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Public-key cryptosystems are broadly employed to provide security for digital information. Improving the efficiency of public-key
cryptosystem through speeding up calculation and using fewer resources are among themain goals of cryptography research. In this
paper, we introduce new symbols extracted from binary representation of integers called Big-ones. We present a modified version
of the classical multiplication and squaring algorithms based on the Big-ones to improve the efficiency of big integer multiplication
and squaring in number theory based cryptosystems. Compared to the adopted classical and Karatsuba multiplication algorithms
for squaring, the proposed squaring algorithm is 2 to 3.7 and 7.9 to 2.5 times faster for squaring 32-bit and 8-Kbit numbers,
respectively. The proposed multiplication algorithm is also 2.3 to 3.9 and 7 to 2.4 times faster for multiplying 32-bit and 8-Kbit
numbers, respectively. The number theory based cryptosystems, which are operating in the range of 1-Kbit to 4-Kbit integers, are
directly benefited from the proposed method since multiplication and squaring are the main operations in most of these systems.

1. Introduction

The growth of digital technologies has an exponential trend
and as a consequence the need of information security also
increases even more than before [1, 2]. Cryptography is an
essential tool in providing a reasonable solution for this
necessity. The modern field of cryptography consists of two
main areas, the symmetric-key cryptography and the public-
key cryptography. The same key is used in symmetric-key
cryptosystems to encrypt and decrypt a message, while the
public-key cryptosystems use two keys in their protocols.
Most of the public-key cryptosystems [3] use modular expo-
nentiation in their calculation. For example, Diffie and Hell-
man introduced the first key exchange scheme in 1967 that
is based on the modular exponentiation [4]. Few years later
in 1978, one of the most used public-key cryptosystems, RSA
[3], is also based on the modular exponentiation. ElGamal
key exchange [5] is another example of public key that has
been developed based on the modular exponentiation.

Modular exponentiation, 𝑏 = 𝑎
𝑥 mod 𝑛, is a one-way

function because the inverse of a modular exponentiation

(𝑥 = 𝑑 log
𝑎
𝑏) is a known hard problem [6–8]. To achieve a

comfortable level of security, the length of the key material
for these cryptosystems must be larger than 1024 bits [9], and
in the near future, it is predicted that 2048-bit and 4096-bit
systems will become standard [10].

Calculating modular exponentiation for a large exponent
and large modulo is a costly operation and therefore improv-
ing its efficiency has become an important research issue
for researchers in cryptography and mathematics. There are
two main approaches currently being employed in order to
improve the efficiency ofmodular exponentiation: improving
the involved operations, exponentiation, and division, sepa-
rately, and improving both of the operations simultaneously.
Residue number system (RNS) [11] and Montgomery mod-
ular multiplication [12] are examples of the first approach,
while binary and m-ary exponentiation or Barrett reduction
[13] are instances from the second approach. This paper
focuses on the second approach, by proposing a new number
representation, which will improve the squaring and mul-
tiplication operations, two of the three main operations in
calculating modular exponentiation [14].
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Input: positive integers 𝑎 and 𝑥 > 1.
Output: 𝑏 = 𝑎

𝑥

(1) Set 𝑏 ← 1 and 𝑠 ← 𝑎.
(2) While 𝑥 ̸= 0 do the following:

(2.1) If 𝑥 is odd then 𝑏 ← 𝑏 × 𝑠. // (𝑘/2) multiplication if 𝑘 = log
2
𝑏.

(2.2) Set 𝑥 ← ⌊𝑥/2⌋.
(2.3) If 𝑥 ̸= 0 then 𝑠 ← 𝑠 × 𝑠. // (𝑘 − 1) multiplication.

(3) Return 𝑏.

Algorithm 1: Right-to-left binary exponentiation, b = ax.

Input: positive integers 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
𝑟
having 𝑛 + 1 base 𝑟 digits and 𝐵 = (𝑏

𝑚
, . . . , 𝑏

0
)
𝑟
having 𝑚 + 1 base 𝑟 digits.

Output: the product 𝐴 ⋅ 𝐵 = (𝑐
𝑚+𝑛+1

, . . . , 𝑐
0
)
𝑟
in base 𝑟.

Note: (𝑢V)
𝑟
are two single-precision digits in base r, indicating the result of the addition.

(1) For 𝑖 from 0 up to 𝑚 + 𝑛 + 1 do: 𝑐
𝑖
← 0.

