
Research Article
Existence and Estimates of Positive Solutions for
Some Singular Fractional Boundary Value Problems

Habib Mâagli, Noureddine Mhadhebi, and Noureddine Zeddini

Department of Mathematics, College of Sciences and Arts, King Abdulaziz University, Rabigh Campus, P.O. Box 344,
Rabigh 21911, Saudi Arabia

Correspondence should be addressed to Noureddine Zeddini; noureddine.zeddini@ipein.rnu.tn

Received 25 December 2013; Accepted 14 February 2014; Published 1 April 2014

Academic Editor: Samir Saker
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We establish the existence and uniqueness of a positive solution 𝑢 for the following fractional boundary value problem: 𝐷
𝛼

𝑢(𝑥) =

−𝑎(𝑥)𝑢
𝜎

(𝑥), 𝑥 ∈ (0, 1) with the conditions lim
𝑥→0
+𝑥
2−𝛼

𝑢(𝑥) = 0, 𝑢(1) = 0, where 1 < 𝛼 ≤ 2, 𝜎 ∈ (−1, 1), and 𝑎 is a nonnegative
continuous function on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1. We also give the global behavior of such a solution.

1. Introduction

Recently, the theory of fractional differential equations has
been developed very quickly and the investigation for the
existence of solutions of these differential equations has
attracted considerable attention of researchers in the last few
years (see [1–11] and the references therein).

Fractional differential equations arise in various fields
of science and engineering such as control, porous media,
electrochemistry, viscoelasticity, and electromagnetism.They
also serve as an excellent tool for the description of hereditary
properties of variousmaterials and processes (see [12–14]). In
consequence, the subject of fractional differential equations
is gaining much importance. Motivated by the surge in
the development of this subject, we consider the following
singular Dirichlet problem:

𝐷
𝛼

𝑢 (𝑥) = −𝑎 (𝑥) 𝑢
𝜎

(𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

+

𝑥
2−𝛼

𝑢 (𝑥) = 0, 𝑢 (1) = 0,

(1)

where 1 < 𝛼 ≤ 2, −1 < 𝜎 < 1, and 𝑎 is a nonnegative
continuous function on (0, 1) that may be singular at 𝑥 = 0

or 𝑥 = 1. Then we study the existence and exact asymptotic
behavior of positive solutions for this problem.

We recall that, for a measurable function V, the Riemann-
Liouville fractional integral 𝐼

𝛽
V and the Riemann-Liouville

derivative 𝐷
𝛽V of order 𝛽 > 0 are, respectively, defined by

𝐼
𝛽
V (𝑥) =

1

Γ (𝛽)

∫

𝑥

0

(𝑥 − 𝑡)
𝛽−1V (𝑡) 𝑑𝑡,

𝐷
𝛽V (𝑥) =

1

Γ (𝑛 − 𝛽)

(

𝑑

𝑑𝑥

)

𝑛

∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛽−1V (𝑡) 𝑑𝑡

= (

𝑑

𝑑𝑥

)

𝑛

𝐼
𝑛−𝛽

V (𝑥) ,

(2)

provided that the right hand sides are pointwise defined on
(0, 1]. Here 𝑛 = [𝛽] + 1 and [𝛽] means the integer part of the
number 𝛽 and Γ is the Euler Gamma function.

Moreover, we have the following well-known properties
(see [3, 13, 15]):

(i) 𝐼
𝛽
𝐼
𝛾
V(𝑥) = 𝐼

𝛽+𝛾
V(𝑥) for 𝑥 ∈ [0, 1], V ∈ 𝐿

1

((0, 1]), 𝛽 +

𝛾 ≥ 1;

(ii) 𝐷
𝛽

𝐼
𝛽
V(𝑥) = V(𝑥) for a.e. 𝑥 ∈ [0, 1], where V ∈

𝐿
1

((0, 1]), 𝛽 > 0;
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(iii) if V ∈ 𝐶((0, 1)) ∩ 𝐿
1

((0, 1)) and 𝐷
𝛽V(𝑥) = 0, then

V(𝑥) = ∑
𝑛

𝑗=1
𝑐
𝑗
𝑡
𝛽−𝑗, where (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) ∈ R𝑛 and 𝑛

is the smallest integer greater than or equal to 𝛽.

Several results are obtained for fractional differential
equations with different boundary conditions, but none of
them deal with the existence of a positive solution to problem
(1).

Our aim in this paper is to establish the existence and
uniqueness of a positive solution 𝑢 ∈ 𝐶

2−𝛼
([0, 1]) for problem

(1) with a precise asymptotic behavior, where 𝐶
2−𝛼

([0, 1])

is the set of all functions 𝑓 such that 𝑡 → 𝑡
2−𝛼

𝑓(𝑡) is
continuous on [0, 1].

