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We introduce and analyze one iterative algorithm by hybrid shrinking projection method for finding a solution of the minimization
problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: finitely many
generalized mixed equilibrium problems, finitely many variational inequalities, the general system of variational inequalities and
the fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We
prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another
iterative algorithm by hybrid shrinking projection method for finding a fixed point of infinitely many nonexpansive mappings with
the same constraints, and derive its strong convergence under mild assumptions.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert
space H and let P be the metric projection of H onto C.
Let S : C — H be a nonlinear mapping on C. We denote
by Fix(S) the set of fixed points of S and by R the set of all
real numbers. A mapping S : C — H is called L-Lipschitz
continuous if there exists a constant L > 0 such that

ISx =Syl <L|x-y|, VxyeC. 1)
In particular, if L = 1 then S is called a nonexpansive
mapping; if L € [0,1) then S is called a contraction. A

mapping V is called strongly positive on H if there exists a
constant y > 0 such that

(Vx,x) = P|x|?, Vx € H. )

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP):
find a point x € C such that

(Ax,y—-x) >0, VyeC. (3)
The solution set of VIP (3) is denoted by VI(C, A).

Let ¢ : C — R be a real-valued function, let A :
H — H be anonlinear mapping, andlet® : CxC — R
be a bifunction. Peng and Yao [1] introduced the following
generalized mixed equilibrium problem (GMEP) of finding
x € C such that

O(x,y)+o(y)—@x)+(Ax,y—x) 20, VyeC. (4)
We denote the set of solutions of GMEP (4) by

GMEP(®, ¢, A). The GMEP (4) is very general in the sense
that it includes, as special cases, optimization problems,
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variational inequalities, minimax problems, and Nash
equilibrium problems in noncooperative games. It covers
problems considered in [2-5].

It is assumed as in [1] that ® : Cx C — Ris a bifunction
satisfying conditions (Al1)-(A4) and ¢ : C — R s a lower
semicontinuous and convex function with restriction (B1) or
(B2), where

(A1) O(x,x) =0forall x € C;
(A2) © is monotone; that is, O(x, y) + O(y, x) < 0 for any

x,y €GC;
(A3) O is upper-hemicontinuous; that is, for each x, y, z €
C)
limsup® (tz+(1-1)x,y) <O (x,y); ()
t—0*

(A4) ©(x,-) is convex and lower semicontinuous for each
x €C;

(BI) for each x € H and r > 0, there exists a bounded
subset D, ¢ C and y, € C such that, for any z €
C\D,,

0(27)+9(1) - 9@+ (-zz-2) <0 ©

(B2) Cis a bounded set.

Given a positive number r > 0, let Tr@"”) :H — Cbethe
solution set of the auxiliary mixed equilibrium problem; that
is, for each x € H,

Tr(&@ (x) = {yeC:G)(y,Z)‘HP(Z)_‘P(y)
1 (7)
+;(y—x,z—)’>20’ VZEC}-

Let F,F, : C — H be two mappings. Consider the
following general system of variational inequalities (GSVI)
[6] of finding (x*, ¥*) € C x C such that

(mFy +x" -y, x-x")>20, VxeC,

(8)
(mEx"+y"—x",x-y")>0, VxeC,
where v; > 0 and v, > 0 are two constants. In 2008, Ceng
etal. [6] transformed the GSVI (8) into a fixed point problem
in the following way.

Proposition CWY (see [6]). For given x,y € C,(x,y) is a
solution of the GSVI (8) if and only if X is a fixed point of the
mapping G : C — C defined by

Gx=P-(I-vF)P-(I-v,F)x, VxeC, (9)

wherey = Po(I — v,F,)x.

In particular, if the mapping F; : C — H is ¢ j-inverse-
strongly monotone for j = 1,2, then the mapping G is
nonexpansive provided v; € (0,2¢ j] for j = 1,2. We denote
by GSVI(G) the fixed point set of the mapping G.
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Let A, 1,4, ...,A,y € (0,1], n > 1. Given the
nonexpansive self-mappings T;, T, ..., Ty on C, for each n >
1, the mappings U,, |, U, ,, ..., U, y are defined by

Upp = A Ti+(1-4,,) L
Un,2 = An,2Tn(]n,1 + (1 - /\n,Z) I,
Un,n—l = An—l’z—‘n—lUn,n + (1 - An—l) I,
(10)

Upn-1 = AN TnaiUpna + (1- An,N—l) I,
W, =U,n = A nTNUpn- + (1- An,N) I

The W, is called the W-mapping generated by T',..., Ty
and A, ;,A,,,...,A, n. Note that the nonexpansivity of
T; implies the one of W,. In 2012, combining the hybrid
steepest-descent method in [7] and viscosity approximation
method, Ceng et al. [8] proposed and analyzed the following
hybrid iterative algorithm for finding a common element of
the solution set of GMEP (4) and the fixed point set of finitely

many nonexpansive mappings {T;}~ .

Theorem CGY (see [8, Theorem 3.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let ® : C x
C — R be a bifunction satisfying assumptions (Al)-(A4) and
let @ : C — R be alower semicontinuous and convex function
with restriction (B1) or (B2). Let the mapping A : H — H be
8-inverse-strongly monotone, and let {T;}Y, be a finite family
of nonexpansive mappings on H such that Q := N Fix(T;) N
GMEP(©,¢,A)#0. Let F : H — H be a k-Lipschitzian and
n-strongly monotone operator with positive constants k,1 > 0
and Q : H — H an I-Lipschitzian mapping with constant
1>0.LetO <y < 2y/k* and 0 < yl < 7, wheret = 1 -

\J1 = u(2n — ux?). Suppose {a,,} and {3,,} are two sequences in

(0, 1), {y,} is a sequence in (0, 268], and {/\n)i}f\il is a sequence
in [a,b] with0 < a < b < 1. For everyn > 1, let W, be the
W-mapping generated by T,,..., Ty and A, 1,A,55..., A, N
Given x, € H arbitrarily, suppose the sequences {x,} and {u,}
are generated iteratively by

O (ty) + 9 (¥) — ¢ (u,) + (Ax,, y — 1)
L (y —u,u,-x,) =0, VyeC,
"n (11)
Xn+1 = ‘xnnyn + :ann + ((1 - ﬂn) I- (meF) Wn“n’
Vn=>1,

where the sequences {«,}, {8}, and {r,,} and the finite family of

sequences {/ln)i}fi | satisfy the following conditions:

(i) lim,, , o, =0and Y2 «, = 00;
(ii) 0 < liminf, _, B, <limsup,_, B, < L;
(iii) 0 < liminf,_ 7,

hmn%oo(rrwl - rn) =0;
(iv) lim,, , (A4 —Ap) =0fori=1,2,...,N.

< limsup,_, 1, < 26 and
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Then both {x,} and {u, } converge strongly to x* = Py (I —uF +
yQ)x*, which is the unique solution in Q) to the VIP

((uF —yQ) x*,x" —x) <0,

Let f : C — R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing f over the constraint set C

Vx € Q. (12)

minimize { f (x) : x € C}. (13)

We denote by I' the set of minimizers of CMP (13).

Next, recall some concepts. Let C be a nonempty subset of
anormed space X. A mapping S : C — Cis called uniformly
Lipschitzian if there exists a constant & > 0 such that

[$"x - S"y| < Z|x-y|, Vn=>1, Vx,yeC. (14)
Recently, Kim and Xu [9] introduced the concept of asymp-
totically k-strict pseudocontractive mappings in a Hilbert
space as below.

Definition I. Let C be a nonempty subset of a Hilbert space H.

A mapping S : C — C is said to be an asymptotically k-

strict pseudocontractive mapping with sequence {y,,} if there

exists a constant k € [0, 1) and a sequence {y,} in [0, co) with

lim,, _, .y, = 0 such that

n n_ 12 2
[ = S"1" < (L+) =l

thlx=8"x=(y=s"»), 19

Vn>1, Vx,yeC.

It is important to note that every asymptotically k-
strict pseudocontractive mapping with sequence {y,} is a
uniformly Z-Lipschitzian mapping with & = sup{(k +
V1+(1-k)y,)/(1 +k): n > 1}. Subsequently, Sahu et al.
[10] considered the concept of asymptotically k-strict pseu-
docontractive mappings in the intermediate sense, which are
not necessarily Lipschitzian.

Definition 2. Let C be a nonempty subset of a Hilbert space
H. A mapping S : C — Cis said to be an asymptotically k-
strict pseudocontractive mapping in the intermediate sense
with sequence {y,} if there exist a constant k € [0,1) and a

sequence {y,} in [0, co) with lim,, , ., y,, = 0 such that

n—00 x

lim sup supC ("S"x - S"y"2 -(1+y,)|lx- y||2
S V€ (16)
—kl|x-8"x - (y - S”y)“z) <0.

Putc, = max{0, sup, .c(IS"x - S"yI”~(1+y,)Ix - yI*-
kllx-8"x—(y - S"y)||2)}. Thenc¢, > 0(Vn > 1),¢, —
0 (n — 00), and there holds the relation

I8 - sy
<) x =y +klx=S"x = (y ="y +6, 17

Vn>1, Vx,yeC.

In 2009, Sahu et al. [10] first established one weak
convergence theorem for the following Mann-type iterative
scheme:

x, = x € C chosen arbitrary,
(18)

Xp = (1-a,) x, +,S"x,, VYn>1,

where0 <8 <a, <1-k-8, Y2 a,c, <oo,and Y0, y, <
00, and then obtained another strong convergence theorem
for the following hybrid CQ iterative scheme:

x; = x € C chosen arbitrary,

Yn = (1 - (Xn) X, + (annxn’

C,={zeC:|y,- 2|’ <|lx, -2 + 6.}, (19

{zeC:({x,-z,x-x,) >0},

Q,

xn+1 = PCannx, Vn > 1,

where 0 < 6 < o, < 1 -k 0, = ¢, +y,A,, and
A, = supilx, - zI* : z € Fix(S)} < oo. Subsequently,
the above iterative schemes are extended to develop new
iterative algorithms for finding a common solution of the
VIP and the fixed point problem of an asymptotically strict
pseudocontractive mapping in the intermediate sense; see, for
example, [11-13].