(2) For 𝑖 from 0 up to 𝑚 do the following:
(2.1) 𝑐𝑎𝑟𝑟𝑦 ← 0.
(2.2) For 𝑗 from 0 up to 𝑛 do the following:

(2.2.1) Compute (𝑢V)
𝑟

= 𝑐
𝑖+𝑗

+ 𝑎
𝑗
⋅ 𝑏
𝑖
+ 𝑐𝑎𝑟𝑟𝑦, set 𝑐

𝑖+𝑗
← V, and 𝑐𝑎𝑟𝑟𝑦 ← 𝑢. // u and v are

(2.3) 𝑐
𝑖+𝑛+1

← 𝑢. // single-precision
(3) Return (𝑐

𝑚+𝑛+1
, . . . , 𝑐

0
). // digits in base r

Algorithm 2: Multiple-precision classical multiplication, CM(𝐴, 𝐵).

The naive approach of calculating the exponentiation is
by doing repetitive multiplication, which is not an efficient
way for calculating large exponent. A better alternative for
calculating exponentiation is by employing binary exponen-
tiation; that is, if 𝑏 = ∑

𝑘−1

𝑖=0
(𝑏
𝑖
2
𝑖

), where 𝑏
𝑖

= {0, 1}, then
𝑎
𝑏

= ∏
𝑘−1

𝑖=0
(𝑎
2
𝑖
𝑏𝑖).The term 𝑎

2
𝑖

can be obtained by squaring the
(𝑖 − 1)th term, 𝑎2

𝑖−1

. The number of operations for calculating
𝑎
𝑏 by using the näıvemethod is (𝑏−1)multiplications. On the

other hand, the binarymethod requires only (𝑘−1) squarings
and 𝑘/2 multiplications (on average), where 𝑘 = log

2
𝑏 (see

Algorithm 1). Consequently, improving the multiplication
and squaring operations (as found in algorithm such as the
right-to-left algorithm and its variants [6–8]) will inherently
improve the efficiency of the exponentiation calculation [7].

2. Multiplication and Squaring Algorithms

The most well-known algorithms for multiplication of two
large integers or two polynomials are classical [15],
Karatsuba-Ofman’s [16], Toom-Cook’s [17, 18], and fast Fou-
rier transform (FFT) multiplication algorithms [19]. In spite
of all the differences in these methods, which sometimes
make them apparently unrelated to each other, thesemethods
have been founded based on the same idea, that is, how to
represent a polynomial to behave efficiently in calculations.
The classical method uses coefficient representation, while
the other three methods use point-value representation. This
representation conversion enables us to reduce the cost of
convolution from 𝑂(𝑛

2

) of classical method to a lower cost

for point-to-point multiplication. The process of finding
point-value representation from its coefficient representation
is called “evaluation” or “point evaluation” and the reverse
process is known as “interpolation.” Table 1 summarizes the
differences among the multiplication algorithms by their
complexity, technique, and representation used.

Algorithms such as FFT and Toom-Cook have lower
algorithm complexity. However, because of the preprocess-
ing overheads such as the divide and conquer, evaluation,
and interpolation, the operating cost of these algorithms is
actually much higher, making them useful only when the
integers are extremely large. Consequently, only classical and
Karatsuba multiplication algorithms and their combination
are being used in current cryptosystem.This is especially true
after considering circumstances such as memory constraints
and the practical finite field size.

2.1. Classical Multiplication and Squaring Algorithms. In
positional numeral system [15], the natural way of multiply-
ing numbers, known as classical multiplication algorithm,
is by multiplying each digit of the multiplicand by each
digit of the multiplier and then adding up all the properly
shifted results. This method requires a multiplication table
for single digits available to the algorithm. Knuth’s classical
multiplication algorithm [15] can be stated as shown in
Algorithm 2.

The complexity of the classical multiplication algorithm
is 𝑂(𝑛

2

). Therefore, the number representation that has
fewer digits theoretically should run faster than the number
representation that has more digits in its representation.
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In addition, the density of nonzero digits in the numbers
influences the number of addition that has to be carried out
by the classical multiplication algorithm as well.

Algorithm 3 shows the modified version of Algorithm 2
that computes the squaring operation efficiently for binary
numbers. The efficiency of the modified squaring algorithm
comes from Steps 2.1 to 2.2.1. Since the products of 𝑎

𝑗
⋅ 𝑎
𝑖
and

𝑎
𝑖
⋅ 𝑎
𝑗
are the same, this product is therefore calculated just

once in Step 2.2.1. Note that (𝑢V)
𝑟
in Step 2.2.1 of Algorithm 3

is the result of the addition. In Algorithm 3, V is a single-
precision digit, while 𝑢 is a multiple-precision digit. With
this improvement, the number of partial products in the
squaring algorithm is 𝑛(𝑛 − 1)/2 less than what was found
in Algorithm 1.

