings in uniformly convex
Banach spaces. For more information about the existence of
best proximity points for various classes of cyclic mappings
one can refer to [5, 9–22]. For other related results, we refer
to [23, 24].

To describe our results, we need some definitions and
notations. We shall say that a pair (𝐴, 𝐵) of subsets of a
Banach space 𝑋 satisfies a property if both 𝐴 and 𝐵 satisfy
that property. For example, (𝐴, 𝐵) is convex if and only if both
𝐴 and 𝐵 are convex, (𝐴, 𝐵) ⊆ (𝐶,𝐷) ⇔ 𝐴 ⊆ 𝐶, and 𝐵 ⊆ 𝐷.
We will also adopt the notation

𝛿
𝑥
(𝐴) = sup {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐴} ∀𝑥 ∈ 𝑋,

𝛿 (𝐴, 𝐵) = sup {𝛿
𝑥
(𝐵) : 𝑥 ∈ 𝐴} ,

diam (𝐴) = 𝛿 (𝐴, 𝐴) ,

Ω
𝐴
(𝐵) = inf {𝛿

𝑥
(𝐵) : 𝑥 ∈ 𝐴} ,

Ω (𝐴, 𝐵) = max {Ω
𝐴
(𝐵) , Ω

𝐵
(𝐴)} ,

C
𝐴
(𝐵) = {𝑥 ∈ 𝐴 : 𝛿

𝑥
(𝐵) = Ω

𝐴
(𝐵)} .

(4)

The closed and convex hull of a set 𝐴 will be denoted by
con(𝐴). Given (𝐴, 𝐵) a pair of nonempty subsets of a Banach
space, then its proximal pair is the pair (𝐴

0
, 𝐵
0
) given by

𝐴
0
= {𝑥 ∈ 𝐴 :

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑦
󸀠󵄩󵄩󵄩󵄩󵄩

= dist (𝐴, 𝐵) for some 𝑦
󸀠
∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 :

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠
− 𝑦

󵄩󵄩󵄩󵄩󵄩
= dist (𝐴, 𝐵) for some 𝑥

󸀠
∈ 𝐴} .

(5)

Proximal pairs may be empty but, in particular, if 𝐴 and 𝐵

are nonempty weakly compact and convex then (𝐴
0
, 𝐵
0
) is a

nonempty weakly compact convex pair in𝑋.

Definition 3. A pair of sets (𝐴, 𝐵) is said to be proximal if𝐴 =

𝐴
0
and 𝐵 = 𝐵

0
.

In [7], Eldred et al. introduced a geometric concept called
proximal normal structure which generalizes the notion of
normal structure introduced by Brodskii and Milman [1].

Definition 4. A convex pair (𝐾
1
, 𝐾
2
) in a Banach space 𝑋 is

said to have proximal normal structure if for any bounded,
closed, and convex proximal pair (𝐻

1
, 𝐻
2
) ⊆ (𝐾

1
, 𝐾
2
)

for which dist(𝐻
1
, 𝐻
2
) = dist(𝐾

1
, 𝐾
2
) and 𝛿(𝐻

1
, 𝐻
2
) >

dist(𝐻
1
, 𝐻
2
), there exits (𝑥

1
, 𝑥
2
) ∈ 𝐻
1
× 𝐻
2
such that

𝛿
𝑥
1

(𝐻
2
) < 𝛿 (𝐻

1
, 𝐻
2
) ,

𝛿
𝑥
2

(𝐻
1
) < 𝛿 (𝐻

1
, 𝐻
2
) .

(6)

It was announced in [7] that every nonempty, bounded,
closed, and convex pair of subsets of a uniformly con-
vex Banach space 𝑋 has proximal normal structure (see
Proposition 2.1 of [7]). We mention that a weaker notion
than proximal normal structure which is called proximal
quasinormal structure was introduced in [25] in order to
study the existence of best proximity points for cyclic relatively
Kannan nonexpansive mappings.

The next best proximity point theorem was established in
[7].

Theorem 5 (see [7]). Let (𝐴, 𝐵) be a nonempty, weakly com-
pact convex pair in a Banach space 𝑋, and suppose (𝐴, 𝐵) has
proximal normal structure. Assume that 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵

is a cyclic relatively nonexpansive mapping. Then 𝑇 has a best
proximity point in both𝐴 and 𝐵, that is, there exists (𝑥∗, 𝑦∗) ∈
𝐴 × 𝐵 such that ‖𝑥∗ − 𝑇𝑥

∗
‖ = ‖𝑇𝑦

∗
− 𝑦
∗
‖ = dist(𝐴, 𝐵).

As a result of Theorem 5, the following corollary was
obtained in [7].

Corollary 6. Let (𝐴, 𝐵) be a nonempty, bounded, closed, and
convex pair in a uniformly convex Banach space 𝑋 and let 𝑇 :

𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a cyclic relatively nonexpansive mapping.
Then 𝑇 has a best proximity point.

3. Seminormal Structure and
a Fixed Point Theorem

In this sectionmotivated byTheorem 2,we prove a fixed point
theorem for cyclic relatively nonexpansive mappings which
is an extension ofTheorem 1 due to Kirk. We begin our main
result with the following geometric notion.