Motivated and inspired by the above facts, we first
introduce and analyze one iterative algorithm by hybrid
shrinking projection method for finding a solution of the
CMP (13) with constraints of several problems: finitely many
GMEDPs, finitely many VIPs, the GSVI (8), and the fixed
point problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense in a real Hilbert space. We
prove strong convergence theorem for the iterative algorithm
under suitable conditions. The iterative algorithm is based
on shrinking projection method, Korpelevich’s extragradient
method, hybrid steepest-descent method in [7], viscosity
approximation method, averaged mapping approach to the
GPA in [14], and strongly positive bounded linear operator
technique. On the other hand, we also propose another
iterative algorithm by hybrid shrinking projection method
for finding a fixed point of infinitely many nonexpansive
mappings with the same constraints. We derive its strong
convergence under mild assumptions. The results obtained
in this paper improve and extend the corresponding results
announced by many others.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and | - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use



w,(x,) to denote the weak w-limit set of the sequence {x,};
that is,

w, (x,) = {x € H: x, — x for some subsequence

{xni} of {xn}}.

(20)
Recall that a mapping A : C — H is called
(i) monotone if
(Ax—Ay,x—y) >0, VYx,y€eC; (21)

(ii) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax - Ap,x - y)y zq|x -y, Vx,yeC (22)

(iil) a-inverse-strongly monotone if there exists a constant
a > 0 such that

(Ax - Ay, x - y) = af|Ax - Ay|", Vx,yeC. (23)

It is obvious that if A is a-inverse-strongly monotone,
then A is monotone and 1/«-Lipschitz continuous.

The metric (or nearest point) projection from H onto C is
the mapping P : H — C which assigns to each point x € H
the unique point P-x € C satisfying the property

Je-Bod =il -l =d 0.

Some important properties of projections are gathered in
the following proposition.

Proposition 3. For given x € H and z € C,
)z=Pxe{(x-2,y-2)<0, VyeC
(i) z = Pox & Ix—2zl* < llx = yI* =y - 2I*, Vy € G
(iii) (Pex = Poy,x — ) > [|[Pox — Poyll’, Wy € H.

Consequently, P is nonexpansive and monotone.

If A is an a-inverse-strongly monotone mapping of C into
H, then it is obvious that A is 1/«-Lipschitz continuous. We
also have that if A < 2a, then I —AA is a nonexpansive mapping
from C to H.

Definition 4. A mapping T : H — H is said to be
(a) nonexpansive if

ITx - Ty| < ||x-y||, Vx,yeH; (25)

(b) firmly nonexpansive if 2T — I is nonexpansive or,
equivalently, if T' is 1-inverse-strongly monotone (1-
ism):

x -y Tx-Ty) > |Tx = Ty|>, Vx,yeH;  (26)
y y y y
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alternatively, T' is firmly nonexpansive if and only if T' can be
expressed as

T=%(I+S), (27)

where S : H — H is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if T' is nonexpansive, then
I — T is monotone. It is also easy to see that a projection
P is 1-ism. Inverse-strongly monotone (also referred to as
cocoercive) operators have been applied widely in solving
practical problems in various fields.

Definition 5. A mapping T : H — H is said to be an
averaged mapping if it can be written as the average of the
identity I and a nonexpansive mapping; that is,

T=(1-a)l+aS, (28)

where @« € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T' is «-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are 1/2-averaged mappings.

Proposition 6 (see [15]). LetT : H — H be a given mapping.

(i) T is nonexpansive if and only if the complement I — T
is 1/2-ism.
(ii) If T is v-ism, then, fory > 0, yT is v/y-ism.
(iii) T is averaged if and only if the complement I-T is v-ism
forsomev > 1/2. Indeed, for« € (0,1), T is a-averaged
ifand only if I — T is 1/2«-ism.

Proposition 7 (see [15]). Let S,T,V : H — H be given
operators.

O IFT = (1 -a)S+aV for somea € (0,1) and if S is
averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement
I - T is firmly nonexpansive.

(iii) If T = (1 - @)S + &V for some a € (0,1) and if S is
firmly nonexpansive and V' is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {T;}~,
is averaged, then so is the composite T},...,Ty. In
particular, if Ty is o -averaged and T, is «,-averaged,
where o), «, € (0,1), then the composite T, T, is «-
averaged, where & = &) + &, — o4 &,.

(v) If the mappings {T;}, are averaged and have a
common fixed point, then

N
(VFix (T;) = Fix (T,,..., Ty) . (29)
i=1

The notation Fix(T) denotes the set of all fixed points of the
mapping T; that is, Fix(T) = {x e H : Tx = x}.
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Proposition 8 (see [3]). Assume that ® : C x C — R
satisfies (Al)-(A4) and let ¢ : C — R be a proper lower
semicontinuous and convex function. Assume that either (BI)
or (B2) holds. For r > 0 and x € H, define a mapping

T . H — C as follows:

TP (x) = {z€C: 0(2.3) +9 () - 9 ()

o1 (y-z,z-x) >0, ‘v’yeC},
r
(30)

for all x € H. Then the following hold:

(i) for each x € H, Tr(®"")(x) +0;
(ii) Tr(®"”) is single-valued;

(iii) Tr@"”) is firmly nonexpansive; that is, for any x, y € H,

[0 TPy’ < (1©Px _T@Py ) @D

(iv) Fix(T©?) = MEP(®, ¢);

(v) MEP(®, ¢) is closed and convex.

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 9. Let X be a real inner product space. Then there
holds the following inequality:

e+ P <IxlP+2(p.x+y), VxyeX. (32

Lemma 10. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 3(i)) implies

ueVI(C,A) & u=P;(u-AAu), A>0. (33)

Lemma 11 (see [16, demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then I -T is demiclosed.
That is, whenever {x,,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges
to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Let {T,},2, be an infinite family of nonexpansive mappings
on H and let {1}, be a sequence of nonnegative numbers in
[0, 1]. For any n > 1, define a mapping W, on H as follows:

Un,n+1 = I’
Un,n = /\nTnUn,nH + (1 - /\n) I,
Un,nfl = /\nflTnflUn,n + (1 - /\nfl) I,

Upi = MTiUgers + (1= A0) L, (34)

Upger = M Te U + (1= Ay L

Uy = L, T5U, 5 + (1-A,)1L
W,=U,, = )LlTlUn’z + (1 - AI)I.

Such a mapping W, is called the W-mapping generated by
T,Tyy..,Tyand A, A, ..., A

Lemma 12 (see [17, Lemma 3.2]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let {T,},°,
be a sequence of nonexpansive self-mappings on C such that
Ny2, Fix(T,) # 0 and let {A,} be a sequence in (0,b] for some
b e (0,1). Then, for every x € C and k > 1, the limit
lim, , U, xx exists, where U, ; is defined as in (34).

Lemma 13 (see [17, Lemma 3.3]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let {T,} >,
be a sequence of nonexpansive self-mappings on C such that
N2 Fix(T,) #0, and let {1} be a sequence in (0,b] for some
b € (0,1). Then, Fix(W) = N2, Fix(T,).

The following lemma can be easily proven, and, therefore,
we omit the proof.

Lemma 14. Let V: H — H be a y-strongly positive bounded
linear operator with constanty > 1. Then, fory — 1 > 0,

(V=Dx-(V-Dyx-y)=F-1)]c-y
Vx,y € H.

(35)

That is, V — 1 is strongly monotone with constanty — 1.

Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0,1] and let u > 0. Associating with a nonexpansive mapping
T:C — H, we define the mapping T* : C — H by

T x == Tx — MEF (Tx), VxeC, (36)

where F : H — H is an operator such that, for some positive
constants k,1 > 0, F isk-Lipschitzian and n-strongly monotone
on H; that is, F satisfies the following conditions:

(Fx—Fy,x - y) > nx - y|’,
(37)

|Fx = By| < xflx = 5],

forallx,y € H.



Lemma 15 (see [18, Lemma 3.1]). T* is a contraction provided
0O<u< 27;/;{2 ; that is,

“T’\x - T’\y" <(1-M)|x-y|, VYx,yeC, (38)

where T = 1 — |1 — u(2n — ux?) € (0, 1].

Lemma 16 ([10, Lemma 2.5]). Let H be a real Hilbert space.
Given a nonempty closed convex subset of H and points
x, ¥,z € H and given also a real number a € R, the set

{v eC: ||y - v||2 < lx- 1/||2 +{(z,v) + a} (39)
is convex (and closed).

Recall that a set-valued mapping T : D(T) ¢ H — 2" is
called monotone if, for all x, y € D(T), f € Txand g € Ty

imply
(f-gx-y)=0. (40)

A set-valued mapping T is called maximal monotone if T is
monotone and (I+AT)D(T) = H foreach A > 0, where I is the
identity mapping of H. We denote by G(T') the graph of T". It
is known that a monotone mapping T is maximal if and only
if, for (x, f) € HxH,{f-g,x—y) > 0forevery (y, g) € G(T)
implies f € Tx.Let A: C — H be a monotone, k-Lipschitz-
continuous mapping and let Nv be the normal cone to C at
v € C; that is,

Nev={weH:{(v-u,w) >0, Yu € C}. (41)
Define
A b} .f b
Ty — v+ Ngv 1 veC (42)
0, if vé¢C.

Then, T is maximal monotone and 0 € Tv if and only if v €
VI(C, A).

Lemma 17 ([10, Lemma 2.6]). Let C be a nonempty subset of
a Hilbert space H and let S : C — C be an asymptotically
k-strict pseudocontractive mapping in the intermediate sense
with sequence {y, }. Then

" ="

1
1-k

x (Kl =yl + N+ a=0m) fx - o + - Re,)
(43)

<

forallx,y € Candn > 1.

Lemma 18 ([10, Lemma 2.7]). Let C be a nonempty subset
of a Hilbert space H and let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense with sequence {y,}. Let {x,} be a
sequence in C such that ||x,,—x,,,| — 0and|x,-S"x,|| — 0
asn — oo. Then ||x, — Sx,| — 0asn — oo.
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Lemma 19 (demiclosedness principle [10, Proposition 3.1]).
Let C be a nonempty closed convex subset of a Hilbert space
Hand let S : C — C be a continuous asymptotically
k-strict pseudocontractive mapping in the intermediate sense
with sequence {y, }. Then IS is demiclosed at zero in the sense
that if {x,} is a sequence in C such that x, — x € C and
limsup,, _, Jlimsup, _, lIx, = S"x,|l = 0, then (I - S)x = 0.

Lemma 20 ([10, Proposition 3.2]). Let C be a nonempty
closed convex subset of a Hilbert space H and let S : C —
C be a continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense with sequence {y,} such that
Fix(S) # 0. Then Fix(S) is closed and convex.

Remark 21. Lemmas 19 and 20 give some basic properties of
an asymptotically k-strict pseudocontractive mapping in the
intermediate sense with sequence {y,}.

