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The essential stability of solutions for system of quasivariational relations is studied. We show that most of systems of
quasivariational relations are essential (in the sense of Baire category) and that, for any system of quasivariational relations, there
exists at least one essential component of its solution set. As applications, the existence of essential components of solution set for
systems of KKM problems and systems of quasivariational inclusions is obtained.

1. Introduction

It is well known that the equilibrium problem is a unified
model of several problems, namely, optimization problem,
saddle point problem, variational inequality problem, fixed
point problem, Nash equilibrium problem, and so forth.
Recently, several people focused on the study of equilibrium
problems and their generalizations. Luc [1] introduced amore
general model of equilibrium problems which is called a
variational relation problem (in short, VR). The stability of
the solution set of variational relation problems was studied
in [2, 3]. Various types of sufficient conditions for the exis-
tence of solutions of variational relation problems have been
investigated inmany recent papers (see [4–12]). Furthermore,
Agarwal et al. [13] presented a unified approach for studying
the existence of solutions for two types of variational relation
problems, and Balaj and Lin [14] established the existence cri-
teria for the solutions of two very general types of variational
relation problems.

However, One could also argue that a sensible equilibrium
should be stable against slight perturbations in the payoffs of
the game (van Damme [15]). The notation of an essential
solution for fixed points was firstly introduced by Fort [16],
which means that, for a fixed point 𝑥 of a mapping 𝑓, if each
mapping sufficiently near to 𝑓 has a fixed point arbitrarily

near to 𝑥, 𝑥 is said to be essential. The method of essential
solution has been widely used in various fields recently. It
plays a crucial role in the study of stability of solutions
including optimal solutions, Nash equilibria, and fixed points
(see [17–30]).

Motivated and inspired by research works mentioned
above, in this paper, we study the notions of essential stability
of solutions for system of quasivariational relations. The
results of this paper improve and generalize several known
results on the stability of solution set for variational relation
problems.

2. Definitions and Preliminaries

Lin and Ansari [8] introduced a system of quasivariational
relations (SQVP) and established the existence of solutions
of SQVP by means of maximal element theorem for a family
of multivalued mappings. Let 𝐼 be any index set. For each
𝑖 ∈ 𝐼, let 𝑋

𝑖
be nonempty set, let 𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
, 𝑆
𝑖
, 𝑄
𝑖
: 𝑋 󴁂󴀱

𝑋
𝑖
be multivalued mappings with nonempty values, and let

𝑅
𝑖
(𝑥, 𝑦
𝑖
) be a relation linking 𝑥 ∈ 𝑋 and 𝑦

𝑖
∈ 𝑋
𝑖
. A system

𝑞 = (𝐼, 𝑋
𝑖
, 𝑄
𝑖
, 𝑆
𝑖
, 𝑅
𝑖
) of quasivariational relations consists in

finding 𝑥
∗

∈ 𝑋 such that, for each 𝑖 ∈ 𝐼, 𝑥∗
𝑖

∈ 𝑆
𝑖
(𝑥
∗
) and

𝑅
𝑖
(𝑥
∗
, 𝑦
𝑖
) holds for any 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥
∗
).
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Definition 1. Let 𝐼 be a finite set, and 𝑧
0

∈ 𝑋. Let M be the
set of all systems of quasivariational relations 𝑞 = (𝐼, 𝑋

𝑖
,

𝑄
𝑖
, 𝑆
𝑖
, 𝑅
𝑖
) such that the following hold: (i) for each 𝑖 ∈ 𝐼,𝑋

𝑖
is

nonempty convex compact subset of a normed linear space;
(ii) for each 𝑖 ∈ 𝐼, 𝑆

𝑖
is upper semicontinuous with nonempty

convex compact values; (iii) for each 𝑖 ∈ 𝐼, 𝑄−1
𝑖

(𝑦
𝑖
) is open in

𝑋 for any 𝑦
𝑖
∈ 𝑋
𝑖
; (iv) 𝑧0

𝑖
∈ 𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥) for any 𝑥 ∈ 𝑋 and

any 𝑖 ∈ 𝐼; (v) for each 𝑖 ∈ 𝐼, any finite set {𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
} ⊂ 𝑋

𝑖
,

and any 𝑥
𝑖
∈ co{𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
}, there is 𝑗 ∈ {1, . . . , 𝑛} such that

𝑅
𝑖
(𝑥, 𝑥
𝑖𝑗
) holds, where 𝑥 = (𝑥

𝑖
)
𝑖∈𝐼
; (vi) 𝑅

𝑖
(⋅, 𝑦
𝑖
) is closed for

any 𝑦
𝑖
∈ 𝑋
𝑖
.

Clearly, for any 𝑞 ∈ M, we have that (1) {𝑥 ∈ 𝑋 : 𝑥
𝑖
∈

𝑆
𝑖
(𝑥)} is closed; (2) 𝑄

𝑖
(𝑥) ̸= 0 for all 𝑥 ∈ 𝑋; (3) since 𝑆

𝑖
(𝑥)

is convex and 𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥), then co𝑄

𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥). By

Theorem 3.1 of [8], the problem 𝑞 has at least one solution.
Here, for any 𝑞 ∈ M and each 𝑖 ∈ 𝐼, define two closed-valued
mappings 𝐴

𝑖
, 𝐵
𝑖
: 𝑋
𝑖
󴁂󴀱 𝑋 by 𝐴

𝑖
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑦

𝑖
∉ 𝑄
𝑖
(𝑥)}

and 𝐵
𝑖
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑅

𝑖
(𝑥, 𝑦
𝑖
) holds}. Denote by 𝐹(𝑞) the

solution set of 𝑞. Thus, a correspondence 𝐹 : M 󴁂󴀱 𝑋 is well
defined. For each 𝑞, 𝑞

󸀠
∈ M, define the distance onM by

𝜌 (𝑞, 𝑞
󸀠
) = sup
𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
𝑖 (
𝑥) , 𝑆
󸀠

𝑖
(𝑥))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
𝑖
(𝑦
𝑖
) , 𝐴
󸀠

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
𝑖
(𝑦
𝑖
) , 𝐵
󸀠

𝑖
(𝑦
𝑖
)) ,

(1)

where ℎ
𝑖
is the Hausdorff distance on 𝑋

𝑖
and ℎ is the Haus-

dorff distance on 𝑋. Clearly, (M, 𝜌) is a metric space.
In what follows, the notions of essential solutions, essen-

tial problems are introduced (see [25]). Let (𝑋, 𝑑), (𝑌, 𝜌) be
twometric spaces, and let ℎ be theHausdorff distance defined
on 𝑌. A set-valued mapping 𝐹 : 𝑋 󴁂󴀱 𝑌 is said to be (1) upper
semicontinuous at 𝑥 ∈ 𝑋 if, for any open subset 𝑂 of 𝑌 with
𝑂 ⊃ 𝐹(𝑥), there exists an open neighborhood 𝑈(𝑥) of 𝑥 such
that 𝑂 ⊃ 𝐹(𝑥