Definition 7. A convex pair (𝐴, 𝐵) in a Banach space𝑋 is said
to have seminormal structure if for any bounded, closed and



Abstract and Applied Analysis 3

convex pair (𝐾
1
, 𝐾
2
) ⊆ (𝐴, 𝐵) with 𝛿(𝐾

1
, 𝐾
2
) > 0, there exits

(𝑝, 𝑞) ∈ 𝐾
1
× 𝐾
2
such that

max {𝛿
𝑝
(𝐾
2
) , 𝛿
𝑞
(𝐾
1
)} < 𝛿 (𝐾

1
, 𝐾
2
) . (7)

We note that the pair (𝐴, 𝐴) has seminormal structure if
and only if 𝐴 has normal structure in the sense of Brodskii
and Milman.

Here, we state the main result of this section.

Theorem 8. Let (𝐴, 𝐵) be a nonempty, weakly compact, and
convex pair in a Banach space 𝑋, and suppose (𝐴, 𝐵) has
seminormal structure. Assume that 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is
a cyclic relatively nonexpansive mapping. Then 𝑇 has a fixed
point.

Proof. Let F denote the collection of all nonempty, closed,
and convex pairs (𝐸, 𝐹) ⊆ (𝐴, 𝐵) such that𝑇 is cyclic on𝐸∪𝐹.
Since (𝐴, 𝐵) is a weakly compact and convex pair in 𝑋, the
pair (𝐴

0
, 𝐵
0
) is also nonempty, closed, and convex pair in 𝑋.

Moreover, 𝑇 is cyclic on𝐴
0
∪𝐵
0
. Indeed, if 𝑥 ∈ 𝐴

0
then there

exists an element 𝑦 ∈ 𝐵
0
such that ‖𝑥 − 𝑦‖ = dist(𝐴, 𝐵). By

the fact that 𝑇 is cyclic relatively nonexpansive, we have

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = dist (𝐴, 𝐵) , (8)

that is, 𝑇𝑥 ∈ 𝐵
0
and so, 𝑇(𝐴

0
) ⊆ 𝐵
0
. Similarly, we can see that

𝑇(𝐵
0
) ⊆ 𝐴

0
. Thus, (𝐴

0
, 𝐵
0
) ∈ F and then F is nonempty.

It follows from Zorn’s lemma thatF has a minimal element,
say (𝐾

1
, 𝐾
2
). Since 𝑇(𝐾

1
) ⊆ 𝐾

2
, we have con(𝑇(𝐾

1
)) ⊆ 𝐾

2

and so,

𝑇 (con (𝑇 (𝐾
1
))) ⊆ 𝑇 (𝐾

2
) ⊆ con (𝑇 (𝐾

2
)) . (9)

Similarly, 𝑇(con(𝑇(𝐾
2
))) ⊆ con(𝑇(𝐾

1
)); that is, 𝑇 is cyclic on

con(𝑇(𝐾
2
)) ∪ con(𝑇(𝐾

1
)). Minimality of (𝐾

1
, 𝐾
2
) concludes

that

con (𝑇 (𝐾
2
)) = 𝐾

1
,

con (𝑇 (𝐾
1
)) = 𝐾

2
.

(10)

Observe that if 𝛿(𝐾
1
, 𝐾
2
) = 0, then we must have 𝐾

1
= 𝐾
2
=

{𝑥
⋆
} for some 𝑥

⋆
∈ 𝐴 ∪ 𝐵 and so, 𝑥⋆ is a fixed point of 𝑇

and we are finished. So, we may assume that 𝛿(𝐾
1
, 𝐾
2
) > 0.

By seminormal structure there exist (𝑝, 𝑞) ∈ 𝐾
1
× 𝐾
2
and

𝑟 ∈ (0, 1) such that

max {𝛿
𝑝
(𝐾
2
) , 𝛿
𝑞
(𝐾
1
)} ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
) . (11)

Put

𝐻
1
:= {𝑢 ∈ 𝐾

1
: 𝛿
𝑢
(𝐾
2
) ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
)} ,

𝐻
2
:= {V ∈ 𝐾

2
: 𝛿V (𝐾1) ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
)} .

(12)

Note that (𝑝, 𝑞) ∈ 𝐻
1
×𝐻
2
. We show that (𝐻

1
, 𝐻
2
) is a closed

and convex pair in 𝑋. Let {𝑢
𝑛
} be a sequence in 𝐻

1
such that

𝑢
𝑛

→ 𝑢. Then for each 𝜀 > 0 there exists 𝑁 ∈ N such that

‖𝑢
𝑛
− 𝑢‖ < 𝜀 for all 𝑛 ≥ 𝑁. Since 𝐾

1
is closed, 𝑢 ∈ 𝐾

1
. Let

𝑦 ∈ 𝐾
2
. For all 𝑛 ≥ 𝑁 we have

󵄩󵄩󵄩󵄩𝑢 − 𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 + 𝛿
𝑢
𝑛

(𝐾
2
)

≤
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 + 𝑟𝛿 (𝐾
1
, 𝐾
2
)

< 𝜀 + 𝑟𝛿 (𝐾
1
, 𝐾
2
) ,

(13)

which implies that 𝛿
𝑢
(𝐾
2
) ≤ 𝑟𝛿(𝐾

1
, 𝐾
2
). Hence, 𝑢 ∈ 𝐻

1
.