Lemma 22 (see [19]). Let C be a closed convex subset of a real
Hilbert space H. Let {x,} be a sequence in H and u € H. Let
q = Pcu. If {x,} is such that w,(x,) C C and satisfies the
condition

J,—ul < Ju=al. v (49
then x,, — qasn — oo.

Lemma 23. Let H be a real Hilbert space. Then the following
hold:

@) llx = yI* = lIxl* = IyI* = 2¢x — y, ) for all x, y € H;

(b) IAx + uyl® = AllxI® +ully > = Aullx - ylI forallx, y €
Hand A,y € [0,1] withA +pu=1;

() if {x,} is a sequence in H such that x,, — x, it follows
that

lim sup|x,, — y|* = limsup|x, - x||* + |x - y|>, ¥y <€ H.
n— 0o n— 00

(45)

3. Convex Minimization Problems
with Constraints

In this section, we will introduce and analyze one iterative
algorithm by hybrid shrinking projection method for finding
a solution of the CMP (13) with constraints of several
problems: finitely many GMEDPs, finitely many VIPs, GSVI
(8), and the fixed point problem of an asymptotically strict
pseudocontractive mapping in the intermediate sense in a
real Hilbert space. We prove strong convergence theorem
for the iterative algorithm under suitable conditions. This
iterative algorithm is based on shrinking projection method,
Korpelevich’s extragradient method, hybrid steepest-descent
method in [7], viscosity approximation method, averaged
mapping approach to the GPA in [14], and strongly positive
bounded linear operator technique.

Theorem 24. Let C be a nonempty closed convex subset
of a real Hilbert space H. Let M,N be two integers. Let
f + C — R be a convex functional with L-Lipschitz
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continuous gradient Vf. Let ©, be a bifunction from C x C
to R satisfying (A1)-(A4) and let ¢, : C — R U {+oo}
be a proper lower semicontinuous and convex function, where
kefl,2,...,M}. Let By,A; : H — H,and F; : C — H be
Ui-inverse-strongly monotone, n;-inverse-strongly monotone,
and {;-inverse-strongly monotone, respectively, where k €
{1,2,...,M}, i € {1,2,...,N}, and j € {1,2}. Let S

C — C be a uniformly continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense for some
0 < k < 1 with sequence {y,} C [0, 00) such thatlim,_, 7y,
0 and {c,} c [0,00) such that lim,_, ¢, = 0. Let V be a -
strongly positive bounded linear operator with’y > 1. Let F :
H — H beax-Lipschitzian and n-strongly monotone operator
with positive constants x,n1 > 0. Let Q : H — H be an I-
Lipschitzian mapping with constant 1 > 0. Let 0 < u < 2n/x”

\J1 = p(2n — ux?). Assume that

Q = Nt GMEP(®y, ¢, B,) N N VI(C,A;) N GSVI(G) N
Fix(S) N T is nonempty and bounded and that either (Bl) or
(B2) holds. Let0 < a < &, < 1, k<, <d < 1foralln>1,
and let {8,}, {0,,} be sequences in (0, 1]. Pick any x, € H and
set Cy = C, x; = Pg x,. Let {x,} be a sequence generated by
the following algorithm:

and 0 < yl < 1, wheret =1 -

u, = TT(A(?,T,(PM) (I- Tatn By, T:bcjj\f;l Pra-1)

x (I =7a14Byy) Tr(il’%) (I=71,By) X,
Vy = Po(I = An,An) Po(I = AnoinAna) - Po
X(I=Ay,A,)Pc(I-Ap,A)u,
2y = By + (1= Ba) I = 5,V) T, G,
+ 5, [Ty, = 0, (WF (T,x,) - yQx,)] . (46)
k,=90,z,+(1-6,)S"z,,
Yo = (1= ) X, + ok
Con = {2 € C, s =2’ < I, - 2l +6,},
X1 = Fo,, X0

Vn>1,

where Po(I-A,Vf) = s,I+(1-s,)T, (hereT, is nonexpansive;
s, = (2-1,L)/4 € (0,1/2) for each A,, € (0,2/L)), 6, =
(5, + 7)1 +9,)A,, + G, and A, = sup{lx, — pl* + (I(T -
V)pll + 1(yQ = uF)pl)* /(7 = 1) : p € Q} < 0. Suppose that
the following conditions are satisfied:

(i) s, € (0,1/2) foreach A,, € (0,2/L),lim,,_, s, =0 (&

lim, _, A, =2/L);

(ll) {Tk,n} C [ek>fk] C (0) 2["]()7 {Ai,n} C [ai> bl] C (0) 2’1;‘))
and v; € (O,ZC]-), where k € {1,2,...,M}, i €
{1,2,...,N},and j € {1,2};

(iii) 0 < liminf, , B, <limsup,_, B, < L.

Then one has the following:

(I) {x,} converges stronglyas A, — 2/L (& s, — 0) to
x* = Pyxys

(ID) {x,} converges strongly as A, — 2/L(e s, —
0) to x* = Pyx, provided |x, — z,| = o(s,) and
lim, _, 0, = 0, which is the unique solution in Q) to
the VIP

(I-V)x",p-x") <0, VpeQ. (47)

Equivalently, x* = P21 - V)x".

Proof. Since Vf is L-Lipschitzian, it follows that Vf is 1/L-
ism. By Proposition 6(ii) we know that, for A > 0,AVf is
1/AL-ism. So by Proposition 6(iii) we deduce that I — AVf is
AL/2-averaged. Now since the projection P, is 1/2-averaged,
it is easy to see from Proposition 7(iv) that the composite
Po(I — AVf) is (2 + AL)/4-averaged for A € (0,2/L). Hence
we obtain that, for each n > 1, Po(I — A,Vf)is (2 + A, L)/4-
averaged for each A,, € (0,2/L). Therefore, we can write

2-A,L 2+A,L
PC(I—Aan) = I+ 2 T, (48)

=s,0+(1-s,)T,

where T, is nonexpansive and s,, := s,(A,) = 2-A,L)/4 €
(0,1/2) for each A, € (0,2/L). It is clear that

2
An—>z<=>sn—>0. (49)

As lim,_, s, = 0 and 0 < liminf,_ B, <
limsup, , B, < 1, we may assume, without loss of
generality, that {8,} ¢ [a,a] ¢ (0,1)and B, + s,IVI < 1
for all n > 1. Since V is a y-strongly positive bounded linear

operator on H, we know that
VI =sup{{(Vu,u) :ue H,|lul| =1} >y > 1. (50)
Taking into account that 8, +s,[|V|| < 1foralln > 1, we have

<((1 - ﬁn) I- SnV) u, u) =1- ﬁn =S <Vu) u)

51)
2l_ﬁn_snllvv” > 05
thatis, (1 - 3,)I — s,V is positive. It follows that
”(1 - ﬁn) I- SnV”
=sup {{((1 = B,) I = s,V)u,u) s u € H, |lul = 1}
=sup{l—-pB,—s,(Vu,u) :u € H, |u| =1}
<1- ﬁn - Sn?'
(52)
Put
A’; — T::)nk»‘(’k) (I _ rk,an) T:SI;;‘I’(Pk—l)
(53)

X (I=1iyuBiy) Tr(il’q)l) (I=71,B,) x,



forallk € {1,2,...,M}andn > 1 and

A _PC(I /\171 1)PC(I /\1 1,n 11) PC(I_Al,nBI)

(54)

foralli € {1,2,...,N}, A(L = 1I,and A(L = I, where I is the
identity mapping on H. Then we have that u,, = AMx, and
v, = AIZ u,

We divide the rest of the proof into several steps.

Step 1. We show that {x,} is well defined. It is obvious that
C, is closed and convex. As the defining inequality in C,, is
equivalent to the inequality

(2 (%0 = y)52) < %l = [7all” + 6, (55)

by Lemma 16 we know that C,, is convex for every n > 1.

First of all, let us show that O ¢ C,, for all n > 1. Suppose
that Q ¢ C, for some n > 1. Take p € Q arbitrarily. From
(46) and Proposition 8(iii), we have

e, = ol

Tr(A(?:A o) (I - rM nBM) AM_lxn

(CIVR YY) M-1
- TrM,]: P (I - rM,nBM) An p"

= ”(I = "anBur) A

AM—I

M-1
n xn_An p"

1xn - (I - rM,nBM) Ali\q471p||
(56)

<|

< HA‘;xn -A° p||
=[x, - pl-
Similarly, we have
Iv. - Pl
= | Pe (1= AnpAn) Ay = Po (1= A uAn) A5 1
< [T = AnpAn) A, = (1= Ay, An) A g

< [ = A5

< HAonun - Aonp"

=l = 2l
(57)

Combining (56) and (57), we have

Iv. = 2l < l|x. - pll- (58)
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Since p = Gp = Po(I = v F))Pc(I = v,F,)p, F is {;-inverse-
strongly monotone for j = 1,2,and 0 < v; 2( for j=12,
we deduce that, for any n > 1,

1Gv. = I
= |[Pc (I =% F) Pc(I-,F)v,
_PC(I_VlFl)PC(I‘Vze)PHZ
< (T =»F,)Pc(I-7,F)v,
—(I-nF)Pc(I-,F) P"2
= |[[Pc (I = v,E,) v, = Pc (I = »,F,) p]
i [FiPe(I- ~ F\Pc(I-%F,) plI°

- P (I-wF) p|’ (59)

Vze) Vu
< ||Pc (I =,F,) v,
7 (V1 —2(1)

2
X "FIPC(I_ Vze)Vn_Flpc(I_”ze)P"

< ||Pc(I=2,F,)v, - Po(I- V2F2)P||2

< (T =9,F) v, = (I - Vze)P"2
= ”(Vn -p)-v (B, - FzP)||2
= "Vn - P||2 +, (v, - 20,) ||F2Vn - sz"2

< v, - oI

Utilizing Lemma 15, from (46), (52), (58), and (59), we obtain
that

Iz - 2l
= 1B (% =) + (1= B) I -
Sn [T wXn = O (F (T,x,) -
+5,(I-V) p|
= 1By (% = p) + (1 = B) I = 5,V) (T, G, — p)
+ 5, [0,y (Qx,, - Qp) + (I - 0,uF) T, x,
~(I - 0,uF)T,p]
+5,[I=V) p+0, (yQ - uF) pl |
< Bulx = Pl + (1= B) I = s,V IT,Gv, - pll
su [0y [Qx, - Qpl
+||(1 - 0,uF) T,

S V) (TnGvn - P)