To state our result, we need some notations. We will use
K to denote the set of Karamata functions 𝐿 defined on (0, 𝜂]

by

𝐿 (𝑡) := 𝑐 exp(∫

𝜂

𝑡

𝑧 (𝑠)

𝑠

𝑑𝑠) , (3)

for some 𝜂 > 1, where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) such that
𝑧(0) = 0. It is clear that a function 𝐿 is inK if and only if 𝐿 is
a positive function in 𝐶

1

((0, 𝜂]) such that

lim
𝑡→0
+

𝑡𝐿
󸀠

(𝑡)

𝐿 (𝑡)

= 0. (4)

For two nonnegative functions𝑓 and 𝑔 defined on a set 𝑆, the
notation 𝑓(𝑥) ≈ 𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0

such that (1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥) for all 𝑥 ∈ 𝑆. We denote
by 𝑥
+

= max(𝑥, 0) for 𝑥 ∈ R and by 𝐵
+

((0, 1)) the set of all
nonnegative measurable functions on (0, 1).

Throughout this paper, we assume that 𝑎 is nonnegative
on (0, 1) and satisfies the following condition:

(𝐻
0
) 𝑎 ∈ 𝐶((0, 1)) such that for 𝑡 ∈ (0, 1)

𝑎 (𝑡) ≈ 𝑡
−𝜆

𝐿
1
(𝑡) (1 − 𝑡)

−𝜇

𝐿
2
(1 − 𝑡) , (5)

where 𝜆 ≤ 𝛼 + (2 − 𝛼)(1 − 𝜎), 𝜇 ≤ 𝛼, 𝐿
1
, 𝐿
2
∈ K satisfying

∫

𝜂

0

𝐿
1
(𝑡)

𝑡
𝜆+(2−𝛼)𝜎−1

𝑑𝑡 < ∞, ∫

𝜂

0

𝐿
2
(𝑡)

𝑡
𝜇−𝛼+1

𝑑𝑡 < ∞. (6)

In the sequel, we introduce the function 𝜃 defined on (0, 1) by

𝜃 (𝑥) = 𝑥
min(1,(2−𝜆+(𝛼−2)𝜎)/(1−𝜎))

(𝐿̃
1
(𝑥))

1/(1−𝜎)

× (1 − 𝑥)
min(1,(𝛼−𝜇)/(1−𝜎))

(𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

,

(7)

where

𝐿̃
1
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1,

if 𝜆 < 𝛼 − (𝛼 − 1)

× (1 − 𝜎) ,

∫

𝜂

𝑥

𝐿
1
(𝑠)

𝑠

𝑑𝑠,

if 𝜆 = 𝛼 − (𝛼 − 1)

× (1 − 𝜎) ,

𝐿
1
(𝑥) ,

if 𝛼 − (𝛼 − 1) (1 − 𝜎)

< 𝜆 < 𝛼 + (2 − 𝛼) (1 − 𝜎) ,

∫

𝑥

0

𝐿
1
(𝑠)

𝑠

𝑑𝑠,

if 𝜆 = 𝛼 + (2 − 𝛼)

× (1 − 𝜎) ,

𝐿̃
2
(𝑥) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

1, if 𝜇 < 𝛼 + 𝜎 − 1,

∫

𝜂

𝑥

𝐿
2
(𝑠)

𝑠

𝑑𝑠, if 𝜇 = 𝛼 + 𝜎 − 1,

𝐿
2
(𝑥) , if 𝛼 + 𝜎 − 1 < 𝜇 < 𝛼,

∫

𝑥

0

𝐿
2
(𝑠)

𝑠

𝑑𝑠, if 𝜇 = 𝛼.

(8)

Our main result is the following.

Theorem 1. Let 𝜎 ∈ (−1, 1) and assume that 𝑎 satisfies
(𝐻
0
). Then problem (1) has a unique positive solution 𝑢 ∈

𝐶
2−𝛼

([0, 1]) satisfying for 𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

𝜃 (𝑥) . (9)

Remark 2. Note that, for 𝑥 ∈ (0, 1), we have

𝑥
𝛼−2

𝜃 (𝑥) ≈ 𝑥
min(𝛼−1,(𝛼−𝜆)/(1−𝜎))

× (𝐿̃
1
(𝑥))

1/(1−𝜎)

(1 − 𝑥)
min(1,(𝛼−𝜇)/(1−𝜎))

× (𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

.

(10)

This implies in particular that, for 1 < 𝛼 < 2 and 𝛼 < 𝜆 ≤

𝛼 + (2 − 𝛼)(1 − 𝜎), the solution 𝑢 blows up at 𝑥 = 0 and for
𝜆 < 𝛼, lim

𝑥→0
+𝑢(𝑥) = 0.

