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We discuss the boundedness and compactness of the weighted composition operator from mixed norm space to Bloch-type space

on the unit ball of C".

1. Introduction

Let H(B,) be the class of all holomorphic functions on
B, and S(B,) the collection of all the holomorphic self-
mappings of B,, where B,, is the unit ball in the n-dimensional
complex space C". Let dv denote the Lebesegue measure on
B, normalized so that v(B,) = 1 and do the normalized
rotation invariant measure on the boundary S = 0B, of B,.
For f € H(B,), let

-y, 9
Wﬂd—;q&ﬁ@ )

be the radial derivative of f.

A positive continuous function p on [0,1) is called
normal (see, e.g., [1]) if there exist three constants 0 < § < 1,
and 0 < a < b < 0o, such that for r € [, 1)

p(r)
(1-r)°

p(r)
(1-r)°

Lo

Too, r—1. (2)

In the rest of this paper we always assume that ¢ is normal on
[0,1), and from now on if we say that a function y : B, —
[0, 00) is normal we will also suppose that it is radial on B,,,
that is, u(z) = u(lz|) for z € B,,.

Let 0 < p < 00,0 < g < 00, and y be normal on [0, 1). f
is said to belong to the mixed norm space L(p,q, ) if f isa

measurable function on B, and || f|| pau < 00 where

1 1/p
Ul = [ 770070 00 M2 ()}
(0<p<0,0<g<00),

1 lco.qe = sup (1) M, (. f) .

Mo, (r, f) = S(uglf(rC)l,

M, (r, f) = ‘{L |f(rC)|qd0(()}l/q, (0<g< o).

If0 < p = g < oo, then L(p, q, ) is just the space L (u) =
{f is measurable function on B, : -[Bn lf )PP (2)/(1 -
|z]))dv(z) < oo}.

Let H(p,q,4) = L(p,q,u) N H(B,). If0 < p = g < 0o,
then H(p, g, ) is just the weighted Bergman space L? (4). In
particular, H(p, g, ) is Bergman space L2 () if 0 < p = g <
oo and u(r) = (1 - r)l/P. Otherwise, if p = g = 2 and u(r) =
- r)ﬁ/2 (B < 0), then H(p, g, u(r)) is the Dirichlet-type
space.
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For0 < p,g < 00, -1 <y < 1,let u(r) = r@n=Dlp(q
r)DIP, i easy to see that the mixed norm space H(p, g, ),
written by H,, .., consists of all f € H(B,) such that

1 1/p
= P AV 4
1, ={[ M- ar} <o @
Now f € H(B,) is said to belong to Bloch-type space 99”
if
11,1 = supu ) 9/ (@)] < oo, %)

where Vf(z) = (0f(2)/0z,,..
gradient of f.
It is clear that QBM is a Banach space with norm | f|| @, =

| £(0)] + "f”y,l' For f € H(B,), we denote

.,0f(2)/0z,) is the complex

11, = supy @Rf @1 S, =ng1:@? @) (6)

where
(Vf (2), )]
Qi (2) = —_——
f ‘ uescl"ll\){o} 1}GIZ4 (u’ u)
G (u,u)
1 (2@ . < W (2) > |<z,u>|2}
= [ul*+{ 1 -
u* (z) {Gﬁ(lzl) Gﬁ(lzl) |z|? 7
(z#0),
|ul?
Gh (u,u) = ﬁ,
1 1 t dr
= 0< .
AORIO) + L BRI 0<t<l)

It was proved that || f]| L A1 w2 and || f|l 43 Are equivalent
for f € QBH(B") in [2, 3].

Let ¢ € S(B,), v € H(B,); the composition operator C,,
induced by ¢ is defined by

(C,f)@=f(p(z), feH(B,),z€B, (8

and the weighted composition operator T, ,, is defined by

Tyo(f)=wfop 9)

for f € H(B,). We can regard this operator as a generalization
of a multiplication operator M,, and a composition operator
Cy- That is, when ¢(z) = z, we obtain Twpf(z) = Mv,f(z) =
y(z) f(z) and when y(z) = 1 we obtain ijf(z) = Cq,f(z) =
f(p(2)).