2.2. Karatsuba Multiplication and Squaring Algorithms.
Karatsuba’s algorithm is an efficient scheme for multiplying
two large numbers or two polynomials. It was introduced
by Karatsuba and Ofman in 1960 and published in 1962
[20]. This algorithm is a remarkable example of the divide
and conquer paradigm [21, 22], specifically for its binary
splitting [23]. This method requires three multiplications
and four additions in each iteration. To apply the algorithm
both numbers are split into a lower and an upper half (for
simplicity, assume n is even):

𝐴 = 𝐴
𝐿

× 𝑟
𝑛/2

+ 𝐴
𝑅
,

𝐵 = 𝐵
𝐿

× 𝑟
𝑛/2

+ 𝐵
𝑅
.

(1)

The halves 𝐴
𝑅
, 𝐴
𝐿
, 𝐵
𝑅
, and 𝐵

𝐿
are split again in half in

the next iteration step. Since every step exactly halves the
number of coefficients, the algorithm terminates after 𝑡 =

log
2
𝑛 steps. Algorithm 4 shows the recursive Karatsuba algo-

rithm (assuming the lengths of𝐴 and 𝐵 are even).We can use
Karatsuba algorithm for squaring with small modification.
Algorithm 5 shows these modifications in Steps 2-3.

Combining other multiplication algorithms with Karat-
suba algorithm is another technique that has been used by
researchers [24]. The study on squaring and multiplying
large integers by Zuras has shown the 2-way, 3-way, and
4-way approaches for calculating big integer multiplication
[25]. Sadiq and Ahmed [26] have extended the work further
and summarized the results after splitting the long numbers
into multi partitions (up to 10 partitions). More details on
squaring algorithms can be found in the literature [6, 8, 27–
29].

3. Big-Ones Representation and
the Proposed Algorithms

In this section, the Big-one (Bo) integer representation
and the proposed multiplication and squaring algorithms,
which are based on this representation, are presented. Big-
one representation is created based on the binary number
representation. Big-one is a compact representation with low
Hamming weight (HW) compared to the binary number
representation.

A Big-one is the numeric value of a sequence of 𝑛

consecutive binary symbol “1” with length 𝑛 and is denoted
by 𝑂
𝑛
. Examples of Bo’s are 𝑂

1
= 1
2

= 1 and 𝑂
3

= 111
2

= 7.
Consider

𝑂
𝑛

=

𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 ⋅ ⋅ ⋅ 1

2
=

𝑛−1

∑

𝑖=0

2
𝑖

= 2
𝑛

− 1. (2)

A set of all Bo’s is called Big-ones’ set and is denoted by 𝑂 =

{𝑂
1
, 𝑂
2
, 𝑂
3
, . . .} = {1

2
, 11
2
, 111
2
, . . .} = {1, 3, 7, 15, . . .}.

Big-Ones Number System (BONS). Let 𝐴 = (𝑎
𝑛
. . . 𝑎
2
𝑎
1
𝑎
0
)
2

be a number in radix 2, where 𝑎
𝑖

∈ 𝑂 ∪ {0}. This num-
ber system is called Big-one number system and denoted
as BONS. For example, 𝐴 = 11101010101111

2
can be

represented by𝑂
3
0𝑂
1
0𝑂
1
0𝑂
1
0000𝑂

4
in BONS.This number

system is redundant. To transform BONS into a canonic
(not redundant) representation, the maximum length of Big-
ones is used. The canonical version of BONS is known as
CBONS. CBONS is a compressed representation of Big-one,
by ignoring all the zeros and modifying the notation 𝑂

𝑛
to

𝑂
(𝑛,𝑃)

, where 𝑃 shows the position of the specified Big-one in
the binary number. Specifically, 𝑃 is the position of the least
significant bit of the specified Big-one in the binary number.
For example, we can write 1110101111000011

2
in CBONS

as𝑂
(3,13)

𝑂
(1,11)

𝑂
(4,6)

𝑂
(2,0)

. To optimize the calculations based
on CBONS, we can limit the length of maximum Big-ones to
“𝑤” (𝑂

(𝑛,𝑃)
such that 𝑛 ≤ 𝑤) which we identified in this paper

as themaximum length of Big-ones [30–32].

3.1. Big-Ones Analysis. From the definition of CBONS, it is
apparent that there will be at least one digit zero bounding
from the left and at least another digit zero bounding from
the right of each Big-one digit (except for the least and
most significant bits). Consequently, to calculate the number
of 𝑂
𝑙
s in any given binary number, we have to calculate

the probability of “0𝑂
𝑙
0” patterns appearing in the binary

number. Since the probability of digit “1” and digit “0”
appearing in a binary digit is 1/2, therefore it follows that the
probability of 𝑂

𝑙
appearing in a binary number is 𝑃(𝑂

𝑙
) =

1/2
𝑙+2. As a result, the number of 𝑂

𝑙
s in an 𝑛-bit binary

number is 𝑁(𝑂
𝑙
) = 𝑛/2

𝑙+2. To calculate the Hamming weight
of Bo’s in a Big-one number system, it is enough to calculate
the total number of Big-ones, 𝑁(𝑂

𝑙
), where 1 ≤ 𝑙 ≤ 𝑛.