This paper is organized as follows. Some preliminary
lemmas are stated and proved in the next section, involving
some already known results on Karamata functions. In
Section 3, we give the proof of Theorem 1.

2. Technical Lemmas

To let the paper be self-contained, we begin this section by
recapitulating some properties of Karamata regular variation
theory. The following is due to [16, 17].

Lemma 3. The following hold.

(i) Letting 𝐿 ∈ K and 𝜀 > 0, then one has

lim
𝑡→0
+

𝑡
𝜀

𝐿 (𝑡) = 0. (11)

(ii) Let 𝐿
1
, 𝐿
2
∈ K and 𝑝 ∈ R.Then one has 𝐿

1
+𝐿
2
∈ K,

𝐿
1
𝐿
2
∈ K, and 𝐿

𝑝

1
∈ K.
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Example 4. Let 𝑚 be a positive integer. Let 𝑐 > 0,
(𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚
) ∈ R𝑚, and 𝑑 be a sufficiently large positive

real number such that the function

𝐿 (𝑡) = 𝑐

𝑚

∏

𝑘=1

(log
𝑘
(

𝑑

𝑡

))

−𝜇
𝑘

(12)

is defined and positive on (0, 𝜂], for some 𝜂 > 1, where
log
𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ ∘ log𝑥 (𝑘 times). Then 𝐿 ∈ K.

Applying Karamata’s theorem (see [16, 17]), we get the
following.

Lemma 5. Let 𝜇 ∈ R and 𝐿 be a function in K defined on
(0, 𝜂]. One has the following:

(i) if 𝜇 < −1, then ∫

𝜂

0

𝑠
𝜇

𝐿(𝑠)𝑑𝑠 diverges and ∫

𝜂

𝑡

𝑠
𝜇

𝐿(𝑠)𝑑𝑠∼
𝑡→0
+ − 𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1);

(ii) if 𝜇 > −1, then ∫

𝜂

0

𝑠
𝜇

𝐿(𝑠)𝑑𝑠 converges and ∫

𝑡

0

𝑠
𝜇

𝐿(𝑠)𝑑𝑠∼
𝑡→0
+𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1).

Lemma 6. Let 𝐿 ∈ K be defined on (0, 𝜂]. Then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝜂

𝑡

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (13)

If further ∫

𝜂

0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝑡

0

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (14)

Proof. We distinguish two cases.

Case 1. We suppose that ∫

𝜂

0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges. Since the
function 𝑡 → 𝐿(𝑡)/𝑡 is nonincreasing in (0, 𝜔], for some
𝜔 < 𝜂, it follows that, for each 𝑡 ≤ 𝜔, we have

𝐿 (𝑡) ≤ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠. (15)

It follows that lim
𝑡→0
+𝐿(𝑡) = 0. So we deduce (13).

Now put

𝜑 (𝑡) =

𝐿 (𝑡)

𝑡

, for 𝑡 ∈ (0, 𝜂) . (16)

Using that lim
𝑡→0
+(𝑡𝜑
󸀠

(𝑡)/𝜑(𝑡)) = −1, we obtain

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠∼
𝑡→0
+ − ∫

𝑡

0

𝑠𝜑
󸀠

(𝑠) 𝑑𝑠 = −𝑡𝜑 (𝑡) + ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠.

(17)

This implies that

∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠∼
𝑡→0
+ − 𝐿 (𝑡) + ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠. (18)

So (14) holds.

Case 2. We suppose that ∫𝜂
0

(𝐿(𝑠)/𝑠)𝑑𝑠 diverges. We have, for
some 𝜔 < 𝜂,

∫

𝜔

𝑡

𝜑 (𝑠) 𝑑𝑠∼
𝑡→0
+𝑡𝜑 (𝑡) − 𝜔𝜑 (𝜔) + ∫

𝜔

𝑡

𝜑 (𝑠) 𝑑𝑠. (19)

This implies that

∫

𝜔

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠∼
𝑡→0
+𝐿 (𝑡) − 𝜔𝜑 (𝜔) + ∫

𝜔

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠. (20)

This proves (13) and completes the proof.

Remark 7. Let 𝐿 ∈ K be defined on (0, 𝜂]; then using (4) and
(13), we deduce that

𝑡 󳨀→ ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (21)

If further ∫

𝜂

0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges, we have by (13) that

𝑡 󳨀→ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (22)

Lemma8. Given 1 < 𝛼 ≤ 2 and𝜑 ∈ 𝐶([0, 1]), then the unique
continuous solution of

𝐷
𝛼

𝑢 (𝑥) = −𝜑 (𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

𝑥
2−𝛼

𝑢 (𝑥) = 0, 𝑢 (1) = 0

(23)

is given by

𝑢 (𝑥) = 𝐺
𝛼
𝜑 (𝑥) := ∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡, (24)

where

𝐺
𝛼
(𝑥, 𝑡) =

1

Γ (𝛼)

[𝑥
𝛼−1

(1 − 𝑡)
𝛼−1

− ((𝑥 − 𝑡)
+

)

𝛼−1

] (25)

is Green’s function for the boundary value problem (23).