It is interesting to provide a function theoretic char-
acterization when ¥ and ¢ induce a bounded or compact
weighted composition operator between some spaces of
holomorphic functions on B,,. Recently, this operator is well
studied by many papers; see, for example, [3-17] and their
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references therein. In particular, Stevi¢ [18] gave some con-
ditions of weighted composition operators between mixed-
norm spaces and H;° spaces on the unit ball. Zhou and
Chen [19] discussed weighted composition operators from
F(p, g, s) to Bloch-type spaces on the unit ball. More recently,
the weighted composition operator from Bers-type space
to Bloch-type space on the unit ball was studied in [6].
Now in this paper, we will continue this line of research
and characterize the boundedness and compactness of the
weighted composition operator T,,, acting from mixed-
norm spaces H,, ., to Bloch-type space %, on the unit ball
of C". The paper is organized as follows. In Section 2, we give
some lemmas. The main results are given in Section 3.

Throughout the remainder of this paper, C will denote a
positive constant; the exact value of which will vary from one
appearance to the next. The notation A =< B means that there
is a positive constant C such that B/C < A < CB.

2. Some Lemmas

Lemma 1. Assume that0 < p,q < 00, -1 <y < 00, and f €
H, .. Then there s a positive constant C which is independent
of f such that

I/l

|f (2)] < C(l - lzlz)n;:;r(wl)/l” (10)
f
EYRPe— L o

(1 B le)n/q+l+(y+l)/p :

Proof. We first prove (10). By the monotonicity of the integral
means and [20, Theorem 1.12] we have that

(3+z])

/4
I, > [ Mg a-ndr

(1+]z])/2

1 (3+|zl)/4
> CM‘;7 (f, | |Z|>J (1-r)dr
2 (1+lz)/2 12)

1+ |z y+1
2CMg<f, 5 )(1—|z|2)

(pn)/
> C(l . |Z|2)V+1+ p q|f(z)|17,

from which the desired result (10) follows.

Next we prove (11). By the monotonicity of the integral
means, using the well-known asymptotic formula (e.g., [21,
Theorem 2]), we obtain that

1
L Mf; (fr)(A=r)dr
(13)

=|f O + Jl Mf; (Rfr)(1-r)""Pdr.
0
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By [20, Theorem 1.12], it follows that

1
P J MP(f,r)(1-r)d
”f”HMV ez A (fir) (1 =r)dr

1

ZCJ Mé’(?{f,r)(l—r)wpdr
(1+|z])/2

> CM? (ERf L+ 2] > J (1 -r)""Pdr (14)
2 (1+l2)/2

g(in 1+ |z ) (1 B |Z|2)y+1+p

y+1+p+(pn)/q

> C(1- 2% IRf ().

Then the desired result (11) follows. This completes the proof.
O

From the above lemma, when f € H, ., then

pay?

f € %n/q+1+(y+1)/p) "f

Grlarnipr S Clf "Hm,y' (15)

For z € B,, u € C", denote the Bergman metric of B, by

1— Iz 2 NG
HZ(u)u):( |2I?) [ul® + |(z ul ”

(1-1eP)

Lemma2. Let v(r) = (1-2)" 10 V/P* gnd o € S(B,). Then

Hy() Jo (2) 2, ]9 (2) 2)
(1_| (z )l ) 2(n/q+(y+1)/p) 17)

G://’(z) (Jo(2)z, ]9 (2)z) g

forall z € B, where Jo(z) denotes the Jacobian matrix of p(z)
and

T
n n a
](p(z)z:<zai Za(g:zk> . (18)

Proof. Leta =n/q+ (y+ 1)/ p. If p(z) = 0, the desired result
is obvious. If p(2z) # 0, from the definition of o,,,

. 12 1/2
L +J dt - (1-7%) |
a,(r) o (1-)"(1-2)" v(r) 19)

0<r<l1.