Van) - p]

~(I-0o,uF)T,pl]
+5,|1=V) p+0,(yQ - uF) p|

< Bullx = pll + (1= B = 5,7) |Gy, — pl
+5, [0yl |, = pl| + (1= 0,7) [, = ]
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+5, (|T=V) p|[ + |(yQ - uF) pl)
< Bullxu = Pl + (1= By =5.7) v - £l
0, (v =y1)) |, - |

+5, (IT=V) pl[ + |(yQ - wF) pl)
< Bullxu = pll+ (1= By = 5,7) %~ Pl
0, (t=vD) |x, — pl

+5, (|0 =) pl[ + |(yQ - wF) pl)
= (1= 5,9) [0 = pll + 54 (1 =0, (z = ¥D) 1, — ]

+5, (|T=V) p|[ + |(yQ - wF) pl)
< (1= 5,9) [0 = pll + 0 % = 2l

+5, (|T=V) p|[ + |(yQ - wF) pl)

+5,(1

+s,(1-

= (=5 (y=1) x - ol
o (1= pll + [ (yQ - uF) p)
= (=5, (7= 1)) % - pl
I1-v F)
o o =V Pl 100 ) o)
y-1
which hence yields
Iz~ oI’
< (=5, =) - pl +5,(7-1)

I =y pl + |6Q - uF) p|))’
7-1)°

a= o] + 6@~ pE) ol
n ’—/ 1 .
By Lemma 23(b), we deduce from (46) and (61) that

Ik, - ol
= ”(Sn (Zn - P) + (1 - 8n) (Snzn - P)"2
= 8n||Zn - P"2 + (1 - 8n) "Snzn - p||2

- 871 (1 - 871) “Zn

< e - ol +

-8z,
<8,z - plI* + (1-8,)
x[(1+9) |z = oI + Kz, = Sz + 6]
-8,(1-9,) |z, - 8"z’
= [1+,(1-8,)] [z - £
8,) (k-3,) |z,

+(1- -S|+ (1-86,)¢,

(60)

(61)

< (1 + Vn) "Zn - P"Z
+ (1 - 871) (k - é\n) ”Zn - SnZn"2 TG

< (1 +Yn) "Zn_p"2 TG

<a +yn>(nxn—pu2

A= el + Q- uF) pl)’
y-1

)

(62)
So, from (46) and (62) we get

Iy =l
=[(1-«a

<(1-

n _P)||2
&y "xn - P“ + “n"kn - PHZ

) (x, — p) +a, (k

< (1 —(Xn) "xn_p“2 +oy,

y [(1 ) (nxn o

(||(I V) pll + | (rQ - uF) pl))*

)<

y—l
<(1+y,)
-V — uF) p|)?
><<”xn_p"2+5n(||( )PII;W(VIQ u )Pll))
+C

= "xn - p”Z + ynnxn - P"2 + (1 + Vn) Sn

Aa=vpl+ Q- uF) p|))’
7-1

< "xn - P”2 T Vn (1 +Yn) ||xn _p"2 +Sn(1 +Yn)

=) pll + G~ uF) pl)*
y-1

(Yn+sn) 1+yn ”X _P"2

(la=v) pl + |(vQ - uF) p|))*
y-1

< eu = pl +

+ (s, +9,) (1+9,)

+c,

=[x, = pl* + (0 + 1) (1 +72)

S(PERSUEULE R

+c,



10

<oew = PP+ (50 + ) L+ 1) A+,

= "xn - P||2 + en’
(63)

where 0, = (s, +y,)(1+7v,)A, +¢,and A, = sup{|x, - p||2 +
(I = WV)pll + I(yQ = uF)pl)*/(y = 1) : p € Q} < co. Hence
p € C,,. This implies that QO ¢ C, for all n > 1. Therefore,
{x,,} is well defined.

Step 2. We prove that ||x, — k| — 0, |x,
1S"z, — z,|l = 0asn — oo.

Indeed, let x* = Pqx,. From x,, = P; xpand x* € Q C
C,,, we obtain

-z, — Oand

[, = x| < [|x™ = x| - (64)

This implies that {x,} is bounded and hence {u,}, {v,},
{z,}, 1k,}, and {y,} are also bounded. Since x,,,, € C,,;, < C,
and x,, = P; x,, we have

%, = x| < [|%p1 = %0|, ¥R =1 (65)

Therefore lim,, _, [, — x|l exists. From x,, = P¢ x¢, X,,4; €
C,.; ¢ C,, by Proposition 3(ii), we obtain

s = 25ll” < o = 0l = o = 5 (60)

which implies

Jdim ., -

Xn “ =0. (67)

It follows from x,,,, € C,,,, that ||y, — x> < 1, = %, 1>+

0,, and hence

"xn - yn"2

<2 ("xn - xn+1“2 + ||xn+1 - ynnz)

(68)
<2 (= Kl + 50 = 20 +6,)
=225 = xpal* +6,).
From (67) and lim,, , .6, = 0, we have
A [, =y, = 0. (69)

Since y, — x,, = a, (k,, — x,,) and 0 < & < o, < 1, we have

« ”kn - xn” S oy “kn - xn" = “yn - xn“ ’ (70)
which immediately leads to
nlLIIéO "kn - xn“ =0. (71)
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Also, utilizing Lemmas 9 and 23(b) we obtain from (46), (58),
(59), and (62) that

|z - oI
=B, + (1= B) I = 5,V) T,Gv,
+8, [T, = 0, (uF (T, x,) - yQx,)] - p|I
= (B, (x, = p) + (1= B,) (T, Gv, - p)
0 [T, = 0, (UF (T,x,) = yQx,) = VT,Gv, ||

< 1B (x, = p) + (1= B,) (T,.Gv,, - p)|

+2s, <Tnxn — 0, (uF (T,x,) - yQx,) -
= Bullx, = oI + (1 = B IT,Gv, - oI’

=B, (1-B) |,

VT,Gv,, 2, — P)

- TnGvn”2

+ 25n <Tnxn — 0y ([/iF (Tnxn) - nyn) - VTnGVn’ 2y = P>
< ﬁn”xn - p"2 + (1 - ﬁn) ”Gvn - p”2
- ﬁn (1 - ﬁn) "xn - TnGVn“Z
+ 2571 ”Tnxn 0, (MF (Tnxn) - nyn) - VTnGvn"
% ||z, - pl
< ﬁn“xn - P"2 + (1 - ﬁn) ||Vn - P"2
- ﬁn (1 - /311) "xn - TnGVn“2
+ zsn ”Tnxn — 0y (#F (Tnxn) - nyn) - VTnGVn"
% ||z, - pl
< ﬁn”xn - p"2 + (1 - ﬁn) ||xn - p"2
- ﬁn (1 - /3n) "xn - TnGVn“2
+ zsn ”Tnxn Oy (MF (Tnxn) - Yan) - VTnGVn"
x |1z, - pl
= ”xn - P"2 - /311 (1 - ﬁn) “xn - TnGvn“Z
+ zsn ”Tnxn —0y (#F (Tnxn) - nyn) - VTnGVn"
x |z, - pll.
(72)
and hence
Iy, - oI’
< (1 - ‘Xn) ”xn - P"2 + ‘Xn“kn - P||2

< (1 - an) ”xn - P"2 Ty, [(1 + Yn) ||Zn - p”2 + C”]

< (1-a,) %, = p|* +
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x[(1+7,)
% (s = I = Bu (1= B,) |, = T,Gv, [
+25, | T,x, = 0, (UF (T,x,) = yQx,) = VT,Gv, |
x |z, = pll) + <]
< (1-a) |, = pl* + e, (14 7)
x (Jls = 2I” = B, (1 = Ba) 6, = TGl
+25, | T,x, = 0, (UF (T,x,) = yQx,,) = VT, G,
x|z, = pll) + <.
< (1= 0ty) [, = pI + 0 (14 3) |5 = I
= at, (14 7,) B, (1= Bo) %, = T,Gv, |
+(1+7,)2s,
x | Tyx, = 0, (WF (T,x,) = yQx,) = VI,Gv, |
x |z, = pll + ¢
< (L+y) s = pl° = o (1 +7,) B, (1= B,)
x|, = T,Gv, |
+2s, (1+7,)
X |T,x, = 0, (F (T,x,) = yQx,,) = VT, G, |

X ||z, = p|| + ¢,

(73)
So, it follows that
a(l+y,)a(l-a)|x, - TnGvn“2
s, (1 + Yn) :Bn (1 - /';n) "xn - TnGVn"2
2 2 2
< ”xn _P" - "yn —Pn + yn"xn - P”
+2s,(1+7y,)
x ”Tnxn — 0y (”F (Tnxn) - Yan) - VTnGVn"
(74)

xlz = pll +
< = 2ll Qb = 21+ 19 = 1) + vl = 2

+2s, (L+7y,)

X ”Tnxn — 0y (HF (Tnxn) - Van) - VTnGVn"

x|z, - p| + ¢,

1

Since lim,, _, s, = 0, lim, _, ¥, = 0, and lim,, , ¢, = 0,
it follows from (69) and the boundedness of {x,}, {y,}, {z,.},
and {v,} that

nleréo ||xn - TnGvn” =0. (75)
Note that
“Zn - xn"
= “(1 - ﬂn) (TnGvn - xn)
Sy (Tnxn —Op (‘“F (Tnxn) - nyn) - VTnGVn)n
< (1 - ﬁn) "TnGvn - xn"
+ Sy “Tnxn — 0y (“F (Tnxn) - nyn) - VTnGVn”
< ||TnGvn - xn”

+ 8, [T, = 0, (uF (T,x,) = yQx,,) = VI, Gv, |

(76)
Hence, it follows from (75) and lim,, _, ._s,, = 0 that
Jim|x, - z,] = 0. 77)
Note that
Ik = zall < K = 2l + 0 = 24l - (78)
Thus, we deduce from (71) and (77) that
lim [k, - z,] = 0. (79)

Since k, -z, = (1-06,)(S"z, - z,) and k < J, < d < 1, we
have

(1-a)|S"z, = z,|| < (1-6,) [|S"2, — z,|| = |k — 2. >
(80

which, together with (79), yields

lim [z, -z, = 0. (81)

n— o0

Step 3. We prove that |lx, —u,| — 0, ]x, - v, — 0, v, -
Gv,ll — 0,llv,—P-(I-(2/L)Vf)v, Il — 0,and |z,-Sz,| —
Oasn — oo0.