Consider

HW (in CBONS) =

𝑛

∑

𝑙=1

𝑁 (𝑂
𝑙
) =

𝑛

∑

𝑙=1

𝑛

2𝑙+2

=
𝑛

4

𝑛

∑

𝑙=1

2
−𝑙

=
𝑛

4
(

𝑛

∑

𝑙=0

2
−𝑙

− 1) .

(3)

Since

𝑚

∑

𝑛=0

2
−𝑛

= 2
−𝑚

(2
𝑚+1

− 1) , (4)
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Table 1: Comparison of the well-known polynomial multiplication algorithms.

Multiplication algorithm Technique Representation Complexity
Divide and conquer Point evaluation Interpolation

Classical — — — Coefficient representation 𝑂 (𝑛
2

)

Karatsuba √ — — Coefficient representation 𝑂 (𝑛
1.58

)

Toom-Cook √ √ √ Point-value representation 𝑂 (𝑛
log(2𝑘−1)/ log 𝑘

)

FFT √ √ √ Point-value representation 𝑂 (𝑛 log 𝑛 log log 𝑛)

Table 2: The Hamming weight of Big-ones in CBONS for an 8-Kbit binary number.

Big-one’s length (𝑤)
1 2 3 4 5 6 7 8 9 10 11 >12

(𝑁
𝑛
) 1024 510 257 127 64 33 16 8 4 2 1 2

(

𝑛

∑

𝑘=1

𝑁
𝑘
) 1024 1534 1791 1918 1982 2015 2031 2039 2043 2045 2046 2048

HW/𝑤 (
∑
𝑛

𝑘=1
𝑁
𝑘

8192
) =

2048

8192
=

1

4

(3) can therefore be written as

HW (in CBONS) =
𝑛

4
(2
−𝑛

(2
𝑛+1

− 1) − 1)

=
𝑛

4
(2 − 2

−𝑛

− 1) =
𝑛

4
(1 − 2

−𝑛

) .

(5)

For large enough 𝑛, the number of Big-ones (Hamming
weight of CBONS) would be

HWBONS(calculated) ≅
𝑛

4
. (6)

Table 2 shows the result of calculating the number of
Big-one digits in an 8-Kbit binary number from 10,000
randomly generated binary numbers. As the table indicates,
the experimental result does agreewith the value found in (6).

Table 2 also indicates that the occurrence of Big-ones
decreases as the length of Big-ones increases. The goal of the
following experiment is therefore to find the optimized length
for CBONS, to be used in LCBONS (limited length CBONS).

The length, identified as 𝑤, is important for applications
such as multiplication and squaring. This is because the size
of 𝑤 will determine the size of the look-up table (LUT)
that needs to be used by the respective algorithms. Table 3
indicates that the practical value for𝑤 is 5 since theHamming
weight when 𝑤 = 5 is only slightly bigger than the optimum
Hamming weight for CBONS (25.8% compared to 25%) but
at the same time will produce a relatively compact LUT.
Consequently, the following proposed multiplication and
squaring algorithms will use LCBONS with 𝑤 = 5.

3.2. Converting Binary Representation to Big-Ones Represen-
tation. Algorithm 6 shows how to convert a binary repre-
sentation to CBONS representation. In Step 2.2.1, the flag
NewBo is set to true if 𝑎

𝑖
𝑎
𝑖−1

= “10” and at the same time the
position of the new Big-one is saved in “pos.” In Step 2.3.1,
while the flag NewBo is true, the length of current Big-one
(Length) is increased by one in each iteration of the loop until

𝑎
𝑖
𝑎
𝑖−1

= “01” is found. The end of Big-one is identified by
setting the flag NewBo to false in Step 2.3.2. Then, the length
and position of the newly discovered Big-one digit are saved
in 𝑐
𝑖𝐿
and 𝑐
𝑖𝑝
, respectively, where 𝑖 is the position of new Big-

one in array C.
Algorithm 7 is the modified version of Algorithm 6 after

applying the maximum length of Big-one in BONS. In
Step 2.3.3 of Algorithm 7, the length of the current Big-one
digit is checked. If the length of the Big-one is bigger than 𝑤,
then the relevant pointer will backtrack one bit and set the
value 𝑎

𝑖
to 0. Step 2.4 of Algorithm 7 acts similar to Step 2.4

in Algorithm 6 which has been explained earlier.
To use Algorithms 6 and 7 efficiently in squaring and

multiplication, we assume that the output of these algorithms
is in the form of (𝑑

𝑛
, . . . 𝑑
0
), where 𝑑

𝑖
= 𝑐
𝑖𝐿
. To show this

point, we change the names of algorithms to Bin2BO-L and
Bin2LBO-L accordingly.