Thus

Gy U9 (2),J9 (2) 2)
S
v (lo (2)])

y [vz (lo 2)])
a2 (|l (2)])

+<1_ v (¢ (2)]) )|<<P 2),Jg(z
a; (le (2)]) lp (2)]°

Vo (2) 2|

1

2)z)|° ]
v (lo (2)])

y v2(|¢(z)|)< Zzz_|<<p<z>,fgo(z>z>|2)
[03(|<P(z)l) Vo @2l o (2)°

Ne@.Jp@)2)f ]
|(P(z)|
C
v (lo (2)])

X [(1 ~lp @) <|]¢ @)z -

ORI 2)[’ ]
% (z)|

IN

(¢ (2). ]9 (2) )" )
lo (@)

_c
v (le (2)])

x [(1 - |<p(z)|2) (|]go(z)z|2
(1~ @)
- vz(lfp(z)l)

H,,y (J¢ (2) 2, Jp (2) 2)
- (l—l ( )l ) 2(n/q+(y+1)/p) *

+{p(@),Jp @) 2)[)]

Hy) (Jo (2) 2, ]9 (2) 2)

(20)

The desired result follows from (20). The proof is completed.
O

The proof of the next lemma is standard; see, for example,
[4, Proposition 3.11]. Hence, it is omitted.

Lemma 3. Assume that 0 < p,q < 00, -1 < y < 00,
pisa normalfunction, and ¢ € S(B,), v € H(B,). Then
Ty — 9B, is compact if and only if for any bounded
sequence ? Jidken in H .y Which converges to zero uniformly
on compact subsets of B, as k — oo; then IITW, fell 3, - 0,

ask — oo.



Lemma 4. For > -1 andm > 1+ 3, one has

Jludmc(l )T 0<p<l. ()
o (1-pr)"

Proof.
_ B _ B
[y [0,
o (1-pr) o (1-pr)" (1= pr)
! (1-r)P
<
L (1-pr)"Pa-rf
22
_ Jl 1 i (22)
(1—Pr)mﬁ
2 1+B-m
TR
_ C(l _P)1+ﬁ—m.
This completes the proof. O

3. The Boundedness and Compactness of

T HP‘“’ - %H
Theorem 5. Assume that 0 < p,q < 00, -1 <y < 00, His
a normal function, and ¢ € S(B,), y € H(B,). Then T,

H,., — 9, is bounded if and only if

1 (2) |Ry (2)]
M, :=su n/q+(y+ < 00, (23)
z¢B, (l—l ( )| )/‘1 (y+1)/p
u(2) |y (2)]

M, = sup
=B (1 - o (2)|

z)n/q+(y+l)/p
(24)

x{H(p(z) (Jo(2)z, Jo (2) z)}l/2 < 00.

Proof

Suﬁiciency Assume that (23) and (24) hold. Then for any f €
pqy, if Jo(z)z # 0 for z € B,, by Lemma 1 and Lemma 2, it
follows that

[Ty f @],

= sug)# (2) |m (wapf) (Z)'
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< supy (2)[Ry ()] |f (¢ ()]
+supu (@) |y )[R (f < 9) (2)]

w(@) Ry @ fy,,
| ( )| )n/q+ y+1)/p

+supp (@) |y ()| |(Vf (9(2)), T (2) )|

< sup
z€B, (

< Milfl,

+ sup ( (C‘u (2) |y (2)] { o2 Jp (2) 2, ]9 (2) z)}

< (% (92)). To @ 7)) )
y <(1 ~ |§0 (Z)lz)q/nJr(yH)/P

Gy U(2)z, Jo(2)2) B
¢

<l -
(25)

<Myl + Ml

(1-r2)@/n+(y+1)/p+1

When Jo(z)z = 0 for z € B,. From (23) we can easily obtain

H@R (T (N) @] <Ml fly, - @26)

Combining (25) and (26), the boundedness of TWP tHpgy —
B u follows.

Necessity. Suppose that T, , : H,,, — 9, is bounded.

Firstly, we assume that w € B, and ¢(w) = r,e,, where
ry = lp(w)| and e; = (1,0,0,...,0).