Indeed, from (57), (59), ¥ > 1, and yI < 7 it follows that

Iz~ oI
=B, (x, = p) + (1= B) I = 5,V) (T, Gv,, - p)
+ 5, [0,y (Qx, = Qp) + (I - 0,4F) Tyx,,
—(I - 0,uF) T, p]
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+5,[I=V) p+a,(yQ-uF) p]|° For p € Q, we find from (46) that

<||B (%, = p) + (1 = B) I = 5,V) (T, Gv, - p)

+ 5,10, (Qx, = Qp) + (I = 0,4F) T, x, = [y BN, - T 1y B

- (I - o,uF) T,,p] | ~|a
+2s5,((I-V) p+0,(yQ-uF) p.z, - p)

< [Bullxn =Pl +1(1=B) I =5,V |T,Gv, - p

Pl

rk an Xy~ (I - rk,an) p”Z
< A%, —pl| + 7 (i = 208) B, = By

< %, - P"2 + T (T = 244k ”BkA];lxn - ka“ .

+ 5, (0,7 | Qx, - Qp| (84)
- o) Ty, ~ (- ) T,p)F By (569)(82),and (39), we obain
+26, (I~ V) p+ 0, (yQ - uF) p.2, - ) = - oI
< [Bulln— Pl + (1= By —5,7) |Gy, — £ < By +5:7) I%w = I + (1= By = ,7) 4 — I

+25n <(I—V)P+Un(YQ_/4F)P’zn_P>
< (ﬁn"—sn?) "xn_Pllz +(1 _ﬁn_sn?)

+S, (Un)/l "xn - p” + (1 - UnT) “xn - p")]z
+25n <(I_V)p+an(yQ_/’lF)P’Zn _P>

2
= 1Byl - pll + (1 = B, — 5,7) |G, - x, = 7]

+2$n <(I—V)p+0'n(}/Q_MF)P,zn_P>
< (Bt 5i¥) I = oI + (1= By = 5.7)

><|Ak

+Sn(1 — 0y (T_ yl)) ”xn _p"]z
+25n <(I_V)p+o-n (YQ_MF)P,ZH _P>

2 k- 2
< [:Bn ”xn - P" + (1 - :Bn - Sn?) ”Gvn - P" X [nxn - P" T (rk’” B Z[Jk) ||BkA” lx" B ka" ]

2 +25n<(1_V)P+Un(YQ_P‘F)P»Zn_P>
+5, [l = ]

2 —
=||x, - 1-B,- -2
+25,{(I-V)p+o0,(yQ-uF)p,z,- p) = p7 (1 = B = 5u7) i (1 = 200)

x |BiA; x,, - By p||2

[(ﬁn +5 ”x _P” 1 - _Sn?) ”Gvn _P"]2
+2$n <(I—V)p+0‘n(}1Q—[4F)p,Zn _p>’
+25n<(I_V)P+Un(yQ_[4F)p’Zn_P> (85)
< (By+5,7) | - p”Z +(1-B,-57)|Gv, - p” which immediately yields
-~ _ 2
+2s, <(I -V)p+o, (YQ - HF) Pz, - P> (1 —a- SnY) Tk (Z.Mk - rk,n) ||BkAI:1 1xn - ka”
_ _ 2
< (ﬁn + Sn?) "xn - P”Z + (1 - ﬁn - sn?) "Vn - P||2 < (1 - ﬁn - Sny) rk,n (Znuk - rk,n) ”BkAI; lxn - ka”
+2$n <(I—V)p+0‘n(}lQ—[/lF)p,Zn _P> < ”xn _p"2 - "Zn _p”Z
< (B +s7) ||x0 - p||2 + (1= B, =) |l - p||2 +2s, (I = V) p + 0, (yQ - uF) p,z, — p)
+25,((I-V) p+0,(yQ - uF) p.z, - p). < lxw = zall (1 = 2l + 20 = 2l)
(82) +2s, (| = V) pll + |(yQ ~ wF) p|)) |2 - plI-
(86)
Next let us show that Since lim,, _, s, = 0,{r .} € [ey, fi] € (0,24), and {x,} and

{z,} are bounded sequences, it follows from (77) that

Tim [, - u,] = 0. (83) lim |BAY 'x, - Bip| =0, k=12,...M. (87

n—00
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By Proposition 8(iii) and (46), we have +2s5,((I=V) p+o0,(yQ—-uF) p.z, - p)
2 2
Akxn—p" <|x,=pl - (1 =B, —s.7) |4, x—Ax"
2 k-1 k
) (I _ rk,an) Ak_lxn _ T(®k)‘/’k) (I - 11, an) p" + 2rkn A - Anxn B

< <(I—”k,an)AI; Xy = (I = 1,By) s A, n*n P> + 250 {I=V)p 0, (yQuF) p20 = )

- ("(I = TknBi) A];_lx" = (I =7,By) p" + "Al;x” B p"2 which leads to

—“ (I-re,By) Ak Yx, - (I- TenBi) P ( - " ) (1-a-s,y) "A’:lxn - A];xn"2
< 5 (185 =l + Jabe, ol < (1=, =5, [, s |
—”A]:lxn - Al;x rkn(Bk “x, - ka)" ) < [, - P" o P”
(88) + 21, A x, - Bep|
which implies that 125, ((I-V) p+0,(yQ - uF) p.z, - p)
2
v ] < I~ zall (b~ 21 + I~ 1)
< Al:lxn - p“z + 21k, Alj;l ” A’:lxn - ka”
- “A]:lxn - A];xn — Ten (BkAI:lxn - ka)“z +2s, ([|(1 = V) p|| + [(yQ — uF) p|) |z, - Pl -

= a8 e, = o] - 5 s, - A
i "B o . "2 that
Tenl|PkB ) Xy — DiP (89) lim "Ak lx _ Ak X " _

n— 00

k-1 k k-1
+ 21, (A% x, - AN, BAAT ' x, - Bip)
Hence we obtain from (92) that
< ||A*

k-1 k
= An Xn = BpXn

1 2
xn_p'l -

||xn - unH = "A(an - AMx "
+ Zrk)n k=1

: lxn - ka"

0 " A1x|'+|'A X, —

< |z - oI - 45, - 5|

13

(90)

(o1

Since lim,, , s, = 0, {ri.,} C [er> fil € (0,244), and {x,}
and {z,} are bounded sequences, it follows from (77) and (87)

(92)

(93)

+oe- Alf_lxn—Anxn" — 0 asn— oo.
+ 27’k)n A];_lxn — ka" .
From (82) and (89), we have That is, (83) holds.
5 Next we show that lim,,_, [|A;A u, — A;pll = 0,i =
”Zn - P” 1,2,..., N. As a matter of fact, observe that

< (ﬁn + Sn)_/) "xn _PHZ + (1 _ﬁn _sn?) "un _pllz
+25n <(1_V)p+0n (VQ_‘MF)p’zn _p>

2
un_p"

"PC I Aln z)Al lu _PC(I )L”’l l)p”

— _ 2
S(ﬁn+snY)"xn_p"2+(1_ﬁn_s b n P”

< (@ = AgA0) A M, - (- A A)PU
+25,{(I - V) p+0,(yQ - uF) p,z, - p)

lYl 1 L,n 1

< (ﬁn + Sn?) "xn - P"2 + (1 - /';n - Sn?)

i‘*n n

X [”xn - p||2 - "Al;_lxn - A’;xn"2

k-1 k
A Xn = BpXn

n

+27’k)n

A% tx, - Bpl ]

< "Mn - pllz + /\i,n (Ai,n - 2’71) "A Al lu - A, P“

i— 2
< s = oI + Ai Ny = 27) ”AiAnlun - AiP” .
(94)

< A5 = o+ Ay (N = 20) AN, — Ap|
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Combining (57), (82), and (94), we have

Iz, - oI’

< (Bo+5:7) I%n = oI + (1= By = 5,9) v — 2l
+2s, (I = V) p+0,(yQ - pF) p,z, - p)

< (B + 5a7) 60 = Pl + (1= B = 5,7) |0, - |
+2s5, (I = V) p +0,(yQ - pF) p,z, — p)

< (Bu+ 5,0 I, = pl* + (1= B, = 5,7) (95)

% (1% = PP + i (i = 21) [ 4,0 0, - A ]

+2s, (|1 = V) p|| + |(yQ = uF) p|)) |, - £l

= llx, = pl* + (1= By = 5.9) Ay (A — 217)

Ap|

+2s, (|0 =) pl + |(vQ — uF) pl) 2 - £l

i-1
i‘*n Yn

which leads to

(1 —a- Sn?) /\i,n (2111 ”A Al lu -4 P”Z

< (1= B = 57) i (211 = A1)
<|xu= oI’ =Nz - I (96)
+25, (|0 =V) p| + |(yQ = wF) p|)) |2 - P
< % = 2zl (Ix = 2l + 124 - 2I)
+2s, (| = V) pll + |(yQ ~ wF) p|)) |2 - plI-

AN, - Apl

i*tn n

Since lim,, _, o,s, = 0, {A;,,} C [a;, 5] € (0,27;), and {x,} and
{z,,} are bounded sequences, it follows from (77) that

lim ”A A, - lp"

n— 00

i=1,2..,N.  (97)

By Proposition 3(iii) and Lemma 23(a), we obtain

; 2
A un—p“

"PC I A1n z)Al lu PC(I )L”’l l)p”
< (1= A3 A 1ty = (1= X A) po Nty = )

"2 (“(I —AipA) A, — ANu, - P”2

(I - Ai,nAi) p" +

@ -2 A) A (T 1,A,) p

- (8, p)[)

Journal of Applied Mathematics

L (1t ol -
_”Airzlun - Ainun - /\i (A Al lu -4 P)||2)

i“*n n

u, = pf

< 5 (I = ol +

_"Air:lun - Ainun - /\i,n (AiAifjlu” N Aip)"Z)

< (b2l +

%t~ 8= A (A5 - Ap)[).