󸀠
) for any 𝑥

󸀠
∈ 𝑈(𝑥); (2) upper semicontinuous

on 𝑋 if 𝐹 is upper semicontinuous on each 𝑥 ∈ 𝑋; (3) an
𝑢𝑠𝑐𝑜mapping if 𝐹 is upper semicontinuous on 𝑋 and 𝐹(𝑥) is
compact for each 𝑥 ∈ 𝑋; (4) lower semicontinuous at 𝑥 ∈ 𝑋

if, for any open subset 𝑂 of 𝑌 with 𝑂 ∩ 𝐹(𝑥) ̸= 0, there exists
an open neighborhood 𝑈(𝑥) of 𝑥 such that 𝑂 ∩ 𝐹(𝑥

󸀠
) ̸= 0 for

any 𝑥
󸀠
∈ 𝑈(𝑥); (5) lower semicontinuous on 𝑋 if 𝐹 is lower

semicontinuous on each 𝑥 ∈ 𝑋; (6) closed if Graph(𝐹) =

{(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 ∈ 𝐹(𝑥)} is closed. Let 𝑥 ∈ 𝑋. A point
𝑦 ∈ 𝐹(𝑥) is said to be an essential point of 𝐹(𝑥) if, for any
open neighborhood 𝑁(𝑦) of 𝑦 in 𝑌, there is a 𝛿 > 0 such
that 𝑁(𝑦) ∩ 𝐹(𝑥

󸀠
) ̸= 0 for any 𝑥

󸀠
∈ 𝑋 with 𝑑(𝑥, 𝑥

󸀠
) < 𝛿.

If all 𝑦 ∈ 𝐹(𝑥) are essential, then 𝑥 is said to be essential. A
nonempty closed subset 𝑒(𝑥) of 𝐹(𝑥) is said to be an essential
set of 𝐹(𝑥) if, for any open set 𝑈, 𝑒(𝑥) ⊂ 𝑈, there is a 𝛿 > 0

such that 𝑈 ∩ 𝐹(𝑥
󸀠
) ̸= 0 for any 𝑥

󸀠
∈ 𝑋 with 𝑑(𝑥, 𝑥

󸀠
) < 𝛿. An

essential subset𝑚(𝑥) ⊂ 𝐹(𝑥) is said to be a minimal essential
set of 𝐹(𝑥) if it is a minimal element of the family of essential
sets ordered by set inclusion. A component 𝐶(𝑥) is called an
essential component of 𝐹(𝑥) if 𝐶(𝑥) is essential.

Remark 2 (see [25]). (1) It is easy to see that the problem 𝑥 ∈

𝑋 is essential if and only if the mapping 𝐹 : 𝑋 󴁂󴀱 𝑌 is lower
semicontinuous at 𝑥. (2) Let two nonempty closed sets be 𝑒

1
,

𝑒
2
of 𝐹(𝑥), if 𝑒

1
⊂ 𝑒
2
, and 𝑒

1
is essential, so is 𝑒

2
.

Lemma 3 (see [31]). If 𝑋 is a complete metric space and 𝐹 :

𝑋 󴁂󴀱 𝑌 is 𝑢𝑠𝑐𝑜, then the set of points, where 𝐹 is lower semi-
continuous, is a dense residual set in 𝑋.

Lemma 4 (see [22]). Let 𝐶,𝐷 be two nonempty, convex, and
compact subsets of linear normed space 𝑌. Then ℎ(𝐶, 𝜆𝐶 +

𝜇𝐷) ≤ ℎ(𝐶,𝐷), where 𝜆, 𝜇 ≥ 0, 𝜆 + 𝜇 = 1.

Lemma5 (see [24]). Let (𝑌, 𝜌) be ametric space, let𝐾
1
and𝐾

2

be two nonempty compact subsets of𝑌, and let𝑉
1
and𝑉
2
be two

nonempty disjoint open subsets of 𝑌. If ℎ(𝐾
1
, 𝐾
2
) < 𝜌(𝑉

1
, 𝑉
2
),

then
ℎ (𝐾
1
, (𝐾
1
\ 𝑉
2
) ∪ (𝐾

2
\ 𝑉
1
)) ≤ ℎ (𝐾

1
, 𝐾
2
) . (2)

Lemma6 (see [32]). Let𝑋 and𝑌 be twoHausdorff topological
spaces with𝑌 compact. If𝐹 is a closed set-valuedmapping from
𝑋 to 𝑌, then 𝐹 is upper semicontinuous.

Lemma 7 (see [23]). Let 𝑋, 𝑌, 𝑍 be three metric spaces, and
let 𝑆
1
: 𝑌 󴁂󴀱 𝑋 and 𝑆

2
: 𝑍 󴁂󴀱 𝑋 be two set-valued mappings.

Suppose that there exists at least one essential component of
𝑆
1
(𝑦) for each 𝑦 ∈ 𝑌 and there exists a continuous single-

valued mapping 𝑇 : 𝑍 → 𝑌 such that 𝑆
2
(𝑧) ⊃ 𝑆

1
(𝑇(𝑧)) for

each 𝑧 ∈ 𝑍. Then, there exists at least one essential component
of 𝑆
2
(𝑧) for each 𝑧 ∈ 𝑍.

3. Main Results

Theorem 8. (M, 𝜌) is a complete metric space.

Proof. Let {𝑞𝑛}∞
𝑛=1

be any Cauchy sequence in M, and then,
for any 𝜀 > 0, there is 𝑁 > 0 such that 𝜌(𝑞𝑛, 𝑞𝑚) < 𝜀 for any
𝑛,𝑚 > 𝑁; that is,
sup
𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
𝑖 (
𝑥) , 𝑆
󸀠

𝑖
(𝑥)) + sup

𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
𝑖
(𝑦
𝑖
) , 𝐴
󸀠

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
𝑖
(𝑦
𝑖
) , 𝐵
󸀠

𝑖
(𝑦
𝑖
)) ≤ 𝜀,

(3)

for any 𝑛,𝑚 > 𝑁.
(1) Easily, for each 𝑖 ∈ 𝐼, there exists a set-valuedmapping

𝑆
𝑖

: 𝑋 󴁂󴀱 𝑋
𝑖
such that 𝑆

𝑛

𝑖
(𝑥) → 𝑆

𝑖
(𝑥) for any

𝑥 ∈ 𝑋 and 𝑆
𝑖
is upper semicontinuous with nonempty

compact convex values.
(2) For each 𝑖 ∈ 𝐼, there exist two closed-valuedmappings

𝐴
𝑖
, 𝐵
𝑖
: 𝑋
𝑖
󴁂󴀱 𝑋 such that, for any 𝑦

𝑖
∈ 𝑋
𝑖
,

𝐴
𝑛

𝑖
(𝑦
𝑖
) 󳨀→ 𝐴

𝑖
(𝑦
𝑖
) , 𝐵

𝑛

𝑖
(𝑦
𝑖
) 󳨀→ 𝐵

𝑖
(𝑦
𝑖
) . (4)

Further, for each 𝑖 ∈ 𝐼, define the mapping 𝑄
𝑖
: 𝑋 󴁂󴀱

𝑋
𝑖
and relation 𝑅

𝑖
by the following:

𝑄
𝑖 (
𝑥) = {𝑦

𝑖
∈ 𝑋
𝑖
| 𝑥 ∉ 𝐴

𝑖
(𝑦
𝑖
)} ,

𝑅
𝑖
(𝑥, 𝑦
𝑖
) holds if and only if 𝑥 ∈ 𝐵

𝑖
(𝑦
𝑖
) .