If (L= r2)( + -+ 17,2) < Iyl where Jgp(w)w =

(15 - - - 1,)" > choose the function

2 n/q+(y+1)/p
Z, -1, 1-r, 27)
1=ryz;\ (1- rwzl)2

By [20, Theorem 1.12] and Lemma 4 we have that

fw (Z) =

M, () = ([ 1 G010 @)

ntq(y+1)/p Ya
d
< (1-r r(l > O(O>

q+(y+1)/p
SC( _rw)nq+y+l

(1 _ rri)n/q+2(y+l)/p >
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1
ol = | M7 ) (=7
P9y 0

2 )Pn/qﬂ’“ ! 1-ryY d
Tw 2 \Pn/q+2(y+1) r
0 (1-rr2)

sC(l—

2\ pn/g+y+1 1
< C(l -r ) (I_TZ)W <C
(28)
Then f,, € H,, and ||fw||H < C. Moreover, f,(p(w)) =0
and

1
_ rlzu)n/q+(y+1)/p+1

Vfw(q)(w)):((l 0,...,0). (29)
ITupfoly, 2 @) R (uf < 9) @)
> (W) [y )] |R(f =) ()|
w) Ry W)]| £, (¢ (w))]
= u@) |y )| [(V£, (¢ W), Jp ) w)]

p (W) [y W) |
( _ 2)"/61+(Y+1)/P+1'

(30)

By the definition of H,
follows that

HyyJp(w)w, Jo(w)w) and (30) it

u W) [y )| {H,q) U (w) w, T (w) w)}
(1 _| ( )l )"/‘1"' y+1)/p

= (u |y @)

<{(1-lp @) o @) wf + (o @), Jp @ w)} )

(0 oy

w @) [y @) {(0-72) (il + -+ P + P
= (1_| ( )| )n/q+y+1)/p+1

 V2uw) |y @) ||

1

( 2yl <c|r, wfw“ggy =C.
(31)
This shows that when \/(1 —2)(Im? + -+ 1,15 < Imyls
(24) follows.
On the other hand, if \/(1 —12)(I1 1 + - + 1,12 > Iy

For j = 2,...,n, let Gj = argn; and a; = e_ief, when n; # 0;
otherwise a; = 0 when r; = 0. Take
@t taz,
fw (Z) - (1 vz )n/q+(y+1)/P+1 : (32)
w1

5
By [20, Theorem 1.12] and Lemma 4 we obtain that
q 1/q
+ “e +
ML] (fw’ 7’) < { J (|CZ| n+q(l’€r;|)3p+‘1 do (C)}
S |1 —r,ry|
214/2 1/q
CIG ++-+12I") O
S |1 —r, ( |n+q(y+1)/p+q do
1/q
(- h)” do({)
|1 —r |n+q(V+1)/p+q
| 1/q
s c{ )
w'S1
- C
- (1 _ rrlzu)(VJrl)/P“/Z'
1
P _ 4 _ Y
£l = |, M2 fr) = ryar
1 AY
<C J —(1 i) r
0 (1 _ rr&))y+1+p/2
<C(1- rfu)p/2 <C.
(33)
Hence f,, € H and ||fw||H < C. Moreover f,(p(w)) =
0 and
Vf, (¢ (W)
(o a, a,
> (1 _p2 )n/q+(y+1)/p+1 2t (1 2 )n/q+(y+1)/p+1 '
(34)

Similar to the proof of (30), we obtain that

i @) [y @) (o] +-- + 1))
(1 _2 )n/q+(y+1)/p+1

<ClTyptuls, 63

It follows from (35) that

u(w) [y ()]
(1 B |<P (w)|2)n/q+()’+1)/17

- (y W) |y (w)|

{pr(w) (Jo (w)w, Jo (w) w)}l/2

x {(1 e (w)lz) [T (w)w|2+ (e (), Jg (w) w>|2}1/2>



<(1 B |‘P( )| )n/q+ )’+1)/P+1>
o) (Il +---+

r@ly@{(1-r ) + P}

( —|(p( )l )n/q+ y+1)/p+1
p @)y @) {2(1=72) (jf + -+ )}
(1 B | ( )I )n/q+(y+1 /p+1

pt(w) ly )| \2(1=72) (o] + -+ + [m])

( 2 )n/q+(y+1)/P+1

<|Typfulls,
(36)

That is, when \[(1=r2)(rl2 + -+ I, P) > lpyl, (24)
follows. Combining the above two cases, the desired result
(24) holds.