Proof. Since 𝜑 ∈ 𝐶([0, 1]), then 𝑢
0
= −𝐼
𝛼
𝜑 is a solution of the

equation 𝐷
𝛼

𝑢 = −𝜑. Hence 𝐷
𝛼

(𝑢 + 𝐼
𝛼
𝜑) = 0. Consequently

there exist two constants 𝑐
1
, 𝑐
2
∈ R such that 𝑢(𝑥) + 𝐼

𝛼
𝜑(𝑥) =

𝑐
1
𝑥
𝛼−1

+ 𝑐
2
𝑥
𝛼−2. Using the fact that lim

𝑥→0
𝑥
2−𝛼

𝑢(𝑥) = 0 and
𝑢(1) = 0, we obtain 𝑐

2
= 0 and 𝑐

1
= 𝐼
𝛼
𝜑(1). So

𝑢 (𝑥) =

1

Γ (𝛼)

𝑥
𝛼−1

∫

1

0

(1 − 𝑡)
𝛼−1

𝜑 (𝑡) 𝑑𝑡

−

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝜑 (𝑡) 𝑑𝑡

= ∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡.

(26)

In the following, we give some estimates on the Green
function 𝐺

𝛼
(𝑥, 𝑦). So, we need the following lemma.
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Lemma 9. For 𝜆, 𝜇 ∈ (0,∞) and 𝑡 ∈ [0, 1] one has

min(1,

𝜇

𝜆

) (1 − 𝑡
𝜆

) ≤ 1 − 𝑡
𝜇

≤ max(1,

𝜇

𝜆

) (1 − 𝑡
𝜆

) . (27)

Proposition 10. On (0, 1) × (0, 1), one has

(i) 𝐺
𝛼
(𝑥, 𝑡) ≈ 𝑥

𝛼−2

(1 − 𝑡)
𝛼−2 min(𝑥, 𝑡) (1 − max(𝑥, 𝑡));

(ii) there exist two constants 𝑐
1
, 𝑐
2
> 0 such that

𝑐
1
𝑥
𝛼−1

𝑡(1 − 𝑡)
𝛼−1

(1 − 𝑥) ≤ 𝐺
𝛼
(𝑥, 𝑡) ≤ 𝑐

2
𝑥
𝛼−2

𝑡(1 − 𝑡)
𝛼−1

.

(28)

Proof. (i) For 𝑥, 𝑡 ∈ (0, 1) × (0, 1) we have

𝐺
𝛼
(𝑥, 𝑡) =

(1 − 𝑡)
𝛼−1

𝑥
𝛼−1

Γ (𝛼)

[1 − (

(𝑥 − 𝑡)
+

𝑥 (1 − 𝑡)

)

𝛼−1

] . (29)

Since (𝑥−𝑡)
+

/𝑥(1−𝑡) ∈ (0, 1) for𝑥, 𝑡 ∈ (0, 1), then by applying
Lemma 9 with 𝜇 = 𝛼 − 1 and 𝜆 = 1, we obtain

𝐺
𝛼
(𝑥, 𝑡) ≈ 𝑥

𝛼−1

(1 − 𝑡)
𝛼−1

(1 −

(𝑥 − 𝑡)
+

𝑥 (1 − 𝑡)

)

= 𝑥
𝛼−2

(1 − 𝑡)
𝛼−2min (𝑥, 𝑡) (1 − max (𝑥, 𝑡)) .

(30)

(ii) Using the following inequalities for 𝑥, 𝑡 ∈ [0, 1],

𝑥 (1 − 𝑥) 𝑡 (1 − 𝑡) ≤ min (𝑥, 𝑡) (1 − max (𝑥, 𝑡)) ≤ 𝑡 (1 − 𝑡) ,

(31)

we deduce the result from (i).

As a consequence of Proposition 10, we obtain the follow-
ing.

Corollary 11. Let 𝑓 ∈ 𝐵
+

((0, 1)) and put 𝐺
𝛼
𝑓(𝑥) :=

∫

1

0

𝐺
𝛼
(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡 for 𝑥 ∈ (0, 1]. Then

𝐺
𝛼
𝑓 (𝑥) < ∞ for 𝑥 ∈ (0, 1)

𝑖𝑓𝑓∫

1

0

𝑡(1 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡 < ∞.

(32)

Proposition 12. Given 1 < 𝛼 < 2 and𝑓 such that the function
𝑡 → 𝑡(1 − 𝑡)

𝛼−1

𝑓(𝑡) is continuous and integrable on (0, 1),
then𝐺

𝛼
𝑓 is the unique solution in 𝐶

2−𝛼
([0, 1]) of the following

boundary value problem:

𝐷
𝛼

𝑢 (𝑥) = −𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

+

𝑥
2−𝛼

𝑢 (𝑥) = 0, 𝑢 (1) = 0.

(33)

Proof. From Corollary 11, the function 𝐺
𝛼
𝑓 is defined on

(0, 1) and by Proposition 10, we have

𝐺
𝛼

󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨
(𝑥) ≤ 𝑐

2
𝑥
𝛼−2

∫

1

0

𝑡(1 − 𝑡)
𝛼−1 󵄨

󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡, (34)

which implies that 𝐼
2−𝛼

(𝐺
𝛼
|𝑓|) is bounded on (0, 1). Now,

using Fubini’s theorem, we have

𝐼
2−𝛼

(𝐺
𝛼
𝑓) (𝑥)

=

1

Γ (2 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
𝑓 (𝑡) 𝑑𝑡

=

1

Γ (2 − 𝛼)

∫

1

0

(∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
(𝑡, 𝑠) 𝑑𝑡)𝑓 (𝑠) 𝑑𝑠.

(35)

On the other hand, we have

1

Γ (2 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
(𝑡, 𝑠) 𝑑𝑡

=

1

Γ (2 − 𝛼) Γ (𝛼)

[(1 − 𝑠)
𝛼−1

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝑡
𝛼−1

𝑑𝑡

−∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

((𝑡 − 𝑠)
+

)

𝛼−1

𝑑𝑡]

= 𝑥(1 − 𝑠)
𝛼−1

−

1

Γ (2 − 𝛼) Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

× ((𝑡 − 𝑠)
+

)

𝛼−1

𝑑𝑡.

(36)

Now, suppose that 𝑠 ≤ 𝑥; then we have

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

((𝑡 − 𝑠)
+

)

𝛼−1

𝑑𝑡

= ∫

𝑥

𝑠

(𝑥 − 𝑡)
1−𝛼

(𝑡 − 𝑠)
𝛼−1

𝑑𝑡.

(37)

By considering the substitution 𝑡 = 𝑠 + 𝜃(𝑥 − 𝑠), we obtain

∫

𝑥

𝑠

(𝑥 − 𝑡)
1−𝛼

(𝑡 − 𝑠)
𝛼−1

𝑑𝑡 = Γ (𝛼) Γ (2 − 𝛼) (𝑥 − 𝑠) . (38)

Moreover if 𝑥 ≤ 𝑠 and 𝑡 ∈ (0, 𝑥), we have ∫

𝑥

0

(𝑥 −

𝑡)
1−𝛼

((𝑡 − 𝑠)
+

)

𝛼−1

𝑑𝑡 = 0.
So, it follows that

1

Γ (2 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
1−𝛼

𝐺
𝛼
(𝑡, 𝑠) 𝑑𝑡

= 𝑥(1 − 𝑠)
𝛼−1

− (𝑥 − 𝑠)
+

.

(39)
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This implies that

𝐼
2−𝛼

(𝐺
𝛼
𝑓) (𝑥)

= ∫

1

0

[𝑥(1 − 𝑠)
𝛼−1

− (𝑥 − 𝑠)
+

] 𝑓 (𝑠) 𝑑𝑠

= 𝑥∫

𝑥

0

((1 − 𝑠)
𝛼−1

− 1)𝑓 (𝑠) 𝑑𝑠

+ ∫

𝑥

0

𝑠𝑓 (𝑠) 𝑑𝑠 + 𝑥∫

1

𝑥

(1 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝐷
𝛼

(𝐺
𝛼
𝑓) (𝑥) =

𝑑
2

𝑑𝑥
2
(𝐼
2−𝛼

(𝐺
𝛼
𝑓)) (𝑥)

= −𝑓 (𝑥) , for 𝑥 ∈ (0, 1) .

(40)

Moreover, using part (i) of Proposition 10 and the domi-
nated convergence theorem, we conclude that lim

𝑥→0
+𝑥
2−𝛼

𝐺
𝛼
𝑓(𝑥) = 0 and 𝐺

𝛼
𝑓(1) = 0.