A, - p|

(98)

which implies

A u, — p”2
S ||xn - p"2 - i;1 n Ainun - A (AzAlnlun -A P)'lz
= I, = ol = |25 1 = A

A - 4]

+ 20, (A, — A, AN U, — Arp)

i—l Ai u “2

< lx, — I -

+ 24, A, - A | AN, - Aup])

Combining (57), (82), and (99), we have

Iz, - oI’
< (B, + 5, |, - plI” +
+2s, ((I—V)p+on(yQ—
< (Bo+ 5 = oI + (1= By = 5,7) |t~ |
+25n <(I_V)P+0n(YQ_MF)P’Zn_P>

B =) v - oI’
MF) Pz, — p>

< (ﬁn + Sn?) "xn - P“z + 1- n - Sn?)
x I, - I -

(100)

i-1 Al/l“

i l;l n AiP“]

+25n <(I_V)p+an(yQ_MF)p’Zn_p>

S"xn_pnz_(l_ﬁn_srz? ”Ai_lu - i n

i-1
i‘*n Yn

i-1 i
n n Anu

+2$n<(I_V)p+0-n(yQ_MF)p’zn_p>’
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which yields

(1 —a- Sn?) "A:lun - Ainun"2

A Al 2
n Un = AUy

<(1-B,=s)]
< [xu = ol =z - pI°
20, A%, - A || AN, - Asp (101
+2s,((I=V) p+0,(yQ- uF) p.z, - p)
< %0 = zall (I = 2l + 120 = 21D
20, A%, - A || AN, - Asp

+25, (| =v) pl + |(yQ = uF) pl) 2 - Pl -

Since lim,,_, s, = 0 and {x,}, {z,}, and {u,} are bounded,
from (77) and (97) we get

. i-1 i
Jim A0 ey~

= 0. (102)

From (102) we get

e, = v,|| = |A(Lun - Al;fun"

<|

0 1
Au, — Anun” + |

T
+ 1t ”AI;Hun - Al:lrun" —0

as 1 — 0.

Taking into account that ||x,, — v, || < lIx, — u,ll + lu,, — v,[I, we
conclude from (83) and (103) that

Jimlx, = v,,[ = 0. (104)

On the other hand, for simplicity, we write p = P-(I -
v, E)p, v, = Po(I - v,F,)v,, and w, = Gv,, = Po(I — v, F)¥,
for alln > 1. Then

p=Gp=P.(I-vF)p=P(I-vF)P:(I-F)p.
(105)

We now show that lim,_, IGv, — v,| = O0; that is,
lim, , llw, — v,| = 0. As a matter of fact, for p € Q, it
follows from (58), (59), and (82) that

Iz~ ol

< (ﬁn + Sn?) "xn - p”2 + (1 - ﬁn - Sn?)

<6y, - plf
+25,((I-V) p+0,(yQ-uF) p,z, - p)
= (Bu+ ) % = pl* + (1= B, = 5,7)
o, - ol
+2s, (I =V) p+0,(yQ-pF) p,z, - p)
< (Bu+ ) I = pl* + (1= B, = 5,7)
x [I7, = BI* + v (- 28,) |F7, - Fi 5]
+25, (I - V) p+0,(yQ-uF) p,z, - p)
< (Bo+5:7) 6w = oI + (1= By = 5,7)
x[lv, = plI* + v, (v, = 25,) By, - Fyplf
(0 = 24) |7, - Fi ]
+25, (| =V) pl| + |(yQ - uF) p|)) 12, - Pl
< (By+ 5,7 I = oI + (1= B, = 5,7)
x [, = oI+, (v, = 28,) | By, - Eypl°
1 (0 - 20)) |F\%, - F ]
+25, (| =V) pl| + |(yQ - uF) p|)) 12, - Pl
= lxs = ol + (1= By = 5.7)
x [, (v, = 20,) | Eyv,, = Fyp”
v, (0 - 20) |Fi¥, - F B[]

+25, (| =) pl + |(yQ - wF) pl) 12, - Pl

15

(106)

which immediately yields

(1-a-s,y) [Vz (28, = »,) |Fyv, — FZPHZ

+v, (20, - ;) ”Fl";n - Flf’uz]

<(1-B,-s.7) [Vz (28, =) | v, - FzP”2

+v; (28, —») ||F1F‘7n - Flﬁnz] (107)

<%, - ol = Iz - 2I°

+2s, (|2 = V) p| + | (yQ = wF) p|) ||z - £
< llxn = zall (1 = 21l + 120 = 2II)

+25, (|2 =V) pll + |(yQ = uF) p|)) 12, - £ -
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Since lim,,_, s, = 0 and {x,} and {z,} are bounded, from
(77) we get
,,ango |7, - Fy p

-Ep| =0, =0. (108)

nleréo ||F2 v,

Also, in terms of the firm nonexpansivity of P; and the (;-
inverse strong monotonicity of F; for j = 1,2, we obtain from
v; € (0, ZCj), 7 =1,2,and (59) that

1% - B’
= “Pc (I =vF)v, - Pc(I- Vze)PHZ

< (I =,F) v, = (I =,F,) p,%,~ p)

= [T v, = (=B + |7, - B
_”(I ~1F) v, ~(I-%F)p- (¥, - 1.5)"2]

%Nv—ﬂlﬂw—pn

N =7,) =7, (Byv, ~ Bp) = (p - P)I]
=%Nm—ﬁfﬂmrﬁw
N6, -7) - (- P)I
+29, (v, = ¥,) = (P~ ) By, -~ Fop)
3 |Fyv, - Eop|'].
Jw, - oI
= ||Pc (I = F) %, — Pc (I - »F) i"ll2
<{(I-wF)v,-(I-wF)pw,-p)

1 _ —
=5 [“(I - F)v,-(I- ’/1F1)P”2 + |w, ‘P“z

_”(I -0 F)v, - (I -F)p-(w, - P)||2]

< 217 A1 + o I
@ - w) + (p- B
+2v, (F¥, = Fip, (v, —w,) + (p - P))
2F7, - F ]

1

< 2 (=21 + - oI

-1, -

+2v, (F,7, - F, p, (¥,

S}

+(p-pI’
w,)+(p-p)) ]

(109)
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Thus, we have
v, - Bl
~%)-(p- B

- F,p)

< v, = ol = v, o)

+21/2 <(Vn_vn)_(p_ﬁ)’F2Vn

- % Ev, - Baplls

|w, - p|/
< v = ol = 17 - w) + (p- P (1)
+2v, |Ey7, = Fip|| | (7, — w) + (P - D).

Consequently, from (58), (106), and (110) it follows that

Iz, - oI
< (But su?) lxu = pI” + (1= By = 5,7)
x (7, = BI” + v (0 - 20) |E,7, - Fi ]
+2s5, (I =V) p+0,(yQ- pF) p,z, - p)
< By + 7)1 = oI + (1= By = 5,9) [ — BI’
+2s, (|1 = V) p| + [(yQ = wF) pl)) 2. - Pl
< (By + 5a) | = pI* + (1= B, = 5,7)
x [y = I’ = (v = 7) = (2 - DI’

+2, {( - F,p)

Vu _vn) - (p_ﬁ)’FZVn
(112)

FzP“z]

U A
+25, (|1 = V) pl| + [(yQ = uF) pl) 2. - Pl

< (Butsa?) xu = pI” + (1= By = 5,7)
x [l = ol = (v =%,) = (0 - DI’

Vo =,) = (p = D) |Fova — Eop| ]

+2v, ||(
+2s, (| = V) p|| +[|(yQ = uF) p) ||z, - Pl

< "xn - p“2 - (1 - ﬁn - Sn?) ”(vn _T;n) - (p - j‘j)"2
+29, (v, = 7,) = (p = D) |Fav — E2p|

+ 25, (JT =) pl| + |(Q - wF) D) |20 - -
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which hence leads to

(1-a-s;P) v, -7)-(p- DI’
<(=B =) =7) - (p- I’
<xu= 2" =l - 2l

+29, (v = 7,) = (p = D) |E2v = Eapl

+25, (IT=V) pl| + |(yQ = uF) p|) |12~ £

(113)

< % = 2all (1% = 21l + 12 - 21
+ 2’)/2 "(Vn - vn) - (P - ﬁ)” ”FZVn - sz”

+2s, (| =) ol + |(vQ - uF) pl)) |2, - Pl -

n— oo n 0 and {.X'n}, {Zn}) {Vn}, and {Vn} are
bounded sequences, we conclude from (77) and (108) that

Since lim s, =

Jim (v, =7,) = (p - P)|| = 0. (114)
Furthermore, from (58), (106), and (111) it follows that

e

< (Bu+ a0 I = pl* + (1= B, = 5,7)
xJw, - p|I
+25, (I - V) p+0,(yQ-uF) p,z, - p)

< (Bo+:7) 6w = ol + (1= By = 5,7)
x[Iv = pI* = 1 = w,) + (p = DI

+29, |Fy7, = Byl | (7 - wa) + (p - DI ]

+25, (| =V) pl| + [(yQ - uF) p|)) |12, - Pl

< (ﬁn + sn?) "xn - p||2 + (1 - Bn - Sn?)

(115)

x [l = ol = |7 —w,) + (0= P)I
+29, |E%, - Fipl | (@ - w,) + (p - P ]
+25, (| = V) pl| + [(yQ - uF) p|)) |12, - Pl
<%= pI° = (1= B, = s.7)
x| = w,) + (p- B)I°
+ 20 [|Fy9, - B pl | (7, - w,) + (p - D)
+2s, (|1 =) pl| + |(yQ = uF) pl)) |12, - 2l

17
which hence yields
(1 -a- Sn)_/) "(’ﬁn - wn) + (p - 15)”2
< (1 - ﬁn - Sn?) "('17" - wn) + (P - ﬁ)”z
<, = ol = |z - I’
+ 21}1 ”Flvn - Flﬁ" "(vn - wn) + (P - ﬁ)" (116)

+25, (|1 = V) pl + |(yQ - wF) pl) 12 - Pl
< = zull (%, = 2l + 2 - Pl

+ 20 |E¥, = F p| |7, — w,) + (p - )

+25, (| =v) pl + |(yQ - uF) pl)) 2 - 2l -

Since lim,_, s, = 0 and {x,},{z,},{w,}, and {¥,} are
bounded sequences, we conclude from (77) and (108) that

Jim |7, - w,) + (p-p)| =0. (117)
Note that

~w,|

£ ”(Vn _Fﬂt) - (P - ﬁ)” + ”(;n - wn) + (p - ﬁ)" .
(118)

v,

Hence from (114) and (117) we get

nleréo ”Vn - Gvn“ = nango ”Vn - wn“ =0. (119)
Observe that
“Vn - Tnvn”
< v = x|l + | = T,Gv,|| + | TGV, = T,v||  (120)
< v = xall + [ = TuGvll + [Gvy = wal-
Hence, from (75), (104), and (119) we have
nleréo “Vn - Tnvn” =0. (121)
It is clear that
“PC (I - Anvf) Vi = vn”
= "Snvn + (1 - Sn) Tnvn - Vn“
(122)

= (1 - Sn) "Tnvn - Vn"

< ||Tnvn - vn" ,
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where s, = (2 -1,L)/4 € (0,1/2) for each A,, € (0,2/L).
Hence we have

2
Jre (1= Zor) =

< ”PC (I - %Vf) v, — Po (I = A Vf)v,
+[[Be (1= A,9f) v, = v,
< "(1 - %Vf> v, — (I-1,9f)v,

+ "PC (I - )Lan) Vi = Vn“

(123)

2
< (5 =) INF G+ T = vl

From the boundedness of {v,},s, — 0(& A, — 2/L),and
IT, v, — v, — 0 (due to (121)), it follows that

lim =0. (124)

n— oo

2
v, — P <I— sz)vn

In addition, from (67) and (77), we have

21 = 2l
< ||Zn+1 - xn+1" + "xn+1 - xn" + "xn - Zn" —0 (125)
as 1 — 00.
We note that
“Snzn _ Sn+lzn
< "Snzn - Zn” + “zn - zn+1|| (126)
1201 — Sn+1zn+l|' + |'Sn+lzn+1 - Sn+lzn|| .
From (81), (125), and Lemma 17, we obtain
Tim |s"z, - s""'2,| = 0. (127)
In the meantime, we note that
Iz, = Szl < ||z, = S"z,|| + ”S”zn - S”“zn"
(128)

+

- Szn" :
From (81), (127), and the uniform continuity of S, we have

Jim |z, - Sz, = 0.