Thereby, 𝐻
1
is closed. Similarly, we can see that 𝐻

2
is closed.

Now, let 𝑢
1
, 𝑢
2
∈ 𝐻
1
and 𝜆 ∈ [0, 1]. For all 𝑦 ∈ 𝐾

2
we have

󵄩󵄩󵄩󵄩𝜆𝑢1 + (1 − 𝜆) 𝑢
2
− 𝑦

󵄩󵄩󵄩󵄩

≤ 𝜆
󵄩󵄩󵄩󵄩𝑢1 − 𝑦

󵄩󵄩󵄩󵄩 + (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑢2 − 𝑦

󵄩󵄩󵄩󵄩

≤ 𝜆𝛿
𝑢
1

(𝐾
2
) + (1 − 𝜆) 𝛿

𝑢
2

(𝐾
2
)

≤ 𝜆𝑟𝛿 (𝐾
1
, 𝐾
2
) + (1 − 𝜆) 𝑟𝛿 (𝐾

1
, 𝐾
2
)

= 𝑟𝛿 (𝐾
1
, 𝐾
2
) .

(14)

Therefore, 𝛿
𝜆𝑢
1
+(1−𝜆)𝑢

2

(𝐾
2
) ≤ 𝑟𝛿(𝐾

1
, 𝐾
2
) which deduces that

𝜆𝑢
1
+ (1 − 𝜆)𝑢

2
∈ 𝐻
1
. Hence, 𝐻

1
is convex. Similarly, 𝐻

2
is

also convex. We assert that 𝑇 is cyclic on 𝐻
1
∪ 𝐻
2
. Suppose

that 𝑢 ∈ 𝐻
1
. Let 𝑥 ∈ 𝐾

1
and 𝜀 > 0. Since con(𝑇(𝐾

2
)) is dense

in𝐾
1
, there exists∑𝑗

𝑖=1
𝛼
𝑖
𝑇𝑦
𝑖
such that∑𝑗

𝑖=1
𝛼
𝑖
= 1, 0 ≤ 𝛼

𝑖
and

𝑦
𝑖
∈ 𝐾
2
for all 𝑖 = 1, 2, . . . , 𝑗 and ‖∑

𝑗

𝑖=1
𝛼
𝑖
𝑇𝑦
𝑖
− 𝑥‖ < 𝜀. We

have

‖𝑇𝑢 − 𝑥‖ ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇𝑢 −

𝑗

∑

𝑖=1

𝛼
𝑖
𝑇𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑗

∑

𝑖=1

𝛼
𝑖
𝑇𝑦
𝑖
− 𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

<

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑗

∑

𝑖=1

𝛼
𝑖
𝑇𝑢 −

𝑗

∑

𝑖=1

𝛼
𝑖
𝑇𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝜀 ≤

𝑗

∑

𝑖=1

𝛼
𝑖

󵄩󵄩󵄩󵄩𝑢 − 𝑦
𝑖

󵄩󵄩󵄩󵄩 + 𝜀

≤

𝑗

∑

𝑖=1

𝛼
𝑖
𝛿
𝑢
(𝐾
2
) + 𝜀 ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
) + 𝜀.

(15)

This implies that 𝛿
𝑇𝑢

(𝐾
1
) ≤ 𝑟𝛿(𝐾

1
, 𝐾
2
) and thus, 𝑇𝑢 ∈

𝐻
2
. That is, 𝑇(𝐻

1
) ⊆ 𝐻

2
. Similar argument concludes that

𝑇(𝐻
2
) ⊆ 𝐻

1
and so, 𝑇 is cyclic on 𝐻

1
∪ 𝐻
2
. Again, by the

minimality of (𝐾
1
, 𝐾
2
) we obtain 𝐻

1
= 𝐾
1
and 𝐻

2
= 𝐾
2
.

Hence, for each 𝑢 ∈ 𝐾
1
we have 𝛿

𝑢
(𝐾
2
) ≤ 𝑟𝛿(𝐾

1
, 𝐾
2
). Thus,

𝛿 (𝐾
1
, 𝐾
2
) = sup
𝑢∈𝐾
1

𝛿
𝑢
(𝐾
2
) ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
) , (16)

which is a contradiction.

In what follows, we give a sufficient condition which
ensures that every nonempty, bounded, closed, and convex
pair of subsets of a uniformly convex Banach space has
seminormal structure.

Definition 9. A nonempty, bounded, closed, and convex pair
(𝐴, 𝐵) of a normed linear space is said to have property (𝐷)
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provided that for each nonempty, closed, and convex pair
(𝐸, 𝐹) ⊆ (𝐴, 𝐵) we have

min {diam (𝐸) , diam (𝐹)} ≤ 𝛿 (𝐸, 𝐹) . (17)

Example 10. Let (𝐴, 𝐵) be a nonempty, bounded, closed, and
convex pair in a normed linear space such that

min {diam (𝐴) , diam (𝐵)} ≤ dist (𝐴, 𝐵) . (18)

Then (𝐴, 𝐵) has the (𝐷) property.