(5)

We need to prove that 𝑞 = (𝑆
𝑖
, 𝑄
𝑖
, 𝑅
𝑖
)
𝑖∈𝐼

∈ M.
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(3) Easily, for each 𝑖 ∈ 𝐼 and any 𝑦
𝑖

∈ 𝑋
𝑖
, 𝑄−1
𝑖

(𝑦
𝑖
) =

𝑋 \ 𝐴
𝑖
(𝑦
𝑖
) is open in 𝑋. And, since 𝐵

𝑖
(𝑦
𝑖
) is closed,

it follows that 𝑅
𝑖
(⋅, 𝑦
𝑖
) is closed.

(4) If there exist 𝑖
0

∈ 𝐼 and 𝑥 ∈ 𝑋 such that 𝑧
0

𝑖0
∉

𝑄
𝑖0
(𝑥), then 𝑥 ∈ 𝐴

𝑖0
(𝑧
0

𝑖0
). It follows from 𝐴

𝑛

𝑖0
(𝑧
0

𝑖0
) →

𝐴
𝑖0
(𝑧
0

𝑖0
) that there exists a sequence {𝑥𝑛} of𝑋 such that

𝑥
𝑛

∈ 𝐴
𝑛

𝑖0
(𝑧
0

𝑖0
) and 𝑥

𝑛
→ 𝑥, which implies that 𝑧0

𝑖0
∉

𝑄
𝑛

𝑖0
(𝑥
𝑛
). It is a contradiction. Thus 𝑧0

𝑖
∈ 𝑄
𝑖
(𝑥) for any

𝑥 ∈ 𝑋 and any 𝑖 ∈ 𝐼.
(5) Suppose the existence of 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑋 such that

𝑄
𝑖
(𝑥) ̸⊂ 𝑆

𝑖
(𝑥), and then there exist 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥) such

that 𝑦
𝑖
∉ 𝑆
𝑖
(𝑥). From 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥), that is, 𝑥 ∉ 𝐴

𝑖
(𝑦
𝑖
), it

follows that 𝑥 ∉ 𝐴
𝑛

𝑖
(𝑦
𝑖
) for enough large 𝑛; that is, 𝑦

𝑖
∈

𝑄
𝑛

𝑖
(𝑥). Moreover, since 𝑦

𝑖
∉ 𝑆
𝑖
(𝑥), then 𝑦

𝑖
∉ 𝑆
𝑛

𝑖
(𝑥) for

enough large 𝑛. Thus, for enough large 𝑛, 𝑦
𝑖
∈ 𝑄
𝑛

𝑖
(𝑥)

and 𝑦
𝑖
∉ 𝑆
𝑛

𝑖
(𝑥), which implies that𝑄𝑛

𝑖
(𝑥) ̸⊂ 𝑆

𝑛

𝑖
(𝑥). It is

a contradiction. Thus 𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥) for any 𝑖 ∈ 𝐼 and

any 𝑥 ∈ 𝑋.
(6) Suppose that there exist 𝑖

0
∈ 𝐼, finite set {𝑥

𝑖1
, . . . , 𝑥

𝑖𝑚
},

for all 𝑖 ∈ 𝐼, and 𝑥 = (𝑥
𝑖
)
𝑖∈𝐼

∈ 𝑋 with 𝑥
𝑖

∈

co{𝑥
𝑖1
, . . . , 𝑥

𝑖𝑚
}, for all 𝑖 ∈ 𝐼 such that 𝑅

𝑖0
(𝑥, 𝑥
𝑖0𝑗

) does
not hold for any 𝑗 ∈ {1, . . . , 𝑚}, and then 𝑥 ∉ 𝐵

𝑖0
(𝑥
𝑖0𝑗

)

for any 𝑗 ∈ {1, . . . , 𝑚}. Since 𝐵
𝑛

𝑖
(𝑦
𝑖
) → 𝐵

𝑖
(𝑦
𝑖
) for any

𝑦
𝑖

∈ 𝑋
𝑖
and any 𝑖 ∈ 𝐼, then, for enough large 𝑛,

𝑥 ∉ 𝐵
𝑛

𝑖0
(𝑥
𝑖0𝑗

) for any 𝑗 ∈ {1, . . . , 𝑚}, which implies that
𝑅
𝑛

𝑖0
(𝑥, 𝑥
𝑖0𝑗

) does not hold for any 𝑗 ∈ {1, . . . , 𝑚}. It is
a contradiction. Thus, for each 𝑖 ∈ 𝐼, any finite set
{𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
} ⊂ 𝑋

𝑖
, and any 𝑥

𝑖
∈ co{𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
},

there is 𝑗 ∈ {1, . . . , 𝑛} such that 𝑅
𝑖
(𝑥, 𝑥
𝑖𝑗
) holds, where

𝑥 = (𝑥
𝑖
)
𝑖∈𝐼
. Hence 𝑞 = (𝑆

𝑖
, 𝑄
𝑖
, 𝑅
𝑖
)
𝑖∈𝐼

∈ M. This com-
pletes the proof.

Theorem 9. The mapping 𝐹 : M 󴁂󴀱 𝑋 is upper semicontinu-
ous with compact values.

Proof. By Lemma 6, we only prove that Graph(𝐹) is closed.
For any {𝑞

𝑛
∈ M}

∞

𝑛=1
with 𝑞

𝑛
→ 𝑞 and any 𝑥

𝑛
∈ 𝐹(𝑞

𝑛
) with

𝑥
𝑛

→ 𝑥, we will prove 𝑥 ∈ 𝐹(𝑞).
It follows from 𝑥

𝑛
∈ 𝐹(𝑞

𝑛
) for any 𝑛 that, for each 𝑖 ∈ 𝐼,

𝑥
𝑛

𝑖
∈ 𝑆
𝑛

𝑖
(𝑥
𝑛
) and 𝑅

𝑛

𝑖
(𝑥
𝑛
, 𝑦
𝑖
) holds for any 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥
𝑛
). Since

𝑞
𝑛

→ 𝑞 and 𝑥
𝑛

→ 𝑥, then 𝑥
𝑖
∈ 𝑆
𝑖
(𝑥) for any 𝑖 ∈ 𝐼. Next, if

there exist 𝑖
0

∈ 𝐼 and 𝑦
𝑖0

∈ 𝑄
𝑖0
(𝑥) such that 𝑅

𝑖0
(𝑥, 𝑦
𝑖0
) does

not hold, then 𝑥 ∉ 𝐴
𝑖0
(𝑦
𝑖0
) and 𝑥 ∉ 𝐵

𝑖0
(𝑦
𝑖0
).Then, for enough

large 𝑛, 𝑥𝑛 ∉ 𝐴
𝑛

𝑖0
(𝑦
𝑖0
) and 𝑥

𝑛
∉ 𝐵
𝑛

𝑖0
(𝑦
𝑖0
), which implies that

𝑦
𝑖0

∈ 𝑄
𝑛

𝑖0
(𝑥
𝑛
) and 𝑅

𝑛

𝑖0
(𝑥
𝑛
, 𝑦
𝑖0
) does not hold for enough large

𝑛. It is a contradiction. Thus, for each 𝑖 ∈ 𝐼, 𝑥
𝑖
∈ 𝑆
𝑖
(𝑥) and

𝑅
𝑖
(𝑥, 𝑦
𝑖
) holds for any 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥); that is, 𝑥 ∈ 𝐹(𝑞). This

completes the proof.