Finally, we prove the uniqueness. Let 𝑢, V ∈ 𝐶
2−𝛼

([0, 1])

be two solutions of (33) and put 𝑤 = V − 𝑢. Then 𝑤 ∈

𝐶
2−𝛼

([0, 1]) ⊂ 𝐿
1

((0, 1)) ∩ 𝐶((0, 1)) and 𝐷
𝛼

𝑤 = 0. Hence,
it follows that 𝑤(𝑥) = 𝑐

1
𝑥
𝛼−1

+ 𝑐
2
𝑥
𝛼−2. Using the fact that

lim
𝑥→0

+𝑥
2−𝛼

𝑤(𝑥) = 𝑤(1) = 0, we conclude that 𝑤 = 0 and
so 𝑢 = V.

In the sequel, we assume that 𝛽 ≤ 2 and 𝛾 ≤ 𝛼 and we put

𝑏 (𝑡) = 𝑡
−𝛽

𝐿
3
(𝑡) (1 − 𝑡)

−𝛾

𝐿
4
(1 − 𝑡) , (41)

where 𝐿
3
, 𝐿
4
∈ K satisfy

∫

𝜂

0

𝐿
3
(𝑡)

𝑡
𝛽−1

𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
𝛼−1−𝛾

𝐿
4
(𝑡) 𝑑𝑡 < ∞. (42)

So, we aim to give some estimates on the potential function
𝐺
𝛼
𝑏(𝑥).
We define the Karamata functions 𝜓

𝛽
, 𝜙
𝛾
by

𝜓
𝛽
(𝑥) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 2,

𝐿
3
(𝑥) , if 1 < 𝛽 < 2,

∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 1,

1, if 𝛽 < 1,

(43)

𝜙
𝛾
(𝑥) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼,

𝐿
4
(𝑥) , if 𝛼 − 1 < 𝛾 < 𝛼,

∫

𝜂

𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼 − 1,

1, if 𝛾 < 𝛼 − 1.

(44)

Then, we have the following.

Proposition 13. For 𝑥 ∈ (0, 1),

𝐺
𝛼
𝑏 (𝑥) ≈ 𝑥

min(𝛼−1,𝛼−𝛽)
(1 − 𝑥)

min(1,𝛼−𝛾)
𝜓
𝛽
(𝑥) 𝜙
𝛾
(1 − 𝑥) .

(45)

Proof. Using Proposition 10, we have

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈ ∫

1

0

(1 − 𝑡)
𝛼−2−𝛾

𝑡
−𝛽min (𝑥, 𝑡)

× (1 − max (𝑥, 𝑡)) 𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ (1 − 𝑥)∫

𝑥

0

(1 − 𝑡)
𝛼−2−𝛾

𝑡
1−𝛽

× 𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

+ 𝑥∫

1

𝑥

(1 − 𝑡)
𝛼−1−𝛾

𝑡
−𝛽

× 𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

= (1 − 𝑥) 𝐼 (𝑥) + 𝑥𝐽 (𝑥) .

(46)

For 0 < 𝑥 ≤ 1/2, we have 𝐼(𝑥) ≈ ∫

𝑥

0

𝑡
1−𝛽

𝐿
3
(𝑡)𝑑𝑡. So, using

Lemma 5 and hypothesis (42), we deduce that

𝐼 (𝑥) ≈

{
{

{
{

{

𝑥
2−𝛽

𝐿
3
(𝑥) , if 𝛽 < 2,

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 2.

(47)

Now, we have

𝐽 (𝑥) ≈ ∫

1/2

𝑥

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡

+ ∫

1

1/2

(1 − 𝑡)
𝛼−1−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

1/2

𝑥

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡,

(48)

which implies by Lemma 5 that

𝐽 (𝑥) ≈

{
{
{
{

{
{
{
{

{

𝑥
1−𝛽

𝐿
3
(𝑥) , if 1 < 𝛽 ≤ 2,

∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡, if 𝛽 = 1,

1, if 𝛽 < 1.

(49)

Hence, it follows by Lemma 6 and hypothesis (42) that, for
0 < 𝑥 ≤ 1/2, we get

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2,

𝑥
2−𝛽

𝐿
3
(𝑥) if 1 < 𝛽 < 2,

𝑥∫

𝜂

𝑥

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 1,

𝑥 if 𝛽 < 1.

(50)

That is

𝐺
𝛼
𝑏 (𝑥) ≈ 𝑥

min(𝛼−1,𝛼−𝛽)
𝜓
𝛽
(𝑥) . (51)
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Now, for 1/2 ≤ 𝑥 < 1, we use again Lemma 5 and hypothesis
(42) to deduce that

𝐼 (𝑥) ≈ ∫

1/2

0

𝑡
1−𝛽

𝐿
3
(𝑡) 𝑑𝑡

+ ∫

𝑥

1/2

(1 − 𝑡)
𝛼−2−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

𝑥

1/2

(1 − 𝑡)
𝛼−2−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈

{
{
{
{

{
{
{
{

{

(1 − 𝑥)
𝛼−1−𝛾

𝐿
4
(1 − 𝑥) , if 𝛼 − 1 < 𝛾 ≤ 𝛼,

∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼 − 1,

1, if 𝛾 < 𝛼 − 1,

𝐽 (𝑥) ≈ ∫

1−𝑥

0

𝑡
𝛼−1−𝛾

𝐿
4
(𝑡) 𝑑𝑡

≈

{
{

{
{

{

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) , if 𝛾 < 𝛼,

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼.