3.3. Proposed Multiplication and Squaring Algorithm.
Algorithm 8 is a modification of Algorithm 2, which has
been designed based on the LBONS. In Step 1, by using
function Bin2LBO-L, 𝐴 is converted to 𝐴

. Output 𝐴
 is a

special representation of 𝐴 in LCBONC representation that
shows the length of Big-ones. Step 3.1 is introduced to ignore
the zeros in𝐴

 and consequently will help reduce the number
of operations. Another difference is related to Step 3.2.1.1
which uses the function LUT(𝑎



𝑗
, 𝑏


𝑖
). This function fetches

the product of two Big-ones by lengths of 𝑎


𝑗
and 𝑏



𝑖
from a

precalculated look-up table.
The proposed squaring algorithm (see Algorithm 9) is

a modified version of Algorithm 3. In Step 1, by executing
the converter Bin2LBO-L, 𝐴 is converted to 𝐴

 which is a
special representation of 𝐴 in LCBONS representation with
maximum length being employed (𝑤 = 5). Other differences
are related to Step 3.1, which has been proposed by Knuth
[15] to ignore the zeros in 𝐴

. Similar to Algorithm 8, in



Journal of Applied Mathematics 5

Input: positive integer 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
𝑟
having 𝑛 + 1 base 𝑟 digits.

Output: the square 𝐴 ⋅ 𝐴 = 𝐴
2

= (𝑐
2𝑛+1

, . . . , 𝑐
0
)
𝑟
in base 𝑟 representation.

Note: (𝑢V)
𝑟
are digits in base r, indicating the result of the addition.

(1) For 𝑖 from 0 up to 2𝑛 + 1 do: 𝑐
𝑖
← 0.

(2) For 𝑖 from 0 up to 𝑛 do the following:
(2.1) Compute (𝑢V)

𝑟
= 𝑐
2𝑖

+ 𝑎
𝑖
⋅ 𝑎
𝑖
, set 𝑐
2𝑖

← V, and 𝑐𝑎𝑟𝑟𝑦 ← 𝑢.
(2.2) For 𝑗 from 𝑖 + 1 up to 𝑛 do the following: // v is a single-

(2.2.1) Compute (𝑢V)
𝑟

= 𝑐
𝑖+𝑗

+ 2𝑎
𝑗
⋅ 𝑎
𝑖
+ 𝑐𝑎𝑟𝑟𝑦, set 𝑐

𝑖+𝑗
← V, and 𝑐𝑎𝑟𝑟𝑦 ← 𝑢. // precision digit and u

(2.3) 𝑐
𝑖+𝑛+1

← 𝑢. // is a multi-precision
(3) Return (𝑐

2𝑛+1
, . . . , 𝑐

0
). // digit in base r

Algorithm 3: Multiple-precision classical squaring, SQ(𝐴).

Table 3: Big-ones’ distribution in an 8-Kbit binary number in LCBONS for different Big-one’s length.

Maximum size of Big-ones (𝑤)
9 8 7 6 5

Big-ones’ length

1 1026 1028 1032 1040 1057
2 511 512 514 518 527
3 258 258 259 261 266
4 127 128 128 129 131
5 64 64 64 65 133
6 33 33 33 66
7 16 16 33
8 8 16
9 8

HW 2051 2055 2063 2079 2114
(HW/𝑤) % 25.0 25.1 25.2 25.4 25.8

Input: positive integers 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
𝑟
and 𝐵 = (𝑏

𝑛
, . . . , 𝑏

0
)
𝑟
having 𝑛 + 1 base 𝑟 digits.

Output: the product 𝐶 = 𝐴 ⋅ 𝐵.
(1) If 𝑛 = 1 then return 𝐶 = 𝐴 × 𝐵.
(2) Split 𝐴, 𝐵 into two equal parts:

𝐴 = 𝐴
𝐿

× 𝑟
𝑛/2

+ 𝐴
𝑅
, and 𝐵 = 𝐵

𝐿
× 𝑟
𝑛/2

+ 𝐵
𝑅
.

(3) Compute the following:
𝑑
1

= KA(𝐴
𝐿
, 𝐵
𝐿
); 𝑑
0

= KA(𝐴
𝑅
, 𝐵
𝑅
), and 𝑑

0,1
= KA(𝐴

𝑅
+ 𝐴
𝐿
, 𝐵
𝑅

+ 𝐵
𝐿
).

(4) Return 𝐶 = 𝑑
1
× 𝑟
𝑛

+ (𝑑
0,1

− 𝑑
0
− 𝑑
1
) × 𝑟
𝑛/2

+ 𝑑
0
.