Theorem 10. There exists a dense residual subsetG ofM such
that, for each 𝑞 ∈ G, 𝑞 is essential.

Proof. Since (M, 𝜌) is complete by Theorem 8, and the map-
ping 𝐹 : M 󴁂󴀱 𝑋 is upper semicontinuous with nonempty

compact values by Theorem 9, by Lemma 3, there is a dense
residual subset G of M, where 𝐹 is lower semicontinuous;
thus, 𝑞 is essential for each 𝑞 ∈ G by Remark 2(1).

Theorem 11. For each 𝑞 ∈ M, there exists at least one minimal
essential subset of 𝐹(𝑞).

Proof. By Theorem 9, 𝐹 : M 󴁂󴀱 𝑋 is upper semicontinuous
with nonempty compact values; that is, for each open set
𝑂 ⊃ 𝐹(𝑞), there exists 𝛿 > 0 such that, for any 𝑞

󸀠
∈ M with

𝜌(𝑞, 𝑞
󸀠
) < 𝛿,𝑂 ⊃ 𝐹(𝑞

󸀠
). Hence 𝐹(𝑞) is an essential set of itself.

Let Θ denote the family of all essential sets of 𝐹(𝑞) ordered
by set inclusion. Then Θ is nonempty and every decreasing
chain of elements in Θ has a lower bound (because by the
compactness the intersection is in Θ); therefore, by Zorn’s
lemma, Θ has a minimal element and this minimal element
is a minimal essential set of 𝐹(𝑞).

Theorem 12. For each 𝑞 ∈ M, there exists at least one con-
nected minimal essential subset of 𝐹(𝑞).

Proof. For each 𝑞 ∈ M, let𝑚(𝑞) ⊂ 𝐹(𝑞)be aminimal essential
subset of 𝐹(𝑞). Suppose that 𝑚(𝑞) was not connected, then
there exist two nonempty compact subsets 𝑐

1
(𝑞), 𝑐
2
(𝑞) with

𝑚(𝑞) = 𝑐
1
(𝑞)∪𝑐

2
(𝑞), and there exist two disjoint open subsets

𝑉
1, 𝑉2 in 𝑋 such that 𝑉1 ⊃ 𝑐

1
(𝑞) and 𝑉

2
⊃ 𝑐
2
(𝑞). Since 𝑚(𝑞)

is a minimal essential set of 𝐹(𝑞), neither 𝑐
1
(𝑞) nor 𝑐

2
(𝑞) is

essential.There exist two open sets𝑂1 ⊃ 𝑐
1
(𝑞) and𝑂

2
⊃ 𝑐
2
(𝑞)

such that, for any 𝛿 > 0, there exist 𝑞1, 𝑞2 ∈ M with

𝜌 (𝑞, 𝑞
1
) < 𝛿, 𝜌 (𝑞, 𝑞

2
) < 𝛿,

𝐹 (𝑞
1
) ∩ 𝑂
1
= 0, 𝐹 (𝑞

2
) ∩ 𝑂
2
= 0.

(6)

Now, we choose two open sets 𝑊1, 𝑊2 such that

𝑐
1
(𝑞) ⊂ 𝑊

1
⊂ 𝑊

1

⊂ 𝑂
1
∩ 𝑉
1
,

𝑐
2
(𝑞) ⊂ 𝑊

2
⊂ 𝑊

2

⊂ 𝑂
2
∩ 𝑉
2
,

(7)

and inf{𝑑(𝑎, 𝑏) | 𝑎 ∈ 𝑊
1
, 𝑏 ∈ 𝑊

2
} = 𝜀 > 0.

Since𝑚(𝑞) is essential, then, for𝑚(𝑞) ⊂ (𝑊
1
∪𝑊
2
), there

exists 0 < 𝛿
∗

< 𝜀 such that 𝐹(𝑞
󸀠
) ∩ (𝑊

1
∪ 𝑊
2
) ̸= 0 for any

𝑞
󸀠
∈ M with 𝜌(𝑞, 𝑞

󸀠
) < 𝛿
∗. Since 𝑚(𝑞) is a minimal essential

set of 𝐹(𝑞), then neither 𝑐
1
(𝑞) nor 𝑐

2
(𝑞) is essential. Thus, for

𝛿
∗
/16 > 0, there exist two 𝑞

1
, 𝑞
2
∈ M such that

𝐹 (𝑞
1
) ∩ 𝑊

1
= 0, 𝐹 (𝑞

2
) ∩ 𝑊

2
= 0,

𝜌 (𝑞
1
, 𝑞) <

𝛿
∗

16

, 𝜌 (𝑞
2
, 𝑞) <

𝛿
∗

16

.

(8)

Thus 𝜌(𝑞1, 𝑞2) < 𝛿
∗
/8.
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Now, define the following system of quasivariational rela-
tions 𝑞󸀠 = (𝑆

󸀠

𝑖
, 𝑄
󸀠

𝑖
, 𝑅
󸀠

𝑖
)
𝑖∈𝐼

by

𝑆
󸀠

𝑖
(𝑥) = 𝜆 (𝑥) 𝑆

1

𝑖
(𝑥) + 𝜇 (𝑥) 𝑆

2

𝑖
(𝑥) , ∀𝑥 ∈ 𝑋, ∀𝑖 ∈ 𝐼,

𝐴
󸀠

𝑖
(𝑦
𝑖
) = (𝐴

1

𝑖
(𝑦
𝑖
) \ 𝑊
2
) ∪ (𝐴

2

𝑖
(𝑦
𝑖
) \ 𝑊
1
) ,

∀𝑦
𝑖
∈ 𝑋
𝑖
, ∀𝑖 ∈ 𝐼,

𝐵
󸀠

𝑖
(𝑦
𝑖
) = (𝐵

1

𝑖
(𝑦
𝑖
) \ 𝑊
2
) ∪ (𝐵

2

𝑖
(𝑦
𝑖
) \ 𝑊
1
) ,

∀𝑦
𝑖
∈ 𝑋
𝑖
, ∀𝑖 ∈ 𝐼,

𝑄
󸀠

𝑖
(𝑥) = {𝑦

𝑖
∈ 𝑋
𝑖
: 𝑥 ∉ 𝐴

𝑖
(𝑦
𝑖
)} , ∀𝑥 ∈ 𝑋, ∀𝑖 ∈ 𝐼,

𝑅
󸀠

𝑖
(𝑥, 𝑦
𝑖
) holds if and only if 𝑥 ∈ 𝐵

󸀠

𝑖
(𝑦
𝑖
) , ∀𝑖 ∈ 𝐼,

(9)

where

𝜆 (𝑥) =

𝑑 (𝑥,𝑊

2

)