For the general situation, we can use some unitary
transform U,, to make ¢(w) = r,e,U,, and we can prove (11)
by taking the function g,, = f,, ° U,'. By the linearity of the
unitary transform U, || = IU;IC |, and do the normalized
rotation invariant measure on the boundary S, we get that

"gw"g”‘q’y - Jol (L |gw (r()|qd‘7 (C))P/q(l —r)'dr
- Jol (L ’fw (U, (rf))lqda (())P/q(l _)dr
- Ll (L 'fw (rU;,1 (())|qd0 ({))P/q(l —)Ydr

= Ll (L | £, (r)| do (q))p/q(l —r)\Ydr

_ p
IRl
(37)
Next we prove (23). Set the function
b—(y+1)/p
1-|w)?
@) = L) o8)
(1= (z,w))"®*

for fixed w € B, and b > (y + 1)/ p. Then,

M, (hy, (2),r

(j I, (0)|"do (C))

(1 B |w|2)(b—()’+1)/17)‘1
= J g 90
o5, 1= ()] "

1/q
(C)) .

(39)
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By [20, Theorem 1.12], it follows that

(1= Py
Mp (hw (Z) > T‘) —_ (40)
(1-rlwP)’
Applying Lemma 4 we have that
q ! P
= y
[ I M? (hy,r) (1= r)¥dr
1)
(1-wp )" ,
= CJ —b(l —r)idr
0 (1—r|w| )P
(41)
_ 1 A\
R ] =

0 (1 - r|w|2)‘Db

2\ (y+1)-pb
wl*)

b—(p+1)
(- -C.

< C(1-w)

Therefore h,, € H,,,»andsup,, Bnllhwll Hyyy < C. Besides,

] n/q+(y+1)/p
By (9 (w)) = (—1 “owr > . (42)
vh(p(w) (q) (LU))
=<E+b>< ¢ (w) s
q (1 _ |g0(w)|2) [q+(y+1)/p+1 (43)

¢ (W)
(1= lp@p)" )

Therefore,

co > "TW(P (h(p(w))“g;y > p(w) |§R (V/th(w) ° §0) (w)'

= 1 () [Ry (@) by (9 @) +y ) R (ygyy o 9) )]

. HW Ry W)
- (1 _ |(P (w)|2)"/q+()’+1)/17

— W) [y )] |R (hyy o 9) W)].

(44)
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It follows from (43) and (24) that

1 @) [y @) |R Ry @) ()]
‘u |V/(w)l|<Vh(p(w) ((P w)) ]<P(w) w>|
<g )#(w>lw(w)li<<p(w) Jp (W) w)]
q

1- |(p (w)l )n/q+ y+1)/p+1

p (W) [y ()|
)n/q+(y+1)/17

(1-lpw)

x|y 9 () w, Jg ) w)} "
< CM2 < 00.

Combining (44) and (45), the desired result (23) holds. This
completes the proof. O

Theorem 6. Assume that 0 < p,q < 00, =1 < y < 00, y is
a normal function, and ¢ € S(B,), v € H(B,). Then Tyo
H, oy — B, is compact if and only if the followings are all
satisfied:

(@) y € B, andyg € B, forl € {1,...,nk

(b)
u(2) |Ry (2)| o
Iw(Z)Ial( o @) )n/q+ y+D/p ’ (46)
(c)
lp2)] —1 (1 e (Z)lz)n/q+(y+l)/17 )
x {Hy, Up @)z Jp (2)2)} " =
Proof

Sufficiency. Suppose that (a), (b), and (c) hold. Then for any
e > 0, there is § > 0, such that

u(2) |Ry (2)]
(-l @) )n/q+ y+D/p

2) [y ()]
(1 a |‘P (Z)|2)n/q+(y+1)/P

{H¢(z) (Jp(2) 2, Jo (2) z)}l/2 <e
(48)
when |p(z)] > 6.

Let { fi}xeny be any sequence which converges to 0 uni-
formly on compact subsets of B, satisfying | fill m,, <L
DY

Then f; and R f;, converge to 0 uniformlyon K = {w € B, :
|w| < 6}. Hence

supp (2) |R (T, 0 fi) (2)|
z€B,
= sup u(2) |R (T, fi) (2)
(K | vk | (49)

+ sup p(2)|R(T,,fi) @)
¢(z)eB,\K

If p(z) € B, \ K and Jo(z)z # 0, by Lemma 1 and
Lemma 2, we have

(@ R (T, fi) @)
<u@) |y @R (fro9) )] +u @) |Ry ()] | fi (¢ (2))]