Algorithm 4: Recursive Karatsuba algorithm, 𝐶 = KA(𝐴, 𝐵).

Input: positive integers 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
𝑟
having 𝑛 + 1 base 𝑟 digits.

Output: the product 𝐶 = 𝐴 ⋅ 𝐴 = 𝐴
2.

(1) If 𝑛 = 1 then return 𝐶 = 𝐴 × 𝐴 = 𝐴
2.

(2) Split 𝐴 into two equal parts 𝐴
𝐿
and 𝐴

𝑅
:

𝐴 = 𝐴
𝐿

× 𝑟
𝑛/2

+ 𝐴
𝑅
.

(3) Compute the following:
𝑑
1

= SQKA(𝐴
𝐿
); 𝑑
0

= SQKA(𝐴
𝑅
), and 𝑑

0,1
= SQKA(𝐴

𝑅
+ 𝐴
𝐿
).

(4) Return 𝐶 = 𝑑
1
× 𝑟
𝑛

+ (𝑑
0,1

− 𝑑
0
− 𝑑
1
) × 𝑟
𝑛/2

+ 𝑑
0
.

Algorithm 5: Recursive Karatsuba squaring algorithm, 𝐶 = SQKA(𝐴).
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Input: positive integers 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
2
having 𝑛 + 1 base 2 digits.

Output: 𝐶 = (𝑐
𝑛
, . . . , 𝑐

0
)
2
having 𝑛 + 1 digits in CBONS and non-zero 𝑐

𝑖
= (𝑐
𝑖𝐿

, 𝑐
𝑖𝑃

).

(1) Set; 𝑎
−1

← 0, 𝑎
𝑛+1

← 0.
(2) For 𝑖 from 0 up to 𝑛 + 1 do the following:

(2.1) Set 𝐿𝑒𝑛𝑔𝑡ℎ ← 0

(2.2) If 𝑎
𝑖
𝑎
𝑖−1

= 10 then do the following:
(2.2.1) Set 𝑁𝑒𝑤𝐵𝑜 ← 𝑇𝑟𝑢𝑒; 𝑝𝑜𝑠 ← 𝑖.

(2.3) While (𝑁𝑒𝑤𝐵𝑜) do the following:
(2.3.1) Increase 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑖 by 1.
(2.3.2) If 𝑎

𝑖
𝑎
𝑖−1

= 01 then Set 𝑁𝑒𝑤𝐵𝑜 ← 𝐹𝑎𝑙𝑠𝑒.
(2.4) If 𝐿𝑒𝑛𝑔𝑡ℎ > 0 then do the following:

(2.4.1) Set 𝑐
𝑖𝐿

← 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑐
𝑖𝑃

← (𝑝𝑜𝑠 − 1).
(3) Return (𝑐

𝑛
, . . . , 𝑐

0
).

Algorithm 6: Binary to Big-one converter algorithm, 𝐵𝑖𝑛2𝐵𝑂(𝐴).

Input: positive integers 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
2
having 𝑛 + 1 base 2 digits and positive integer 𝑤.

Output: 𝐶 = (𝑐
𝑛
, . . . , 𝑐

0
)
2
having 𝑛 + 1 digits in LCBONS and non-zero 𝑐

𝑖
= (𝑐
𝑖𝐿

, 𝑐
𝑖𝑃

).

(1) Set; 𝑎
−1

← 0, 𝑎
𝑛+1

← 0.
(2) For 𝑖 from 0 up to 𝑛 + 1 do the following:

(2.1) Set 𝐿𝑒𝑛𝑔𝑡ℎ ← 0

(2.2) If 𝑎
𝑖
𝑎
𝑖−1

= 10 then do the following:
(2.2.1) Set 𝑁𝑒𝑤𝐵𝑜 ← 𝑇𝑟𝑢𝑒; 𝑝𝑜𝑠 ← 𝑖.

(2.3) While (𝑁𝑒𝑤𝐵𝑜) do the following:
(2.3.1) Increase 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑖 by 1.
(2.3.2) If 𝑎

𝑖
𝑎
𝑖−1

= 01 then Set 𝑁𝑒𝑤𝐵𝑜 ← 𝐹𝑎𝑙𝑠𝑒.
(2.3.3) If 𝐿𝑒𝑛𝑔𝑡ℎ = 𝑤 then do the following:

(2.3.3.1) Set 𝑁𝑒𝑤𝐵𝑜 ← 𝐹𝑎𝑙𝑠𝑒 and 𝑎
𝑖−1

← 0.
(2.3.3.2) Decrease 𝑖 by 1.

(2.4) If 𝐿𝑒𝑛𝑔𝑡ℎ > 0 then do the following:
(2.4.1) Set 𝑐

𝑖𝐿
← 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑐

𝑖𝑃
← (𝑝𝑜𝑠 − 1).