𝑑 (𝑥,𝑊

1

) + 𝑑 (𝑥,𝑊

2

)

,

𝜇 (𝑥) =

𝑑 (𝑥,𝑊

1

)

𝑑 (𝑥,𝑊

1

) + 𝑑 (𝑥,𝑊

2

)

,

∀𝑥 ∈ 𝑋,

𝐴
1

𝑖
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑦

𝑖
∉ 𝑄
1

𝑖
(𝑥)} ,

𝐴
2

𝑖
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑦

𝑖
∉ 𝑄
2

𝑖
(𝑥)} ,

𝐵
1

𝑖
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑅

1

𝑖
(𝑥, 𝑦
𝑖
) holds} ,

𝐵
2

𝑖
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑅

2

𝑖
(𝑥, 𝑦
𝑖
) holds} .

(10)

Easily, we can check the following.
(i) 𝑆
󸀠

𝑖
is upper semicontinuous with nonempty compact

convex values for each 𝑖 ∈ 𝐼.
(ii) 𝑄

󸀠−1

𝑖
(𝑦
𝑖
) = 𝑋 \ 𝐴

1

𝑖
(𝑦
𝑖
) is open for any 𝑦

𝑖
∈ 𝑋
𝑖
and any

𝑖 ∈ 𝐼.
(iii) For any 𝑖 ∈ 𝐼 and any 𝑦

𝑖
∈ 𝑋
𝑖
, since 𝐵

1

𝑖
(𝑦
𝑖
) is closed,

then 𝑅
𝑖
(⋅, 𝑦
𝑖
) is closed.

(iv) For each 𝑖 ∈ 𝐼, since 𝑧
0

𝑖
∈ 𝑄
1

𝑖
(𝑥) and 𝑧

0

𝑖
∈ 𝑄
2

𝑖
(𝑥) for

any 𝑥 ∈ 𝑋, then 𝑥 ∉ 𝐴
1

𝑖
(𝑧
0

𝑖
) and 𝑥 ∉ 𝐴

2

𝑖
(𝑧
0

𝑖
) for any

𝑥 ∈ 𝑋, which implies that 𝑥 ∉ 𝐴
1

𝑖
(𝑧
0

𝑖
) for any 𝑥 ∈ 𝑋;

that is, 𝑧0
𝑖
∈ 𝑄
󸀠

𝑖
(𝑥) for any 𝑥 ∈ 𝑋.

(v) Next, we show 𝑄
󸀠

𝑖
(𝑥) ⊂ 𝑆

󸀠

𝑖
(𝑥) for any 𝑥 ∈ 𝑋 and any

𝑖 ∈ 𝐼. For any fixed 𝑖 ∈ 𝐼, we have three cases.

If 𝑥 ∈ 𝑊
1, then 𝑄

󸀠

𝑖
(𝑥) = 𝑄

1

𝑖
(𝑥) and 𝑆

󸀠

𝑖
(𝑥) =

𝑆
1

𝑖
(𝑥). It follows from 𝑞

1
∈ M that

𝑄
󸀠

𝑖
(𝑥) = 𝑄

1

𝑖
(𝑥) ⊂ 𝑆

1

𝑖
(𝑥) = 𝑆

󸀠

𝑖
(𝑥) . (11)

If 𝑥 ∈ 𝑊
2, then 𝑄

󸀠

𝑖
(𝑥) = 𝑄

2

𝑖
(𝑥) and 𝑆

󸀠

𝑖
(𝑥) =

𝑆
2

𝑖
(𝑥). It follows from 𝑞

2
∈ M that

𝑄
󸀠

𝑖
(𝑥) = 𝑄

2

𝑖
(𝑥) ⊂ 𝑆

2

𝑖
(𝑥) = 𝑆

󸀠

𝑖
(𝑥) . (12)

If𝑥 ∈ 𝑋\(𝑊
1
∪𝑊
2
), then𝑄

󸀠

𝑖
(𝑥) = 𝑄

1

𝑖
(𝑥)∩𝑄

2

𝑖
(𝑥)

and 𝑆
󸀠

𝑖
(𝑥) = 𝜆(𝑥)𝑆

1

𝑖
(𝑥) + 𝜇(𝑥)𝑆

2

𝑖
(𝑥). For any 𝑧

𝑖
∈

𝑄
󸀠

𝑖
(𝑥) = 𝑄

1

𝑖
(𝑥) ∩ 𝑄

2

𝑖
(𝑥), we have 𝑧

𝑖
∈ 𝑄
1

𝑖
(𝑥) ⊂

𝑆
1

𝑖
(𝑥) and 𝑧

𝑖
∈ 𝑄
2

𝑖
(𝑥) ⊂ 𝑆

2

𝑖
(𝑥). Then

𝑧
𝑖
= 𝜆 (𝑥) 𝑧𝑖

+ 𝜇 (𝑥) 𝑧𝑖
∈ 𝜆 (𝑥) 𝑆

1

𝑖
(𝑥) + 𝜇 (𝑥) 𝑆

2

𝑖
(𝑥) = 𝑆

󸀠

𝑖
(𝑥) .

(13)

Thus 𝑄󸀠
𝑖
(𝑥) ⊂ 𝑆

󸀠

𝑖
(𝑥).

(vi) Suppose that there exist 𝑖
0
∈ 𝐼, finite set {𝑥

𝑖1
, . . . , 𝑥

𝑖𝑚
},

for all 𝑖 ∈ 𝐼, and 𝑥 = (𝑥
𝑖
)
𝑖∈𝐼

∈ 𝑋 with 𝑥
𝑖
∈ co{𝑥

𝑖1
,

. . . , 𝑥
𝑖𝑚

}, for all 𝑖 ∈ 𝐼 such that 𝑅
󸀠

𝑖0
(𝑥, 𝑥
𝑖0𝑗

) does not
hold for any 𝑗 ∈ {1, . . . , 𝑚}, and then 𝑥 ∉ 𝐵

󸀠

𝑖0
(𝑥
𝑖0𝑗

) for
any 𝑗 ∈ {1, . . . , 𝑚}. Since𝑊

1
∩𝑊
2
= 0, without loss of

generality, we assume 𝑥 ∉ 𝑊
1. For any 𝑗 ∈ {1, . . . , 𝑚},

since 𝑥 ∉ 𝐵
󸀠

𝑖0
(𝑥
𝑖0𝑗

) = (𝐵
1

𝑖0
(𝑥
𝑖0𝑗

)\𝑊
2
)∪(𝐵
2

𝑖0
(𝑥
𝑖0𝑗

)\𝑊
1
),

then 𝑥 ∉ 𝐵
2

𝑖0
(𝑥
𝑖0𝑗

)\𝑊
1, for all 𝑗 ∈ {1, . . . , 𝑚}. It follows

from 𝑥 ∉ 𝑊
1 that 𝑥 ∉ 𝐵

2

𝑖0
(𝑥
𝑖0𝑗

), ∀𝑗 ∈ {1, . . . , 𝑚}; that
is, 𝑅2
𝑖0
(𝑥, 𝑥
𝑖0𝑗

) does not hold for any 𝑗 ∈ {1, . . . , 𝑚}. It
is a contradiction.