(52)

Hence, it follows from Lemma 3 that, for 𝑥 ∈ [1/2, 1), we get

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼,

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) , if 𝛼 − 1 < 𝛾 < 𝛼,

(1 − 𝑥) ∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡, if 𝛾 = 𝛼 − 1,

1 − 𝑥, if 𝛾 < 𝛼 − 1.

(53)

That is

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈ (1 − 𝑥)

min(1,𝛼−𝛾)
𝜙
𝛾
(1 − 𝑥) . (54)

This together with (51) implies that, for 𝑥 ∈ (0, 1), we have

𝐺
𝛼
𝑏 (𝑥) ≈ 𝑥

min(𝛼−1,𝛼−𝛽)
(1 − 𝑥)

min(1,𝛼−𝛾)
𝜓
𝛽
(𝑥) 𝜙
𝛾
(1 − 𝑥) .

(55)

3. Proof of Theorem 1

In order to proveTheorem 1, we need the following Lemma.

Lemma 14. Assume that the function 𝑎 satisfies (𝐻
0
) and put

𝜔(𝑡) = 𝑎(𝑡)𝑡
(𝛼−2)𝜎

(𝜃(𝑡))
𝜎 for 𝑡 ∈ (0, 1). Then one has, for 𝑥 ∈

(0, 1),

𝐺
𝛼
𝜔 (𝑥) ≈ 𝑥

𝛼−2

𝜃 (𝑥) . (56)

Proof. Put 𝑟 = min(𝛼−1, (𝛼−𝜆)/(1−𝜎)) and 𝑠 = min(1, (𝛼−

𝜇)/(1 − 𝜎)). Then for 𝑡 ∈ (0, 1), we have

𝜔 (𝑡) = 𝑡
−𝜆+𝑟𝜎

𝐿
1
(𝑡) (𝐿̃

1
(𝑡))

𝜎/(1−𝜎)

× (1 − 𝑡)
−𝜇+𝑠𝜎

𝐿
2
(1 − 𝑡) (𝐿̃

2
(1 − 𝑡))

𝜎/(1−𝜎)

.

(57)

Let 𝛽 = 𝜆 − 𝑟𝜎, 𝛾 = 𝜇 − 𝑠𝜎, 𝐿
3
(𝑡) = 𝐿

1
(𝑡)(𝐿̃
1
(𝑡))

𝜎/(1−𝜎),
and 𝐿

4
(𝑡) = 𝐿

2
(𝑡)(𝐿̃
2
(𝑡))

𝜎/(1−𝜎). Then, using Proposition 13,
we obtain by a simple computation that

𝑥
2−𝛼

𝐺
𝛼
(𝜔) (𝑥) ≈ 𝜃 (𝑥) . (58)

Proof of Theorem 1. From Lemma 14, there exists𝑀 > 1 such
that, for each 𝑥 ∈ (0, 1),

1

𝑀

𝜃 (𝑥) ≤ 𝑥
2−𝛼

𝐺
𝛼
𝜔 (𝑥) ≤ 𝑀𝜃 (𝑥) , (59)

where 𝜔(𝑡) = 𝑎(𝑡)𝑡
(𝛼−2)𝜎

𝜃
𝜎

(𝑡).
Put 𝑐
0
= 𝑀
1/(1−|𝜎|) and let

Λ = {V ∈ 𝐶 ([0, 1]) :

1

𝑐
0

𝜃 ≤ V ≤ 𝑐
0
𝜃} . (60)

In order to use a fixed point theorem, we denote 𝑎(𝑡) =

𝑎(𝑡)𝑡
(𝛼−2)𝜎 and we define the operator 𝑇 on Λ by

𝑇V (𝑥) = 𝑥
2−𝛼

𝐺
𝛼
(𝑎V𝜎) (𝑥) . (61)

For this choice of 𝑐
0
, we can easily prove that, for V ∈ Λ, we

have 𝑇V ≤ 𝑐
0
𝜃 and 𝑇V ≥ (1/𝑐

0
)𝜃.

Now, we have

𝑇V (𝑥) =

𝑥
2−𝛼

Γ (𝛼)

∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝑎 (𝑡) V𝜎 (𝑡) 𝑑𝑡

=

𝑥
2−𝛼

Γ (𝛼)

∫

1

0

[𝑥
𝛼−1

(1 − 𝑡)
𝛼−1

−((𝑥 − 𝑡)
+

)

𝛼−1

] 𝑎 (𝑡) V𝜎 (𝑡) 𝑑𝑡.