(3) Return (𝑐
𝑛
, . . . , 𝑐

0
).

Algorithm 7: Binary to limited Big-one converter algorithm, 𝐵𝑖𝑛2𝐿𝐵𝑂(𝐴).

Input: positive integers 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
2
and 𝐵 = (𝑏

𝑚
, . . . , 𝑏

0
)
2
having 𝑛 + 1 base 2 digits.

Output: the product 𝐴 ⋅ 𝐵 = (𝑐
𝑚+𝑛+1

, . . . , 𝑐
0
)
2
in base 2 representation.

(1) Compute 𝐴
= 𝐵𝑖𝑛2𝐿𝐵𝑂-𝐿(𝐴) and 𝐵

= 𝐵𝑖𝑛2𝐿𝐵𝑂-𝐿(𝐵). // 𝐴


= (𝑎


𝑛
, . . . , 𝑎



0
)

(2) For 𝑖 from 0 up to 𝑚 + 𝑛 + 1 do: 𝑐
𝑖
← 0. // 𝐵



= (𝑏


𝑛
, . . . , 𝑏



0
)

(3) For 𝑖 from 0 up to 𝑚 do the following:
(3.1) Set 𝑐𝑎𝑟𝑟𝑦 ← 0

(3.2) If 𝑏
𝑖

̸= 0 then do the following:
(3.2.1) For 𝑗 from 0 up to 𝑛 do the following:

(3.2.1.1) Compute (𝑢V)
𝑏

= 𝑐
𝑖+𝑗

+ LUT(𝑎
𝑗
, 𝑏


𝑖
) + 𝑐𝑎𝑟𝑟𝑦. // u is a multi-precision binary digit

(3.2.1.2) Set 𝑐
𝑖+𝑗

← V and 𝑐𝑎𝑟𝑟𝑦 ← 𝑢. // v is a single-precision binary digit
(3.3) 𝑐

𝑖+𝑛+1
← 𝑢.

(4) Return (𝑐
2𝑛+1

, . . . 𝑐
0
).

Algorithm 8: Multiple-precision classical multiplication, BOCM(𝐴, 𝐵).
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Input: positive integer 𝐴 = (𝑎
𝑛
, . . . , 𝑎

0
)
2
having 𝑛 + 1 base 2 digits.

Output: the square 𝐴 ⋅ 𝐴 = 𝐴
2

= (𝑐
2𝑛+1

, . . . , 𝑐
0
)
2
in base 2 representation.

(1) Compute 𝐴
= 𝐵𝑖𝑛2𝐿𝐵𝑂-𝐿(𝐴). // 𝐴



= (𝑎


𝑛
, . . . , 𝑎



0
)

(2) For 𝑖 from 0 up to 2𝑛 + 1 do: 𝑐
𝑖
← 0.

(3) For 𝑖 from 0 up to 𝑚 do the following:
(3.1) If 𝑎

𝑖
̸= 0 then do the following:

(3.1.1) Compute (𝑢V)
𝑏

= 𝑐
2𝑖

+ LUT(𝑎


𝑖
, 𝑎


𝑖
), and set 𝑐

2𝑖
← V, 𝑐𝑎𝑟𝑟𝑦 ← 𝑢.

(3.1.2) For 𝑗 from 𝑖 + 1 up to 𝑛 do the following:
(3.1.2.1) Compute (𝑢V)

𝑏
= 𝑐
𝑖+𝑗

+ 2LUT(𝑎


𝑗
, 𝑎


𝑖
) + 𝑐𝑎𝑟𝑟𝑦. // u is a multi-precision binary

(3.1.2.2) Set 𝑐
𝑖+𝑗

← V and 𝑐𝑎𝑟𝑟𝑦 ← 𝑢. // digit and v is a single-precision
// binary digit

(3.2) 𝑐
𝑖+𝑛+1

← 𝑢.
(4) Return (𝑐

2𝑛+1
, . . . , 𝑐

0
)

Algorithm 9: Multiple-precision classical squaring, BOSQ(𝐴).

Step 3.1.2.1 the function LUT(𝑎


𝑗
, 𝑎


𝑖
) is used to fetch the

product of two Big-ones from a precalculated look-up table.

4. Results and Discussion

To compute the Big-ones Hamming weight, 10,000 ran-
dom numbers [33] were generated with different maximum
lengths, 𝑤 = 2, . . . , 10, and different number lengths ranging
from 32 bits to 8Kbits. The results are summarized in Tables
2 and 3. According to this data, the Hamming weight for the
numbers larger than 64 bits with 𝑤 = 5 is about 25.8%. If
we increase the value of𝑤 to 10, we can achieve slightly better
Hammingweight value, that is, about 25%.However, to create
a look-up table that can support 𝑤 = 10, we have to use four
times more memory than the case of 𝑤 = 5. The size of LUT
for the case of 𝑤 = 5 is 50 bytes (5 × 5 × 2 bytes) for squaring
and multiplication. In this paper, the result gathered is based
on the case of 𝑤 = 5.