(vii) By Lemmas 4 and 5, we have

𝜌 (𝑞
󸀠
, 𝑞) = sup

𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
𝑖 (
𝑥) , 𝑆
󸀠

𝑖
(𝑥))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
𝑖
(𝑦
𝑖
) , 𝐴
󸀠

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
𝑖
(𝑦
𝑖
) , 𝐵
󸀠

𝑖
(𝑦
𝑖
))

≤ sup
𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
𝑖 (
𝑥) , 𝑆
1

𝑖
(𝑥))

+ sup
𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
1

𝑖
(𝑥) , 𝑆

󸀠

𝑖
(𝑥))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
𝑖
(𝑦
𝑖
) , 𝐴
1

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
1

𝑖
(𝑦
𝑖
) , 𝐴
󸀠

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
𝑖
(𝑦
𝑖
) , 𝐵
1

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
1

𝑖
(𝑦
𝑖
) , 𝐵
󸀠

𝑖
(𝑦
𝑖
))

≤ sup
𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
𝑖 (
𝑥) , 𝑆
1

𝑖
(𝑥))

+ sup
𝑖∈𝐼

sup
𝑥∈𝑋

ℎ
𝑖
(𝑆
1

𝑖
(𝑥) , 𝑆

2

𝑖
(𝑥))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
𝑖
(𝑦
𝑖
) , 𝐴
1

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐴
1

𝑖
(𝑦
𝑖
) , 𝐴
2

𝑖
(𝑦
𝑖
))



Journal of Applied Mathematics 5

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
𝑖
(𝑦
𝑖
) , 𝐵
1

𝑖
(𝑦
𝑖
))

+ sup
𝑖∈𝐼

sup
𝑦𝑖∈𝑋𝑖

ℎ (𝐵
1

𝑖
(𝑦
𝑖
) , 𝐵
2

𝑖
(𝑦
𝑖
))

≤ 3 (

1

16

+

2

16

) 𝛿
∗

< 𝛿
∗
.

(14)

Thus 𝑞󸀠 ∈ M and 𝜌(𝑞
󸀠
, 𝑞) < 𝛿

∗.

Since (𝐹(𝑞
󸀠
) ∩ 𝑊

1
)∪(𝐹(𝑞

󸀠
) ∩ 𝑊

2
) = 𝐹(𝑞

󸀠
) ∩ (𝑊

1
∪𝑊
2
) ̸=

0 and𝑊
1
∩ 𝑊
2
= 0, then we assume 𝐹(𝑞

󸀠
) ∩ 𝑊

1
̸= 0 without

loss of generality. Then there exists 𝑥 ∈ 𝐹(𝑞
󸀠
) ∩𝑊

1 such that,
for each 𝑖 ∈ 𝐼, 𝑥 ∈ 𝑊

1, 𝑥
𝑖
∈ 𝑆
󸀠

𝑖
(𝑥), and 𝑅

󸀠

𝑖
(𝑥, 𝑦
𝑖
) holds for any

𝑦
𝑖
∈ 𝑄
󸀠

𝑖
(𝑥). When 𝑥 ∈ 𝑊

1, we have that, for each 𝑖 ∈ 𝐼,

𝑆
󸀠

𝑖
(𝑥) = 𝜆 (𝑥) 𝑆

1

𝑖
(𝑥) + 𝜇 (𝑥) 𝑆

2

𝑖
(𝑥) = 𝑆

1

𝑖
(𝑥) ,

𝑥 ∈ 𝐵
󸀠

𝑖
(𝑦
𝑖
) = (𝐵

1

𝑖
(𝑦
𝑖
) \ 𝑊
2
) ∪ (𝐵

2

𝑖
(𝑦
𝑖
) \ 𝑊
1
)

󳨐⇒ 𝑥 ∈ 𝐵
1

𝑖
(𝑦
𝑖
) ,

𝑄
󸀠

𝑖
(𝑥) = 𝑄

1

𝑖
(𝑥) ;

(15)

that is, for each 𝑖 ∈ 𝐼, 𝑥
𝑖
∈ 𝑆
1

𝑖
(𝑥) and 𝑅

1

𝑖
(𝑥, 𝑦
𝑖
) holds for any

𝑦
𝑖

∈ 𝑄
1

𝑖
(𝑥), which implies that 𝑥 ∈ 𝐹(𝑞

1
). Hence 𝐹(𝑞

1
) ∩

𝑊
1

̸= 0, which contradicts 𝐹(𝑞
1
) ∩ 𝑊

1
= 0. Thus 𝑚(𝑞) is

connected.

Theorem 13. For each 𝑞 ∈ M, there exists at least one essential
component of 𝐹(𝑞).

Proof. By Theorem 12, there exists at least one connected
minimal essential subset 𝑚(𝑞) of 𝐹(𝑞). Thus, there is a com-
ponent 𝐶 of 𝐹(𝑞) such that 𝑚(𝑞) ⊂ 𝐶. It is obvious that 𝐶

is essential by Remark 2(2). Thus 𝐶 is an essential compo-
nent.

Remark 14. If 𝐼 is a singleton, and 𝑆
𝑖
(𝑥) = 𝑄

𝑖
(𝑥) = 𝑋

𝑖
for any

𝑥 ∈ 𝑋 and any 𝑖 ∈ 𝐼, the system of quasivariational relations
coincides with the variational relation problem considered in
[3]. Thus, the results of [3] are obtained as a special case of
this paper’s results.There,M󸀠 is the set of variational relations
𝑅(𝑥, 𝑦) linking 𝑥, 𝑦 ∈ 𝑋 such that (i) 𝑋 is nonempty convex
compact subset of a normed linear space; (ii) for any finite
set {𝑥

1
, . . . , 𝑥

𝑛
} ⊂ 𝑋, and any 𝑥 ∈ co{𝑥

1
, . . . , 𝑥

𝑛
}, there is 𝑗 ∈

{1, . . . , 𝑛} such that𝑅(𝑥, 𝑥
𝑗
) holds; (iii)𝑅(⋅, 𝑦) is closed for any

𝑦 ∈ 𝑋. Then we have the following results, which are Lemma
3.2, Theorems 3.1–3.4 in [3].

Theorem 15. The mapping 𝐹 : M󸀠 󴁂󴀱 𝑋 is upper semicontin-
uous with compact values.

Theorem 16. There exists a dense residual subset G󸀠 of M󸀠
such that, for each 𝑞 ∈ G󸀠, 𝑞 is essential.