<C.H @) |y ()| {H,) U9 (2) 2, Jp (2) Z)}

X '<ka (¢ (z)),M—Z)Z>' >

-1

v ((1 B I‘P (Z)|2)n/q+()/+1)/p \/G:;(Z)(](P(z)z, ](p(z)z))

velfil,
= Csnfk"%(Frz)ﬂ/q‘r(vﬂ)/pﬂ + snfk"prq,y < Ce
(50)
When J¢(z)z = 0,
W@[R (T, ) @ <elfily, <o 6D
Combining (50) and (51) we obtain that
sup (2) |R (T, fic) (2)] < Ce. (52)

¢(z)eB,\K

If p(2z) € K, by (a), we have that

u@|R (T, fi) @)
<@ |y @R (fio9) @ +p (@) [Ry 2] | fic (¢ (2)))]
<u@ly @| (Vi (9 (), ]9 @) 2)]
(o @ vl

< Vi (e @)Y (4@ |y (2)| |Rey (2)])
1=1

+|fi (9 (2)] "‘/’”%



< |Vfi (¢ (2))|
x Y (42) [y @) |Re; (2)] - 1(2) |1 (2)] [Ry (2)]
iz

+1(2) Ry (2)]) +

< |Vfi (¢ (2))]

o @ v,

x Y (#(2) [y (2) Rey (2) + Ry (2) 9, (2)]
=1

@) Ry @) + | fi (0 @) Y],

< Vi (o DI Y. (lvoills, + vl )
=1

1o @) v,

— 0, k— o0.

(53)

Combining (49), (52), (53), and Lemma 4, it follows that the

Tye,:H,,, — %, 1is compact.

Necessity. Assume that T, , : H, . — 9B, is compact. It is
obvious that T, , : H. S %, is bounded. Tnen taking

f(z) =1€H,,, and by the boundedness of T, , : H, ,,, —
B, it follows that
oot @,
= supu (2) |R (T, ) (2)]
Z€B,
(54)
= spu @Ry ) f (9 @) +y @R (f < 9) @)
ze
= supy 2) |Ry (2)| < 0.

This shows thaty € %,,.

On the other hand, for [ € {1,...,n}, take the function
f(2) = z; € H, . By the boundedness of T, , : H,,,, —
%> we get that

”wa () "9@

= supu (2) [Ry (2) (¢ (@) + ¥ @R (2 ) (@)

(55)
= supp (2) |Ry (2) ¢, (2) + v (2) Ry (2)]

z€B,

= supu (2)|R (yg)) (2)] < co.

That is, yg; € 95’# forl € {1,...,n}. Hence we obtain (a).

Next we prove (b) and (c). Let {z;},cn be a sequence
in B, such that |p(z;)] — 1 ask — o©co. We can still
suppose ¢(z;) = rie;, where 1, = |p(z;)| and e, is the vector
(1,0,0,...,0). Thatis, |r,| — 1,k — oo.
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If \/(1 —2)(In,l? +
s --->1,)" - Let

<+ 1,13 < Inpyl, where Jo(z)z, =

(56)

n/q+(y+1)/p
fi(2) = }

21 Tk { 1-1;
L=z [(1-rz))?
From Theorem 5 we know that f; € H,, ., and we notice that

fi converges to 0 uniformly on compact subsets of B, when
k — o00. By Lemma 3 we have limk_>oo||TW,¢fk(z)||L%’M = 0.

Then by a similar proof of (30) in Theorem 5 we have

u(zi) lw ()] |m|
( z)n/q+(y+1)/P+1 -

<|r (Pfk(z)“%—m, k — oo.

(57)
And similar to the proofs of (31) and (57) we get that

#(zi) ly ()]
(1 B |‘P (Zk)lz)n/q+(y+l)/1>

< Vau () |y (z)| Im|
- (1 _ rﬁ)"/qu(Vﬂ)/P“

{Hq)(zk) U (2i) 210 J9 (21.) Zk)}l/z

— 0, k— oo.