Proof. Suppose that (𝐸, 𝐹) ⊆ (𝐴, 𝐵) is a nonempty, closed, and
convex pair. Then we have

min {diam (𝐸) , diam (𝐹)}

≤ min {diam (𝐴) , diam (𝐵)}

≤ dist (𝐴, 𝐵) ≤ dist (𝐸, 𝐹) ≤ 𝛿 (𝐸, 𝐹) ;

(19)

that is, (𝐴, 𝐵) has the property (𝐷).

Let𝑋 be a uniformly convex Banach space with modulus
of convexity 𝛿. Then 𝛿(𝜀) > 0 for 𝜀 > 0. Moreover, if 𝑥, 𝑦, 𝑧 ∈

𝑋, 𝑅 > 0, and 𝑟 ∈ [0, 2𝑅] we have

{{

{{

{

‖𝑥 − 𝑧‖ ≤ 𝑅,

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 ≤ 𝑅 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2
− 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝛿 (

𝑟

𝑅
))𝑅.

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≥ 𝑟

(20)

Motivated by the fact that every nonempty, bounded, closed,
and convex subset of a uniformly convex Banach space 𝑋

has normal structure, we establish the following result con-
cerning seminormal structure in uniformly convex Banach
spaces.

Proposition 11. Let (𝐴, 𝐵) be a nonempty, bounded, closed,
and convex pair in a uniformly convex Banach space 𝑋 such
that (𝐴, 𝐵) has the property (𝐷). Then (𝐴, 𝐵) has seminormal
structure.

Proof. Let (𝐾
1
, 𝐾
2
) ⊆ (𝐴, 𝐵) be a nonempty, closed,

and convex pair. Put, 𝑅 := 𝛿(𝐾
1
, 𝐾
2
) and 𝑟 :=

min{diam(𝐾
1
), diam(𝐾

2
)}. Since (𝐴, 𝐵) has the property (𝐷),

we have 𝑟 ≤ 𝑅. There exists 𝑥
1
, 𝑥
2
∈ 𝐾
1
such that ‖𝑥

1
− 𝑥
2
‖ ≥

(1/2) diam(𝐾
1
). Now, for each 𝑦 ∈ 𝐾

2
we have

󵄩󵄩󵄩󵄩𝑥1 − 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑅,

󵄩󵄩󵄩󵄩𝑥2 − 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑅,

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
2

󵄩󵄩󵄩󵄩 ≥
1

2
𝑟.

(21)

It follows from the uniformly convexity of the Banach space
𝑋 that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 −

𝑥
1
+ 𝑥
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝛿(

(1/2) 𝑟

𝑅
))𝑅. (22)

If we set 𝑐 := 𝛿((1/2)𝑟/𝑅) and 𝑝 := (𝑥
1
+ 𝑥
2
)/2 ∈ 𝐾

1
, then

for each 𝑦 ∈ 𝐾
2
we have ‖𝑦 − 𝑝‖ ≤ 𝑐𝑅 which concludes that

𝛿
𝑝
(𝐾
2
) ≤ 𝑐𝑅 < 𝑅. Similar argument implies that there exists

an element 𝑞 ∈ 𝐾
2
such that 𝛿

𝑞
(𝐾
1
) < 𝑅, which completes the

proof.

The following corollary obtains from Theorem 8 and
Proposition 11, immediately.

Corollary 12. Let (𝐴, 𝐵) be a nonempty, bounded, closed, and
convex pair in a uniformly convex Banach space 𝑋 such that
(𝐴, 𝐵) has the property (𝐷). Assume that 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵

is a cyclic relatively nonexpansive mapping. Then 𝑇 has a fixed
point.

It is interesting to note that by admitting property (𝐷)

to the assumptions of Corollary 6, we conclude the existence
of fixed points for cyclic relatively nonexpansive mappings
instead of the existence of best proximity points. Here, we
raise the following question.

Question 1. It is interesting to ask whether one considers a
better condition than the property (𝐷) in Corollary 12 such
that the cyclic relatively nonexpansive mapping 𝑇 has a fixed
point.

Example 13. Let us consider𝑋 = Rwith the usual metric. Let
𝐴 := [−1, 0] and 𝐵 := [0, 1]. Define 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 by

𝑇 (𝑥) =

{{{{{

{{{{{

{

𝑥 + 1 if 𝑥 ∈ 𝐴 ∩ [−1, −
1

2
]

−
𝑥

2
if 𝑥 ∈ 𝐴 ∩ (−

1

2
, 0]

−𝑥 if 𝑥 ∈ 𝐵.

(23)

We claim that𝑇 is cyclic relatively nonexpansive. In this order,
we consider the following two cases.