Tables 2 and 3 indicate the execution time of the classical
squaring (CLSQ) and multiplication (CM MUL), Karatsuba
squaring (KASQ) and multiplication (KA MUL), and also
the proposed squaring and multiplication algorithm against
different bit lengths, which are randomly generated. The
tests were conducted on a machine with an AMD Phenom
(TM) 9950 Quad-Core processor, 3 GB RAM, Windows XP
(Service Pack 3) OS, and Dev-C++ version 4.9.9.2 compiler.

According to Table 4 the proposed multiplication algo-
rithm is more efficient than CM MUL and KA MUL algo-
rithms for multiplication numbers ranging from 32 bits to
8Kbits, which is the range of numbers used by the current
number theory based cryptosystems. The proposed multipli-
cation algorithm is about 2.3 times faster than CM MUL for
multiplying 32-bit numbers and about 3 times faster for mul-
tiplying 64-bit numbers. For numbers ranging from 128 bits
to 8Kbits, this ratio fluctuates between 3.3 and 3.9. Generally,
the Karatsuba multiplication algorithm (KA MUL) with
algorithm complexity 𝑂(𝑛

1.58

) is slower than the proposed
algorithm (with algorithm complexity𝑂(𝑛

2

)) for multiplying
numbers ranging from 32 bits to 8Kbits. Table 4 shows that
the proposed algorithm is about 7 times to 9.6 times faster

than Karatsuba algorithm for multiplying 32-bit to 64-bit
numbers. The speed-up ratio continuously declines from 9.6
to about 2.4 times faster formultiplying numbers in the range
of 64-bit to 8-Kbit numbers.

According to Table 5, the proposed squaring algorithm is
more efficient than CLSQ and KASQ algorithms for squaring
numbers ranging from 32 bits to 8Kbits. The proposed
algorithm is about 2 times faster than CLSQ for squaring
32-bit numbers and this ratio gradually increases to 3.7
times for squaring 8-Kbit numbers. In general, the Karatsuba
algorithm (KASQ) is slower than the proposed algorithm for
squaring numbers between the ranges of 32 bits and 8Kbits.
Table 5 shows that the proposed algorithm is about 7.9 times
to 10.4 times faster than Karatsuba algorithm for squaring
32-bit to 64-bit numbers. The speed-up ratio continuously
declines from 10.4 to about 2.5 times faster for squaring
numbers in the range of 64-bit to 8-Kbit numbers.

5. Conclusion

Amultiplication and a squaring algorithm with a small look-
up table, which are based on the classical multiplication
algorithm and Big-ones’ representation, are presented in this
paper to speed up the squaring andmultiplication calculation
in public-key cryptography algorithms. The efficiency of the
classical multiplication and squaring algorithm does not
cover the whole range of numbers that is used by number
theory based cryptosystems. In many instances, it has been
reported that, at the threshold of 255 digits, the Karatsuba
algorithm is performing better than the classical algorithm.
In the proposed method, binary numbers are first converted
to Big-one representation before being processed by the
proposed multiplication or squaring algorithms. Compact
representation with low Hamming weight of the Big-one
representation decreases the number of submultiplication
operations in the squaring and multiplication calculation.
The experimental result gathered indicates that the proposed
squaring and multiplication algorithm are efficient enough
to substitute either the classical algorithm or Karatsuba
algorithm or the hybrid of the two algorithms for squaring
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Table 4: Execution time (msec) of multiplication algorithms.

Algorithm Length of numbers (bits)
32 64 128 256 512 1024 2048 4096 8192

CM MUL 0.007 0.024 0.082 0.316 1.15 4.41 18.01 63.8 285
KA MUL 0.021 0.077 0.260 0.754 2.35 7.28 21.32 64.9 199
Proposed multiplication 0.003 0.008 0.028 0.087 0.32 1.34 4.66 19.6 84

Table 5: Execution time (msec) of squaring algorithms.

Algorithm Length of numbers (bits)
32 64 128 256 512 1024 2048 4096 8192

CLSQ 0.00494 0.0162 0.056 0.221 0.812 3.09 12.61 44.2 192
KASQ 0.01917 0.0599 0.179 0.533 1.653 4.91 15.02 45.1 141
Proposed squaring 0.00247 0.0058 0.019 0.059 0.231 0.97 3.4 13.2 57

numbers. This finding should increase the performance of
number theory based cryptosystems which depend heavily
on the process of exponentiation (a process that depends on
squaring andmultiplication) of large integers in achieving the
desired level of security.
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