(129)

Step 4. We prove that x, — x* = Pyx,asn — 00.

Indeed, since {x, } is bounded, there exists a subsequence
{x,.} which converges weakly to some w. From (77), (83),
(104), (92), and (102) we have that Z, — WU, — WV, — W,
Aljlixni — w, and A, u, — w, where k € {1,2,..., M} and
m € {1,2,...,N}. Since § is uniformly continuous, by (129)

we get lim,, _, llz, — $"z,|l = 0 for any m > 1. Hence from
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Lemma 19, we obtain w € Fix(S). In the meantime, utilizing
Lemma 11, we deduce from Vy — WX, — W, (119), and
(124) that w € GSVI(G) and w € Fix(Po(I — (2/L)Vf)) =
VI(C, Vf) = I. Next we prove that w € ﬂf:l]:l VI(C, A,,). Let
T

m

(130)

v A, v+ Ncgv, veC,
o, vé¢C,

wherem € {1,2,...,N}. Let (v,u) € G(Tm). Sinceu—A,,v €
Nevand ATu, € C, we have

(v-ATu,u-A,v)>0. (131)

On the other hand, from A”u, = Po(I-A,,,A,)A" "u, and
v € C, we have

<v - AN, AT, - (Arzflun - /\m,nAmArzflun» >0,
(132)

and hence

A"u, — A"y
<v -Au,, % + AmA’Z_lun> >0. (133)

m,n
Therefore we have
<v - A'Z{uni, u>
> <v — At Amv>

> <v — At Amv>

m m—1
_ _A™ A " Un, A n; Un, A Am—l
v n; Uy, 2 T Ay n; Uy,

mn;

= <v = Aty Ay = AmA'r':iun)

m m m—1
+{v- N thys Ay N th, = A, AT U, )

m m—1
m An.uni - An. un,-
— V- A u P S
n;np 2
mn;

m m m—1
> (v=Apu,, A Nnu, — AN )

m m—1
- A Aniuni - An,. u,
v niunz_, —)L .
m,n;

(134)

From (102) and since A,, is Lipschitz continuous, we obtain
that lim,, _, . |A,,A"u, — A,, A" 'u,|| = 0. From AL u, —
w, {A;,} Cla,b] C(0,2), Vi€ {l,2,...,N},and (102), we
have

(v—w,u) > 0. (135)

Since T,, is maximal monotone, we have w € T,'0
and hence w € VI(CA,), m = 1,2,...,N, which
implies w € ﬂﬁzl VI(C,A,,). Next we prove that
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w € ML, GMEP(®y, ¢y, By). Since Akx, = TO(I -
rk)an)A’;_lxn, n>1, ke{l,2,..., M}, we have

O (A0 ) + 0 () — e (A,

+ <BkAl;_lxn, y - A];xn>

(136)
L (y - Mix, Ax, — A% %) > 0.
Tkn
By (A2), we have
o () = o (Ahx,) + (BeAl T, y = A, )
1 _
+— <y - AI;‘xn’ Alilxn - AI; 1xn> (137)

Tk
> 0, (y, A’;xn) .

Letz, =ty+(1-t)wforallt € (0,1] and y € C. This implies
that z, € C. Then, we have

<Zt - A]:‘an’Bth>
2 P (A,:an) - o (2,) + <zt - A,:an>Bth>
- <zt - A];xn’BkAl;_lxn>
k k-1
_ <Zt - A’:lxn) LA"X”> +0, (ZpAI;xn)
Tk

= Pk (A,;xn) ~ Pk (Zt) + <zt - A,;'xn’Bkzt - BkAI;xn>

k k k-1
+ <zt - A x,,, BeAS x, — BAY xn>

k k-1
N x,— AN " x
k n’'n n n k
_<zt_Anxn,r— + 0, (208%x,).
k.n

(138)

By (92), we have ||BkA’;xn - BkA];_lxnll — 0asn — oo.
Furthermore, by the monotonicity of B, we obtain (z, —
A’;xn, Bz, — BkAl;xn) > 0. Then, by (A4) we obtain

(7 —w, Bezy) 2 ¢ (W) = 91 (2,) + O (z,w) . (139)
Utilizing (A1), (A4), and (139), we obtain
0= 0 (22,) + 91 (2:) — & (21)
<10 (25, y) + (1 - 1) Oy (z,, w) + ey (¥)
+ (1= 1) ¢ (W) — i (2,)
<t[0 (20 ) + 9k (¥) — 91 (24)] (140)
+(1-1t)(z, —w,Bz,)
=[Ok (21, ) + 9 (¥) — 9k (2,)]
+(1-t)t{y-w,Bz,),

19
and hence
0< 0 (2, 9) + pr (¥) —9u (2) + 1= 1) (y —w, Byz,) .
(141)
Lettingt — 0, we have, for each y € C,
0< 0 (w,y) + 9 (¥) - (W) + (y ~w, Bw) .~ (142)

This implies that w € GMEP(0Oy, ¢, B,) and
hence w ¢ N, GMEP(®y, ¢, B;). Consequently,
w € N GMEP(®,, ¢, By) N NY, VI(C, A;) N GSVI(G) N
Fix(S) NT =: Q. This shows that w,,(x,,) ¢ Q. From (64) and
Lemma 22 we infer that x, — x* = Pyx,asn — oo.

Finally, assume additionally that |x, — 2, = o(s,) and
lim, _, .0, = 0. It is clear that
_ 2
V-Dx-V-1I)y,x— >(y-1 - ,
Vx,y € H.

So, we know that V' — I is (y — 1)-strongly monotone with
constant y —1 > 0. In the meantime, it is easy to see that V — I
is (V| + 1)-Lipschitzian with constant |[V]| + 1 > 0. Thus,
there exists a unique solution X in Q) to the VIP

(I-V)x,p-x)<0, VpeQ. (144)

Equivalently, X = P, (2I — V)X. Furthermore, from (58), (59),
and (82) we get

Iz, - oI’
< (Bu+ s %= pl* + (1= By = 5,7)
x|Gv, - p|
+2s, (I = V) p +0,(yQ~uF) p,z, - p)

< (ﬂn + Sn)_/) “xn - P||2 + (1 - ﬁn - Sn?)

x|lv,, - p|
(145)
+25n <(I_V)p+0n (YQ_‘”F)P’Zn_p>
= (ﬁn + Sn’_/) “xn - p"2 + (1 - /311 - Sn?)
x[lx, = plI
+25n <(I_V)p+0n (VQ_.MF)p’Zn_p>
= %, - oI’
+25n<(I_V)P+0n ()/Q—[AF)p,Zn—P>,
which hence yields
(I-V)p+0,(yQ-uF) p.p-z,)
. i
- 2s, (146)
o ml (g e, .
- 2Sn n n



20

Since [ x,-z,l = o(s,,), lim,_, 0, =0, lim,_, llx,—x"| =
0, and {x,}, {z,} are bounded, we infer from (146) that

(I-V)p,p-x")<0, VpeQ, (147)
which, together with Minty’s Lemma [4], implies that
(I-V)x",p-x") <0, VpeQ. (148)

This shows that x™ is a solution in Q) to the VIP (144). Utilizing
the uniqueness of solutions in Q) to the VIP (144), we get x* =
X. This completes the proof. O

Corollary 25. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let ® be
a bifunction from C x C to R satisfying (Al)-(A4) and let
@ : C — R U {+00} be a proper lower semicontinuous and
convex function. Let B,A; : H — H, and F; : C — H be (-
inverse-strongly monotone, n;-inverse-strongly monotone, and
{j-inverse-strongly monotone, respectively, fori = 1,2 and j =
1,2. Let S : C — C be a uniformly continuous asymptotically
k-strict pseudocontractive mapping in the intermediate sense
for some 0 < k < 1 with sequence {y,} C [0,00) such that
lim, _, .y, = 0and{c,} c [0,00) such thatlim, _, ¢, = 0. Let
V be a y-strongly positive bounded linear operator withy > 1.
Let F: H — H be a k-Lipschitzian and n-strongly monotone
operator with positive constants x,1 > 0. Let Q : H — H be
an I-Lipschitzian mapping with constant | > 0. Let 0 < p <

2n/k* and 0 < yl < 1, where T = 1 — |1 — u(2n — ux?).
Assume that Q := GMEP(®,¢,B)NVI(C,A,)NVI(C,A,)N
GSVI(G)NFix(S)NT is nonempty and bounded and that either
(BI) or (B2) holds. Let 0 < « < &, < 1,k < 3§, < d < 1 for all
n > 1, and let {B,}, {0,,} be sequences in (0, 1]. Pick any x, € H
and set C, = C,x; = P¢ x,. Let {x,} be a sequence generated
by the following algorithm:

O (u, y) + ¢ (y) — 9 (u,) + (Bx,, y — )

+i<un—xn,y—un>20, VyeC,
T,

n

vy = Po (1= A3,A5) Po (I =2y ,A ) uy,
2, = Bx, + (1= B,) I =5,V) T, Gv,
+ 5, [Tx, = 0, (WF (T,x,) = yQx,)]
k,=08,z,+(1-6,)S"z,

(149)

In = (l_an)xn-'—“nkn’
C, = {z €C,: |y, —z||2 < |x. - z||2 +6n},

Xpp1 = Pe,, %o Vn 21,

where Po(I-A,Vf) = s,I+(1-s,)T, (here T, is nonexpansive;
s, = (2-1,L)/4 € (0,1/2) for each A,, € (0,2/L)), 6, =
(5, + V)0 + y)A, + ¢, and A, = sup{lx, - pl* + (I -
V)pll + 1(yQ — uF)pl)* /(7 = 1) : p € Q} < 0. Suppose that
the following conditions are satisfied:
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(i) s, € (0,1/2) for each A,, € (0,2/L), lim,, , s, = 0
(e lim,_, A, =2/L);

(ii) {r,} C [e, f] € (0,20),{A;,.} < [a;b] <€ (0,27;), and
v; €(0,20;) fori=1,2and j = 1,2

(iii) 0 < liminf, 3, <limsup, | _f, < .
Then one has the following:

(I) {x,} converges strongly as A, — (2/L) (& s, — 0)
to x* = Pyxg;

(ID) {x,,} converges strongly as A, — (2/L) (& s, —
0) to x* = Pyx, provided ||x, — z,| = o(s,) and
lim, , 0, = 0, which is the unique solution in Q) to
the VIP

(I-V)x",p-x")<0, VpeQ. (150)

Equivalently, x* = P21 - V)x".