Case 1. If 𝑥 ∈ 𝐴 ∩ [−1, −1/2] and 𝑦 ∈ 𝐵, then
󵄨󵄨󵄨󵄨𝑇𝑥 − 𝑇𝑦

󵄨󵄨󵄨󵄨 = 𝑥 + 1 + 𝑦 ≤ 𝑦 − 𝑥 =
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 . (24)

Case 2. If 𝑥 ∈ 𝐴 ∩ (−1/2, 0] and 𝑦 ∈ 𝐵, then

󵄨󵄨󵄨󵄨𝑇𝑥 − 𝑇𝑦
󵄨󵄨󵄨󵄨 = 𝑦 −

𝑥

2
≤ 𝑦 − 𝑥 =

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 . (25)

Thus, 𝑇 is a cyclic relatively nonexpansive mapping.
Corollary 12 guarantees the existence of fixed point for the
mapping 𝑇 which is a point 𝑥⋆ = 0. It is interesting to note
that the existence of a fixed point for the mapping 𝑇 cannot
be obtained from Theorem 1 due to Kirk because 𝑇 is not
continuous.

In 1974, Lim proved the following common fixed point
theorem.

Theorem 11 (see [26]). Let𝐾 be a nonempty, weakly compact,
and convex subset of a Banach space𝑋. If𝐾 has normal struc-
ture, then any family of commuting nonexpansive mappings on
𝐾 into itself admits a common fixed point.
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The following result is a generalized version of Lim’s
theorem.

Theorem 12. Let (𝐴, 𝐵) be a nonempty, weakly compact and
convex pair of subsets of a Banach space𝑋 such that (𝐴, 𝐵) has
seminormal structure. Suppose that F = {𝑇

𝛼
: 𝛼 ∈ 𝐼} is a

family of commuting cyclic relatively nonexpansive mappings
on 𝐴 ∪ 𝐵 with some index set 𝐼. Then F has a common fixed
point, that is, there exists an element 𝑥⋆ ∈ 𝐴 ∩ 𝐵 such that

𝑥
⋆
= 𝑇
𝛼
𝑥
⋆
, ∀𝛼 ∈ 𝐼. (26)

At the end of this section, we consider cyclic mappings
which do not increase large distances. Our purpose is not to
seek fixed points but rather to determine what can be said
about minimal displacement for such cyclic mappings.

Definition 13. Let (𝐴, 𝐵) be a nonempty pair of subsets of a
normed linear space. A mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said
to be cyclic relatively ℎ-nonexpansive for ℎ > 0 if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ℎ} , ∀ (𝑥, 𝑦) ∈ 𝐴 × 𝐵. (27)

Our result is the following. The surprising aspect of the
conclusion of the following theorem is the fact that cyclic rela-
tively ℎ-nonexpansive mappings have minimal displacement
strictly less than ℎ in the presence of seminormality.

Theorem 14. Let (𝐴, 𝐵) be a nonempty, weakly compact,
and convex pair in a Banach space 𝑋 such that (𝐴, 𝐵) has
seminormal structure. Let 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a cyclic
relatively h-nonexpansive mapping for ℎ > 0. Then there exists
an element 𝑥⋆ ∈ 𝐴 ∪ 𝐵 such that

󵄩󵄩󵄩󵄩𝑥
⋆
− 𝑇𝑥
⋆󵄩󵄩󵄩󵄩 ≤ ℎ. (28)

Proof. Proceeding in a similar way as in Theorem 8, we
obtain, by minimality, that 𝐾

1
= con(𝑇(𝐾

2
)) and 𝐾

2
=

con(𝑇(𝐾
1
)). If 𝛿(𝐾

1
, 𝐾
2
) = 0, then there is nothing to prove.

So, assume that 𝛿(𝐾
1
, 𝐾
2
) > 0. Since (𝐴, 𝐵) has seminormal

structure, there exist 𝑟 ∈ (0, 1) and (𝑢, V) ∈ 𝐾
1
× 𝐾
2
such that

max {𝛿
𝑢
(𝐾
2
) , 𝛿V (𝐾1)} ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
) . (29)

By the fact that (𝐾
1
, 𝐾
2
) is a weakly compact and convex pair

in 𝑋, the pair (C
𝐾
1

(𝐾
2
),C
𝐾
2

(𝐾
1
)) ⊆ (𝐾

1
, 𝐾
2
) is nonempty,

closed, and convex. Let (𝑧
1
, 𝑧
2
) ∈ C

𝐾
1

(𝐾
2
) × C
𝐾
2

(𝐾
1
). Then

𝛿
𝑧
1

(𝐾
2
) = Ω

𝐾
1

(𝐾
2
) and 𝛿

𝑧
2

(𝐾
1
) = Ω

𝐾
2

(𝐾
1
). IfΩ(𝐾

1
, 𝐾
2
) < ℎ,

thus
󵄩󵄩󵄩󵄩𝑧1 − 𝑇𝑧

1

󵄩󵄩󵄩󵄩 ≤ 𝛿
𝑧
1

(𝐾
2
) = Ω

𝐾
1

(𝐾
2
) ≤ Ω (𝐾

1
, 𝐾
2
) < ℎ, (30)

and again we are finished. So, we assume that ℎ ≤ Ω(𝐾
1
, 𝐾
2
).