Theorem 17. For each 𝑞 ∈ M󸀠, there exists at least one mini-
mal essential subset of 𝐹(𝑞).

Theorem 18. For each 𝑞 ∈ M󸀠, there exists at least one mini-
mal essential subset of 𝐹(𝑞).

Theorem 19. For each 𝑞 ∈ M󸀠, there exists at least one essen-
tial component of 𝐹(𝑞).

4. Applications (I): Systems of KKM Problems

Let 𝐼 be any index set. For each 𝑖 ∈ 𝐼, let 𝑋
𝑖
be a nonempty

convex compact subset of topological vector space 𝐸
𝑖
and

𝑋 = ∏
𝑖∈𝐼

𝑋
𝑖
, and let 𝑆

𝑖
, 𝑄
𝑖
: 𝑋 󴁂󴀱 𝑋

𝑖
and 𝐺

𝑖
: 𝑋
𝑖
󴁂󴀱 𝑋

be multivalued mappings with nonempty values. A system of
KKM problems consists in finding 𝑥

∗
= (𝑥
∗

𝑖
)
𝑖∈𝐼

∈ 𝑋 such
that, for each 𝑖 ∈ 𝐼, 𝑥∗

𝑖
∈ 𝑆
𝑖
(𝑥
∗
) and 𝑥

∗
∈ ⋂
𝑦𝑖∈𝑄𝑖(𝑥

∗
)
𝐺
𝑖
(𝑦
𝑖
).

Definition 20. Let 𝐼 be a finite set, and 𝑧
0
∈ 𝑋. LetM

1
be the

set of systems of KKM problems 𝜂 = (𝐼, 𝑋
𝑖
, 𝑆
𝑖
, 𝑄
𝑖
, 𝐺
𝑖
) such

that, for each 𝑖 ∈ 𝐼, (1) 𝑋
𝑖
is a nonempty convex compact

subset of a normed linear space 𝐸
𝑖
; (2) 𝑧

0

𝑖
∈ 𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥)

for any 𝑥 ∈ 𝑋 and any 𝑖 ∈ 𝐼, and 𝑄
−1

𝑖
(𝑦
𝑖
) is open in 𝑋 for

all 𝑦
𝑖
∈ 𝑋
𝑖
; (3) 𝑆

𝑖
is upper semicontinuous with nonempty

compact convex values; (4) the multivalued mapping 𝐺
𝑖

:

𝑋
𝑖

󴁂󴀱 𝑋 holds nonempty closed values; (5) for any finite
set {𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
} ⊂ 𝑋

𝑖
, and any 𝑥

𝑖
∈ co{𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
}, there

is 𝑗 ∈ {1, . . . , 𝑛} such that 𝑥 ∈ 𝐺
𝑖
(𝑥
𝑖𝑗
) holds, where 𝑥 = (𝑥

𝑖
)
𝑖∈𝐼
.

For each 𝜂 ∈ M
1
, denote by𝐹

1
(𝜂) the solution set of 𝜂 and

𝑞
𝜂
∈ M by 𝑞

𝜂
= (𝑆
𝑖
, 𝑄
𝑖
, 𝑅
𝜂

𝑖
)
𝑖∈𝐼
, where

𝑅
𝜂

𝑖
(𝑥, 𝑦
𝑖
) holds if and only if 𝑥 ∈ 𝐺

𝑖
(𝑦
𝑖
) , ∀𝑖 ∈ 𝐼.

(16)

Easily 𝐹
1
(𝜂) is nonempty. Furthermore, for any 𝜂, 𝜂

󸀠
∈ M
1
,

we define the distance on M
1
by 𝜌
1
(𝜂, 𝜂
󸀠
) = 𝜌(𝑞

𝜂
, 𝑞
𝜂
󸀠

). Thus
there exists an isometric mapping 𝑇

1
: M
1

→ M such that
𝑇
1
(𝜂) = 𝑞

𝜂 and 𝐹
1
(𝜂) = 𝐹(𝑞

𝜂
) = 𝐹(𝑇

1
(𝜂)).

Theorem 21. For each 𝜂 ∈ M
1
, there exists at least one essen-

tial component of 𝐹
1
(𝜂).

Proof. Since 𝑇
1

: M
1

→ M is an isometric mapping such
that 𝑇

1
(𝜂) = 𝑞

𝜂, it is continuous. By Theorem 13, there exists
at least one essential component of 𝐹(𝑞) for each 𝑞 ∈ M, and
by Lemma 7, there exists at least one essential component of
𝐹
1
(𝜂) for each 𝜂 ∈ M

1
.

5. Applications (II): Systems of
Variational Inclusions

Let 𝐼 be any index set. For each 𝑖 ∈ 𝐼, let 𝑋
𝑖
be a nonempty

subset of Hausdorff topological space, let 𝑍
𝑖
be a Hausdorff

topological vector space, and let 𝑆
𝑖
, 𝑄
𝑖
: 𝑋 󴁂󴀱 𝑋

𝑖
,𝐴
𝑖
, 𝐵
𝑖
: 𝑋 ×

𝑋
𝑖
󴁂󴀱 𝑍
𝑖
be multivalued mappings with nonempty values.
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A systemof quasivariational inclusions of type (I) consists
in finding 𝑥

∗
∈ 𝑋 such that, for each 𝑖 ∈ 𝐼, 𝑥∗

𝑖
∈ 𝑆
𝑖
(𝑥
∗
) and

𝐴
𝑖
(𝑥
∗
, 𝑦
𝑖
) ⊂ 𝐵
𝑖
(𝑥
∗
, 𝑦
𝑖
) for all 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥
∗
).

A system of quasivariational inclusions of type (II) con-
sists in finding 𝑥

∗
∈ 𝑋 such that, for each 𝑖 ∈ 𝐼, 𝑥∗

𝑖
∈ 𝑆
𝑖
(𝑥
∗
)

and 𝐴
𝑖
(𝑥
∗
, 𝑦
𝑖
) ∩ 𝐵
𝑖
(𝑥
∗
, 𝑦
𝑖
) ̸= 0 for all 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥
∗
).

A system of quasivariational inclusions of type (III)
consists in finding 𝑥

∗
∈ 𝑋 such that, for each 𝑖 ∈ 𝐼, 𝑥∗

𝑖
∈

𝑆
𝑖
(𝑥
∗
) and 0 ∈ 𝐴

𝑖
(𝑥
∗
, 𝑦
𝑖
) for all 𝑦

𝑖
∈ 𝑄
𝑖
(𝑥
∗
).