(58)

On the other hand, we consider the case of

VA=l + -+ 17, P) > Iyl For j = 2,..
0, = argn; and a; = ¢ %, when 1; # 0; otherwise a; = 0

i i
when 77; = 0. Take

., let

(a2 +-+ +a,z )(l—ri)
(1 ~ 1z )n/q+ y+1)/p+2

fi(2) = (59)

Then f; € H, 4., k € N,and f; converges to 0 uniformly on
compact subsets of B, when k — ©0. By Lemma 3 we have
limkﬂoollTwpfk(z)H@ = 0. Notice that f,(¢(z;)) = 0 and

u

Viu (@ (21))

_< A Gy )
B la+(y+)/p+1° """ la+(y+D/p+1 |
(1 )n q+(y+1)/p+ (1 _ l’i)n q+(y+1)/p+

(60)
By a similar proof of (30), it follows that
u(zi) |y (2| (7] + -+ + [ma]) ||T 0
2 a+l V/(Pfk >
(1 - rk) (61)
k — oo.
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And similar to the proofs of (31) and (61), we obtain

¢ (zi) ly (=) o Jo (2) 20 J9 (2) 24 1/2
(l—l(P(zk)lz)“{ q)(zk)( <P( ) (P( ) )}

.“(Zk v (z)| y2 (1= 72) (Imo] + - + [ma)

/q+(y+1)/p+1
(l_rk)rlq+y+ p+

— 0

k — oo.
(62)

Combining (58) and (62), (47) holds under the two cases.

For the general situation, if there exists ¢(z;) such that
¢(z,) # lo(z;)le;, then there is a unitary transformation U,
such that ¢(z;) = r.e;Uy, k € {1,2,...,n}. And we can prove
(47) by taking the function sequence g, = f; o U;" and the
details are omitted.

Next we prove (46). Let {z; },cn be a sequence in B, such
that |p(z,)] — lask — oo. Choose

(1 B I?’ (zk)|2)b—(7+1)/P
(1= (zp(z))"""

Thenh € Hy, g, < C. It is obvi-

ous that i — 0 uniformly on compact subsets of B, ask —
00. By Lemma 3 we have that limk_,OOHTw)(P(hk)(z)H% =
u

Then by the similar proof of (44) we obtain

u(z) Ry (2)]
(1 B |‘P (Zk)|2)n/q+(y+1)/P

- u(z) |‘/’ (Zk)| |§R (Mo ) (Zk)| .
(64)

hk (Z) = (63)

k € N, and supkeNIIthIHP‘q,y

[Typ () )], 2

From the similar proof of (45) it follows that

u(zi) [y (z)| R (B 9) (2]
< <a + b) (

< {Hyiey U9 () 20 J9 (21) 20)}

k — 0.

u(zo) |y (z)]
n/q+(y+1)/p
1_|§0(Zk |2) B

(65)

— 0,

Combining (64) and (65) we obtain (46). This completes the
proof. 0

Corollary 7. Assume that 0 < p,q < 00, —1 < y <00, Uis

a normal function, and ¢ € S(B,). ThenC, : H, .. — &, is
bounded if and only if
u(2) {Hyy Up (2) 2, ]9 (2) 2
sup { ) Ue ¢ )} < 0. (66)

z€B, (1 _ |(P (z)| )"/‘1*‘ y+1)/p

Corollary 8. Assume that 0 < p,q < 00, -1 < y <00, pis

a normal function, and ¢ € S(B,). ThenC, : H, .., — B, is
compact if and only if
(2) (Hy(o) U (2) 2, ]9 (2) 2
1@ {Hyo U 22 J9 2 2)} o @)

lp@2) =1 )"/q+ y¥D/p

(1-lp @
And @y € B, forl € {1,...,n}.

Corollary 9. Assume that 0 < p,q < 00, -1 <y <00, pisa

normal function, and y € H(B,). Then M, : H, ;.. — %, is
bounded if and only if
u (@) | Ry (2)]
2 (1
(68)
G v (2)]
zeB,,(] B |Z|2)n/q+(y+l)/p+1

Corollary 10. Assume that 0 < p,q < 00, -1 <y < 00, His

a normal function, and v € H(B,). ﬂzenM tHyoy — By
is compact if and only if the following are all satzsﬁed
(@) y € B, and yz; € B, foranyl € {1,...,n}
(b)
p@ Ry )| )
lz] = 1 (1 B |Z|2)n/q+(}’+1)/P ?
(c)
@y
=1 |Z|2)”/q+(Y+1)/P+1 - (70)
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