Let 𝑦 ∈ 𝐾
2
. If ‖𝑧
1
− 𝑦‖ ≥ ℎ, then

󵄩󵄩󵄩󵄩𝑇𝑧1 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑧1 − 𝑦

󵄩󵄩󵄩󵄩 , ℎ} =
󵄩󵄩󵄩󵄩𝑧1 − 𝑦

󵄩󵄩󵄩󵄩

≤ 𝛿
𝑧
1

(𝐾
2
) = Ω

𝐾
1

(𝐾
2
) ≤ Ω (𝐾

1
, 𝐾
2
) .

(31)

On the other hand, if ‖𝑧
1
− 𝑦‖ < ℎ, then

󵄩󵄩󵄩󵄩𝑇𝑧1 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑧1 − 𝑦

󵄩󵄩󵄩󵄩 , ℎ} = ℎ ≤ Ω (𝐾
1
, 𝐾
2
) . (32)

Therefore, in either case 𝑇𝑦 ∈ B(𝑇𝑧
1
; Ω(𝐾
1
, 𝐾
2
)). Hence,

𝐾
1

= con(𝑇(𝐾
2
)) ⊆ B(𝑇𝑧

1
, Ω(𝐾
1
, 𝐾
2
)) which concludes

that 𝛿
𝑇𝑧
1

(𝐾
1
) ≤ Ω

𝐾
2

(𝐾
1
). That is, 𝑇𝑧

1
∈ C
𝐾
2

(𝐾
1
). Similarly,

we can see that 𝑇𝑧
2

∈ C
𝐾
1

(𝐾
2
). Thereby, 𝑇 is cyclic on

C
𝐾
1

(𝐾
2
)∪C
𝐾
2

(𝐾
1
). It follows from theminimality of (𝐾

1
, 𝐾
2
)

thatC
𝐾
1

(𝐾
2
) = 𝐾
1
andC

𝐾
2

(𝐾
1
) = 𝐾
2
. Now, for each 𝑥 ∈ 𝐾

1

we have 𝛿
𝑥
(𝐾
2
) = Ω

𝐾
1

(𝐾
2
) and so,

𝛿 (𝐾
1
, 𝐾
2
) = sup
𝑥∈𝐾
1

𝛿
𝑥
(𝐾
2
) = Ω

𝐾
1

(𝐾
2
) = 𝛿
𝑢
(𝐾
2
) . (33)

Also, we can see that 𝛿(𝐾
1
, 𝐾
2
) = 𝛿V(𝐾1). Hence,

𝛿 (𝐾
1
, 𝐾
2
) = max {𝛿

𝑢
(𝐾
2
) , 𝛿V (𝐾1)} ≤ 𝑟𝛿 (𝐾

1
, 𝐾
2
) , (34)

which is a contradiction.

4. A Best Proximity Point Theorem

Recently, Kosuru and Veeramani introduced a concept of
pointwise cyclic contractions as follows.

Definition 15 (see [27]). Let (𝐴, 𝐵) be a pair of subsets of a
metric space (𝑋, 𝑑). A mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said
to be a pointwise cyclic contraction if 𝑇 is cyclic and for each
(𝑥, 𝑦) ∈ 𝐴 × 𝐵 there exist 0 ≤ 𝛼(𝑥) < 1, 0 ≤ 𝛼(𝑦) < 1 such
that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑦)

+ (1 − 𝛼 (𝑥)) dist (𝐴, 𝐵) ∀𝑦 ∈ 𝐵,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑦) 𝑑 (𝑥, 𝑦)

+ (1 − 𝛼 (𝑦)) dist (𝐴, 𝐵) ∀𝑥 ∈ 𝐴.

(35)

The following best proximity point theorem was proved
in [27] by using a geometric notion of proximal normal
structure.

Theorem 16 (Theorem 4.1 of [27]). Let (𝐴, 𝐵) be a nonempty,
weakly compact, and convex pair of a Banach space 𝑋. If 𝑇 :

𝐴∪𝐵 → 𝐴∪𝐵 is a pointwise cyclic contraction mapping, then
𝑇 has a best proximity point.

To establish our results, we introduce the following class
of cyclic mappings.

Definition 17. Let (𝐴, 𝐵) be a pair of subsets of a metric space
(𝑋, 𝑑). A mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is said to be a
generalized pointwise cyclic contraction if 𝑇 is cyclic and for
each (𝑥, 𝑦) ∈ 𝐴 × 𝐵 there exist 0 ≤ 𝛼(𝑥), 𝛽(𝑥) < 1, 0 ≤ 𝛼(𝑦),
and 𝛽(𝑦) < 1 such that 𝛼(𝑥) + 𝛽(𝑥) < 1, 𝛼(𝑦) + 𝛽(𝑦) < 1 and

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑦) + 𝛽 (𝑥)𝑚 (𝑥, 𝑦)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵) ∀𝑦 ∈ 𝐵,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑦) 𝑑 (𝑥, 𝑦) + 𝛽 (𝑦)𝑚 (𝑥, 𝑦)

+ (1 − (𝛼 (𝑦) + 𝛽 (𝑦))) dist (𝐴, 𝐵) ∀𝑥 ∈ 𝐴,

(36)
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where𝑚(𝑥, 𝑦) := min{𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)} for all (𝑥, 𝑦) ∈ 𝐴 ×

𝐵.