Definition 22. Let 𝐼 be a finite set, and 𝑧
0

∈ 𝑋. Let M1
2
be

the set of systems of quasivariational inclusions of type (I)
𝜂 = (𝐼, 𝑋

𝑖
, 𝑆
𝑖
, 𝑄
𝑖
, 𝐴
𝑖
, 𝐵
𝑖
) such that, for each 𝑖 ∈ 𝐼, (1) 𝑋

𝑖

is a nonempty convex compact subset of a normed linear
space 𝐸

𝑖
; (2) 𝑧

0

𝑖
∈ 𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥) for any 𝑥 ∈ 𝑋 and

any 𝑖 ∈ 𝐼, and 𝑄
−1

𝑖
(𝑦
𝑖
) is open in 𝑋 for all 𝑦

𝑖
∈ 𝑋
𝑖
; (3)

𝑆
𝑖
is upper semicontinuous with nonempty compact convex

values; (4) for any 𝑦
𝑖
∈ 𝑋
𝑖
, 𝐴
𝑖
(⋅, 𝑦
𝑖
) is lower semicontinuous,

and 𝐵
𝑖
(⋅, 𝑦
𝑖
) is closed; (5) for any {𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
} of 𝑋

𝑖
and

any 𝑥
𝑖

∈ co{𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
}, there is 𝑗 ∈ {1, . . . , 𝑛} such that

𝐴
𝑖
(𝑥, 𝑥
𝑖𝑗
) ⊂ 𝐵
𝑖
(𝑥, 𝑥
𝑖𝑗
), where 𝑥 = (𝑥

𝑖
)
𝑖∈𝐼
.

For each 𝜂 ∈ M1
2
, denote by 𝐹

1

2
(𝜂) the solution set of 𝜂.

For any 𝜂 ∈ M1
2
, define 𝑞

𝜂 by 𝑞
𝜂
= (𝑆
𝑖
, 𝑄
𝑖
, 𝑅
𝜂

𝑖
)
𝑖∈𝐼
, where

𝑅
𝜂

𝑖
(𝑥, 𝑦
𝑖
) holds if and only if 𝐴

𝑖
(𝑥, 𝑦
𝑖
) ⊂ 𝐵
𝑖
(𝑥, 𝑦
𝑖
) ,

∀𝑖 ∈ 𝐼.

(17)

By Theorem 3.5 of [8], 𝑞𝜂 ∈ M. Easily, 𝐹1
2
(𝜂) is nonempty.

Further, for any 𝜂, 𝜂
󸀠
∈ M1
2
, we define the distance onM1

2
by

𝜌
1

2
(𝜂, 𝜂
󸀠
) = 𝜌(𝑞

𝜂
, 𝑞
𝜂
󸀠

). Thus there exists an isometric mapping
𝑇
1

2
: M1
2

→ M such that 𝑇1
2
(𝜂) = 𝑞

𝜂 and 𝐹
1

2
(𝜂) = 𝐹(𝑞

𝜂
) =

𝐹(𝑇
1

2
(𝜂)).

Theorem 23. For each 𝜂 ∈ M1
2
, there exists at least one essen-

tial component of 𝐹1
2
(𝜂).

Proof. Since 𝑇
1

2
: M1
2

→ M is an isometric mapping such
that 𝑇1

2
(𝜂) = 𝑞

𝜂, it is continuous. By Theorem 13, there exists
at least one essential component of 𝐹(𝑞) for each 𝑞 ∈ M, and
by Lemma 7, there exists at least one essential component of
𝐹
1

2
(𝜂) for each 𝜂 ∈ M1

2
.

It is similar to Definition 22 and Theorem 23, and the
following results are obtained. Here, we do not repeat the
process.

Definition 24. Let 𝐼 be a finite set, and 𝑧
0

∈ 𝑋. Let M2
2
be

the set of systems of quasivariational inclusions of type (II)
𝜂 = (𝐼, 𝑋

𝑖
, 𝑆
𝑖
, 𝑄
𝑖
, 𝐴
𝑖
, 𝐵
𝑖
) such that, for each 𝑖 ∈ 𝐼, (1) 𝑋

𝑖
is a

nonempty convex compact subset of a normed linear space
𝐸
𝑖
; (2) 𝑧

0

𝑖
∈ 𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥) for any 𝑥 ∈ 𝑋 and any 𝑖 ∈ 𝐼,

and 𝑄
−1

𝑖
(𝑦
𝑖
) is open in 𝑋 for all 𝑦

𝑖
∈ 𝑋
𝑖
; (3) 𝑆

𝑖
is upper

semicontinuous with nonempty compact convex values; (4)
for any 𝑦

𝑖
∈ 𝑋
𝑖
, 𝐴
𝑖
(⋅, 𝑦
𝑖
) is upper semicontinuous with

nonempty compact values and 𝐵
𝑖
(⋅, 𝑦
𝑖
) is closed; (5) for any

{𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
} of 𝑋

𝑖
and any 𝑥

𝑖
∈ co{𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
}, there is 𝑗 ∈

{1, . . . , 𝑛} such that 𝐴
𝑖
(𝑥, 𝑥
𝑖𝑗
) ∩ 𝐵
𝑖
(𝑥, 𝑥
𝑖𝑗
) ̸= 0, where 𝑥 =

(𝑥
𝑖
)
𝑖∈𝐼
.

Definition 25. Let 𝐼 be a finite set, and 𝑧
0
∈ 𝑋. LetM3

2
be the

set of systems of quasivariational inclusions of type (III) 𝜂 =

(𝐼, 𝑋
𝑖
, 𝑆
𝑖
, 𝑄
𝑖
, 𝐴
𝑖
) such that, for each 𝑖 ∈ 𝐼, (1)𝑋

𝑖
is a nonempty

convex compact subset of a normed linear space 𝐸
𝑖
; (2) 𝑧0

𝑖
∈

𝑄
𝑖
(𝑥) ⊂ 𝑆

𝑖
(𝑥) for any 𝑥 ∈ 𝑋 and any 𝑖 ∈ 𝐼, and 𝑄

−1

𝑖
(𝑦
𝑖
)

is open in 𝑋 for all 𝑦
𝑖
∈ 𝑋
𝑖
; (3) 𝑆

𝑖
is upper semicontinuous

with nonempty compact convex values; (4) for any 𝑦
𝑖
∈ 𝑋
𝑖
,

𝐴
𝑖
(⋅, 𝑦
𝑖
) is closed; (5) for any {𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
} of 𝑋

𝑖
and any 𝑥

𝑖
∈

co{𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
}, there is 𝑗 ∈ {1, . . . , 𝑛} such that 0 ∈ 𝐴

𝑖
(𝑥, 𝑥
𝑖𝑗
),

where 𝑥 = (𝑥
𝑖
)
𝑖∈𝐼
.

For each 𝑗 = 2, 3 and each 𝜂 ∈ M
𝑗

2
, denote the solution

set of 𝜂 by 𝐹
𝑗

2
(𝜂).

Theorem 26. For 𝑗 = 2, 3 and each 𝜂 ∈ M
𝑗

2
, there exists at

least one essential component of 𝐹𝑗
2
(𝜂).

6. Conclusions

In this paper, we study the notions of essential stability
of solutions for system of quasivariational relations. We
show that most of systems of quasivariational relations (in
the sense of Baire category) are essential and that, for any
system of quasivariational relations, there exists at least one
essential component of its solution set. As applications, the
existence of essential components of solution set for systems
of KKM problems and systems of quasivariational inclusions
is obtained.
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