(62)

Since the function (𝑥, 𝑡) → 𝑥
𝛼−1

(1 − 𝑡)
𝛼−1

− ((𝑥 −

𝑡)
+

)
𝛼−1 is continuous on [0, 1] × [0, 1] and by Proposition 10,

Corollary 11, and Lemma 14, the function 𝑡 → 𝑡(1 −

𝑡)
𝛼−1

𝑎(𝑡)𝜃
𝜎

(𝑡) is integrable on (0, 1), we deduce that the
operator 𝑇 is compact from Λ to itself. It follows by the
Schauder fixed point theorem that there exists V ∈ Λ such
that 𝑇V = V. Put 𝑢(𝑥) = 𝑥

𝛼−2V(𝑥). Then 𝑢 ∈ 𝐶
2−𝛼

([0, 1]) and
𝑢 satisfies the equation

𝑢 (𝑥) = 𝐺
𝛼
(𝑎𝑢
𝜎

) (𝑥) . (63)

Since the function 𝑡 → 𝑡(1−𝑡)
𝛼−1

𝑎(𝑡)𝑢
𝜎

(𝑡) is continuous and
integrable on (0, 1), then by Proposition 12, the function 𝑢 is
a positive continuous solution of problem (1).

Finally, let us prove that 𝑢 is the unique positive contin-
uous solution satisfying (9). To this aim, we assume that (1)
has two positive solutions 𝑢, V ∈ 𝐶

2−𝛼
([0, 1]) satisfying (9)

and consider the nonempty set 𝐽 = {𝑚 ≥ 1 : 1/𝑚 ≤ 𝑢/V ≤ 𝑚}

and put 𝑐 = inf 𝐽. Then 𝑐 ≥ 1 and we have (1/𝑐)V ≤ 𝑢 ≤ 𝑐V. It
follows that 𝑢𝜎 ≤ 𝑐

|𝜎|V𝜎 and consequently

− 𝐷
𝛼

(𝑐
|𝜎|V − 𝑢) = 𝑎 (𝑐

|𝜎|V𝜎 − 𝑢
𝜎

) ≥ 0,

lim
𝑡→0
+

𝑥
2−𝛼

(𝑐
|𝜎|V − 𝑢) (𝑡) = 0,

(𝑐
|𝜎|V − 𝑢) (1) = 0,

(64)
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which implies by Proposition 12 that 𝑐|𝜎|V−𝑢 = 𝐺
𝛼
(𝑎(𝑐
|𝜎|V𝜎 −

𝑢
𝜎

)) ≥ 0. By symmetry, we also obtain that V ≤ 𝑐
|𝜎|

𝑢. Hence,
𝑐
|𝜎|

∈ 𝐽 and 𝑐 ≤ 𝑐
|𝜎|. Since |𝜎| < 1, then 𝑐 = 1 and

consequently 𝑢 = V.

Example 15. Let 𝜎 ∈ (−1, 1) and 𝑎 be a positive continuous
function on (0, 1) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆

(1 − 𝑡)
−𝜇 log(

2

1 − 𝑡

) , (65)

where 𝜆 < 𝛼 + (2 − 𝛼)(1 − 𝜎) and 𝜇 < 𝛼. Then, using
Theorem 1, problem (1) has a unique positive continuous
solution 𝑢 satisfying the following estimates:

𝑢 (𝑥) ≈ 𝑥
min(𝛼−1,(𝛼−𝜆)/(1−𝜎))

(𝐿̃
1
(𝑥))

1/(1−𝜎)

× (1 − 𝑥)
min(1,(𝛼−𝜇)/(1−𝜎))

(𝐿̃
2
(1 − 𝑥))

1/(1−𝜎)

,

(66)

where

𝐿̃
1
(𝑥) =

{

{

{

1, if 𝜆 ̸= 𝛼 − (𝛼 − 1) (1 − 𝜎) ,

log(

2

𝑥

) , if 𝜆 = 𝛼 − (𝛼 − 1) (1 − 𝜎) ,

𝐿̃
2
(𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1, if 𝜇 < 𝛼 + 𝜎 − 1,

(log(

2

𝑥

))

2

, if 𝜇 = 𝛼 + 𝜎 − 1,

log(

2

𝑥

) , if 𝛼 + 𝜎 − 1 < 𝜇 < 𝛼.

(67)
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Dirichlet problems of singular nonlinear fractional differential
equations,” Journal of Mathematical Analysis and Applications,
vol. 371, no. 1, pp. 57–68, 2010.
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