Obviously, every generalized pointwise cyclic contraction
is a cyclic relatively nonexpansive mapping. Also, the class of
generalized pointwise cyclic contractions contains the class of
pointwise cyclic contractions as a subclass. The next example
shows that the reverse implication does not hold.

Example 18. Let 𝑋 := R with the usual metric. For 𝐴 = 𝐵 =

[0, 1/4], define 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 with

𝑇𝑥 =

{{{

{{{

{

1

16
𝑥 if 0 ≤ 𝑥 ≤

1

8
,

0 if 1

8
< 𝑥 ≤

1

4
.

(37)

Then 𝑇 is generalized pointwise cyclic contraction. Indeed, if
either 0 ≤ 𝑥, 𝑦 ≤ 1/8 or 1/8 < 𝑥, 𝑦 ≤ 1/4 then the result
follows, easily. Also, if 0 ≤ 𝑥 ≤ 1/8 and 1/8 < 𝑦 ≤ 1/4, then
for every 𝑥, 𝑦 ∈ 𝐴 if 𝛼(𝑥) = 𝛽(𝑥) = 7/16, we have

𝑑 (𝑇𝑥, 𝑇𝑦) =
1

16
𝑥 ≤

7

16
(𝑦 − 𝑥) +

102

256
𝑥

= 𝛼 (𝑥) 𝑑 (𝑥, 𝑦) + 𝛽 (𝑥)𝑚 (𝑥, 𝑦) .

(38)

which implies that 𝑇 is generalized pointwise cyclic contrac-
tion. It is interesting to note that 𝑇 is not pointwise cyclic
contraction. In fact, if 𝑥 = 1/8 and 𝑦 = 13/100 and if 𝑇 is
pointwise cyclic contraction then we must have

𝑑 (𝑇𝑥, 𝑇𝑦) =
1

16
×

1

8
≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑦)

= 𝛼 (
1

8
) (

13

100
−

1

8
) ,

(39)

which deduces that 200/128 ≤ 𝛼(1/8) which is a contradic-
tion. Besides, we mention that 𝑇 is not nonexpansive because
𝑇 is not continuous.

Here, we state the main result of this section.

Theorem 19. Let (𝐴, 𝐵) be a nonempty, weakly compact, and
convex pair of a Banach space 𝑋. If 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is a
generalized pointwise cyclic contraction mapping, then 𝑇 has a
best proximity point.

Proof. Since 𝑇 is cyclic relatively nonexpansive, we can apply
Theorem 8 to deduce the existence of a minimal weakly
compact convex pair (𝐾

1
, 𝐾
2
) such that co(𝑇(𝐾

2
)) = 𝐾

1
and

co(𝑇(𝐾
1
)) = 𝐾

2
. Let 𝑥 ∈ 𝐾

1
be fixed. For each 𝑧 ∈ 𝐾

2
we have

‖𝑇𝑥 − 𝑇𝑧‖ ≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑧) + 𝛽 (𝑥)𝑚 (𝑥, 𝑧)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵)

≤ 𝛼 (𝑥) 𝛿
𝑥
(𝐾
2
) + 𝛽 (𝑥) 𝛿

𝑥
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵)

= (𝛼 (𝑥) + 𝛽 (𝑥)) 𝛿
𝑥
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵) .

(40)

Hence, for all 𝑧 ∈ 𝐾
2
, we have 𝑇𝑧 ∈ B(𝑇𝑥; (𝛼(𝑥) +

𝛽(𝑥))𝛿
𝑥
(𝐾
2
) + (1 − (𝛼(𝑥) + 𝛽(𝑥))) dist(𝐴, 𝐵)), and then

𝑇 (𝐾
2
) ⊆ B (𝑇𝑥; (𝛼 (𝑥) + 𝛽 (𝑥)) 𝛿

𝑥
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵)) .

(41)

Therefore,

𝐾
1
= co (𝑇 (𝐾

2
)) ⊆ B (𝑇𝑥; (𝛼 (𝑥) + 𝛽 (𝑥)) 𝛿

𝑥
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵)) ,

(42)

which concludes that

𝛿
𝑇𝑥

(𝐾
1
) ≤ (𝛼 (𝑥) + 𝛽 (𝑥)) 𝛿

𝑥
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵) , ∀𝑥 ∈ 𝐾
1
.

(43)

Similar argument implies that

𝛿
𝑇𝑦

(𝐾
2
) ≤ (𝛼 (𝑦) + 𝛽 (𝑦)) 𝛿

𝑦
(𝐾
1
)

+ (1 − (𝛼 (𝑦) + 𝛽 (𝑦))) dist (𝐴, 𝐵) , ∀𝑦 ∈ 𝐾
2
.

(44)

Now, let (𝑢, V) be an arbitrary element in 𝐾
1
× 𝐾
2
. We may

suppose that 𝛿
𝑢
(𝐾
2
) ≤ 𝛿V(𝐾1). Put 𝑟 := 𝛿

𝑢
(𝐾
2
). Let

𝐿
1
:= {𝑥 ∈ 𝐾

1
: 𝛿
𝑥
(𝐾
2
) ≤ 𝑟} ,

𝐿
2
:= {𝑦 ∈ 𝐾

2
: 𝛿
𝑥
(𝐾
1
) ≤ 𝑟} .

(45)

We note that 𝑢 ∈ 𝐿
1
and by the fact that

𝛿
𝑇𝑢

(𝐾
1
) ≤ (𝛼 (𝑥) + 𝛽 (𝑥)) 𝛿

𝑢
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵)

≤ 𝛿
𝑢
(𝐾
2
) = 𝑟,

(46)

we have 𝑇𝑢 ∈ 𝐿
2
. Moreover, it is easy to see that

𝐿
1
= [

[

⋂

𝑦∈𝐾
2

B (𝑦; 𝑟)]

]

∩ 𝐾
1
,

𝐿
2
= [ ⋂

𝑥∈𝐾
1

B (𝑥; 𝑟)] ∩ 𝐾
2
;

(47)

that is, (𝐿
1
, 𝐿
2
) ⊆ (𝐾

1
, 𝐾
2
) is a nonempty, closed, and convex

pair in𝑋. Besides, if 𝑥 ∈ 𝐿
1
then we have

𝛿
𝑇𝑥

(𝐾
1
) ≤ (𝛼 (𝑥) + 𝛽 (𝑥)) 𝛿

𝑥
(𝐾
2
)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵)

≤ 𝛿
𝑥
(𝐾
2
) ≤ 𝑟,

(48)

which implies that 𝑇𝑥 ∈ 𝐿
2
and so, 𝑇(𝐿

1
) ⊆ 𝐿

2
. Similarly,

𝑇(𝐿
2
) ⊆ 𝐿

1
. Therefore, 𝑇 is cyclic on 𝐿

1
∪ 𝐿
2
. Now, by
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the minimality of (𝐾
1
, 𝐾
2
) we must have 𝐿

1
= 𝐾
1
and 𝐿

2
=

𝐾
2
. Thereby,

𝛿
𝑥
(𝐾
2
) ≤ 𝑟 = 𝛿

𝑢
(𝐾
2
) , ∀𝑥 ∈ 𝐾

1
, (49)

which implies that

𝛿 (𝐾
1
, 𝐾
2
) = sup
𝑥∈𝐾
1

𝛿
𝑥
(𝐾
2
) ≤ 𝛿
𝑢
(𝐾
2
)

≤ 𝛿V (𝐾1) ≤ 𝛿 (𝐾
1
, 𝐾
2
) .

(50)

Hence, for all (𝑢, V) ∈ 𝐾
1
× 𝐾
2
we have

𝛿
𝑢
(𝐾
2
) = 𝛿V (𝐾1) . (51)

If 𝛿
𝑢
(𝐾
2
) = dist(𝐴, 𝐵), then 𝑢 is a best proximity point of 𝑇

and we are finished. So, let 𝛿
𝑢
(𝐾
2
) > dist(𝐴, 𝐵). We have

𝛿
𝑢
(𝐾
2
) = 𝛿
𝑇𝑢

(𝐾
1
) ≤ (𝛼 (𝑢) + 𝛽 (𝑢)) 𝛿

𝑢
(𝐾
2
)

+ (1 − (𝛼 (𝑢) + 𝛽 (𝑢))) dist (𝐴, 𝐵)

< 𝛿
𝑢
(𝐾
2
) ,

(52)

which is a contradiction. Therefore, for all (𝑢, V) ∈ 𝐾
1
× 𝐾
2

we must have

‖𝑢 − 𝑇𝑢‖ = ‖𝑇V − V‖ = dist (𝐴, 𝐵) . (53)

Remark 20. Note that Theorem 19 was proved directly and
without using the notion of proximal normal structure.

Remark 21. Theorem 19 holds once the minimal sets 𝐾
1
and

𝐾
2
have been fixed and the cyclic mapping 𝑇 : 𝐴 ∪ 𝐵 →

𝐴∪𝐵 satisfies the condition that for each (𝑥, 𝑦) ∈ 𝐴×𝐵 there
exist 0 ≤ 𝛼(𝑥), 𝛽(𝑥) < 1, 0 ≤ 𝛼(𝑦), and 𝛽(𝑦) < 1 such that
𝛼(𝑥) + 𝛽(𝑥) < 1, 𝛼(𝑦) + 𝛽(𝑦) < 1 and

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑥) 𝑑 (𝑥, 𝑦) + 𝛽 (𝑥)𝑀 (𝑥, 𝑦)

+ (1 − (𝛼 (𝑥) + 𝛽 (𝑥))) dist (𝐴, 𝐵) , ∀𝑦 ∈ 𝐵,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑦) 𝑑 (𝑥, 𝑦) + 𝛽 (𝑦)𝑀 (𝑥, 𝑦)

+ (1 − (𝛼 (𝑦) + 𝛽 (𝑦))) dist (𝐴, 𝐵) , ∀𝑥 ∈ 𝐴,

(54)

where𝑀(𝑥, 𝑦) := min{𝛿
𝑥
(𝐾
2
), 𝛿
𝑦
(𝐾
1
)} for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵.
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