Corollary 26. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let ® be
a bifunction from C x C to R satisfying (Al)-(A4) and let
@ : C — R U {+00} be a proper lower semicontinuous and
convex function. Let BA : H — H,and F; : C - H
be {-inverse-strongly monotone, &-inverse-strongly monotone,
and {;-inverse-strongly monotone, respectively, for j = 1,2. Let
S: C — C be a uniformly continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense for some
0 < k < 1 with sequence {y,} C [0, 00) such thatlim,_, 7y,
0 and {c,} ¢ [0,00) such that lim, _, ..c, = 0. Let V be a y-
strongly positive bounded linear operator with’y > 1. Let F :
H — H beax-Lipschitzian and n-strongly monotone operator
with positive constants k,n1 > 0. Let Q : H — H be an I-
Lipschitzian mapping with constant | > 0. Let 0 < y < 21/’

and 0 < yl < 7, where T = 1 — |1 — u(2y — ux?). Assume

that Q := GMEP(®, ¢, B)nVI(C, A)NGSVI(G) N Fix(S)NT
is nonempty and bounded and that either (B1) or (B2) holds.
Let0 < ¢ <, < 1,k <3, <d < 1foralln > 1, and
let {B,}, {0,,} be sequences in (0,1]. Pick any x, € H and set
C, = C,x; = P x,. Let {x,} be a sequence generated by the
following algorithm:

O (1, ) + 9 (y) — ¢ (u,) + (Bx,, y — )

1
+ —(u, —x,,y—u, =20, VyeC,
r

o= B (1 - puA)
2, = Byx, + (1= B,) I = 5,V) T, Gv,
+ 5, [Tux, = 0, (uF (T,x,) = yQx,)]
k,=08,z,+(1-6,)S"z,

(151)

Yn = (1 - (Xn)xn + (xnkn’
Coiy = {z €C,: |y, —z||2 < %, —z||2 +9n},

Xpp = Pg, Xp V21,
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where Po(I-A,Vf) = s, I+(1-s,)T, (here T, is nonexpansive;
s, = 2-1,L)/4 € (0,1/2) for each A,, € (0,2/L)), 0, =
(5, + V)0 + $)A, + ¢, and A, = sup{lx, — pl* + (I(I -
V)pl + II(yQ - ‘uF)pII)Z/(? —-1): p € O} < co. Suppose that
the following conditions are satisfied:

(i) s, € (0,1/2) foreach A, € (0,2/L), lim
lim,,_, A, = 2/L);

(i) {r,} < [e, f]1 c (0,20), {p,} < la,b] c (0,28), and
v; € (0,20;) for j=1,2;

s, =0 (e

n— 00

(iii) 0 < liminf, |, B, <limsup,_, B, < L.
Then one has the following:

(I) {x,,} converges strongly as A, — (2/L) (& s
to x™ = Pyxy;

— 0)

n

(ID) {x,} converges strongly as A, — (2/L) (& s, —

0) to x* = Pyx, provided |x, — z,| = o(s,) and
lim, , o, = 0, which is the unique solution in Q to
the VIP

(I-V)x",p-x") <0, VpeQ. (152)

Equivalently, x* = P21 - V)x".

Corollary 27. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let © be
a bifunction from C x C to R satisfying (Al)-(A4) and let
@ : C — R U {+00} be a proper lower semicontinuous and
convex function. Let BA : H — H,and F; : C —» H
be {-inverse-strongly monotone, &-inverse-strongly monotone,
and (;-inverse-strongly monotone, respectively, for j = 1,2.
Let S : C — C be a uniformly continuous asymptotically
k-strict pseudocontractive mapping for some 0 < k < 1 with
sequence {y,} C [0,00) such that lim,, _, 7y, = 0. Let V be a
y-strongly positive bounded linear operator withy > 1. Let F :
H — H be ax-Lipschitzian and n-strongly monotone operator
with positive constants k,1 > 0. Let Q : H — H be an I-
Lipschitzian mapping with constant | > 0. Let 0 < y < 21/’

and 0 < yl < 1, where 7 = 1 — |1 — u(2n — ux?). Assume

that Q@ :== GMEP(®, ¢, B)n VI(C, A)NGSVI(G) N Fix(S)NT
is nonempty and bounded and that either (B1) or (B2) holds.
Let0 < a < a, < L,k <6, <d < 1foraln > 1, and
let {B,}, {0,} be sequences in (0,1]. Pick any x, € H and set
C, = C,x; = P x,. Let {x,} be a sequence generated by the
following algorithm:

®(un>y)+¢(y)_¢(un)+ <an’y_un>

1
+—(u,-x,y-u,) =0, VyeC,
s

n

Vo = PC (I - PnA) Uy»

21

2y = ﬁnxn + ((1 - /3n) I- Snv) TnGvn
+ Sy [Tnxn — 0y (.uF (Tnxn) - nyn)] >
k,=08,z,+(1-6,)S"z,,
Yn = (1 - (Xn) X, + (Xnkn’
Coiy = {z €C,: |y, - z||2 < |x, - z||2 + 9,,},

Xy = Pg, Xp V21,

(153)

where Po(I-A,Vf) = s, I+ (1-s,)T, (here T, is nonexpansive;
s, = (2-2A,L)/4 € (0,1/2) for each A, € (0,2/L)),
6, = (s, + y) (1 + y,)A,, and A, = sup{lx, — plI* + (I(I -
pl+I(yQ - uF)pl)*/(¥ - 1) : p € Q} < co. Suppose that
the following conditions are satisfied:

(i) s, € (0,1/2) for each A,, € (0,2/L), lim, _, s, = 0
(e lim, _, A, =2/L);

(ii) {r,} < le, f1 € (0,20),{p,} < [a,b] c (0,28), and
v € (O,ZCj)forj =1,2;

(iii) 0 < liminf,_, B, <limsup, _, B, < 1.
Then one has the following:

(I) {x,} converges strongly as A, — (2/L) (& s, — 0)
to x™ = Pyxy;

(IT) {x,} converges strongly as A, — (/L) (& s, —
0) to x* = Pyx, provided |x, — z,| = o(s,) and
lim, _, .0, = 0, which is the unique solution in Q) to
the VIP

(I-V)x",p-x") <0,

VpeQ. (154)

Equivalently, x* = P21 - V)x".

4. Fixed Point Problems with Constraints

In this section, we will introduce and analyze another implicit
iterative algorithm for solving the fixed point problem of
infinitely many nonexpansive mappings with constraints
of several problems: finitely many GMEPs, finitely many
VIPs, the GSVI (8), and the fixed point problem of an
asymptotically strict pseudocontractive mapping in the inter-
mediate sense in a real Hilbert space. We prove strong
convergence theorem for the iterative algorithm under mild
assumptions. This iterative algorithm is based on shrink-
ing projection method, Korpelevich’s extragradient method,
hybrid steepest-descent method in [7], viscosity approxi-
mation method, W-mapping approach to fixed points of
infinitely many nonexpansive mappings, and strongly posi-
tive bounded linear operator technique.

Theorem 28. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let M, N be two integers. Let ©; be
a bifunction from C x C to R satisfying (Al)-(A4) and let
¢ : C — R U {+o0o} be a proper lower semicontinuous
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and convex function, where k € {1,2,...,M}. Let By, A; :
H — H,and F;: C — H be py-inverse-strongly monotone,
H-inverse-strongly monotone, and {;-inverse-strongly mono-
tone, respectively, where k € {1,2,...,M},i € {1,2,...,N},
and j € {1,2}. Let {T,},2, be a sequence of nonexpansive
mappings on H and let {A,} be a sequence in (0,b] for
some b € (0,1). Let S C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense for some 0 < k < 1 with sequence
{y.} € [0, 00) such that lim, _, .y, = 0 and {c,} < [0, c0) such
that lim, , ¢, = 0. Let V be a y-strongly positive bounded
linear operator with’y > 1. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive
constants k,11 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant | > 0. Let 0 < u < 2n/x* and
\J1 = u(2n — ux?). Assume that
Q := N, Fix(T,) N0 GMEP(®y, ¢, B,) NNY VI(C, A;) N
GSVI(G) N Fix(S) is nonempty and bounded and that either
(B1) or (B2) holds. Let 0 < « < at,, < 1, k <8, < d < 1 for all
n > 1, and let {3,},{€,}, and {0,} be sequences in (0,1]. Pick
any x, € H and set C, = C,x; = P x,. Let {x,} be a sequence
generated by the following algorithm:

0 <9yl <71, wheret = 1-

U, = T:S)TKPM) (I - rM,nBM) Tfl\?ﬁ:,(PMil)

x (I = a1 pBrer) -+ T (1= 7,,By) X,
Vy =P (I = AnuAn) Po(I = AnoinAnar) - Po
X (I = A3,By) P (I = Ay,By) thy,
2, = Buxp + (1= B) I - €,V) W, Gy,
+ €, [W,x, — 0, (uF (W,x,,) - yQx,,)]
k,=0,z,+(1-9,)S"z,,

(155)

Yn = (1 _an)xn +“nkn’
Co1 = {z €C,: |y, - z||2 < |x, - z||2 + 6,,},

Xy = P, X V21,

where W, is the W-mapping defined by (34), 0,, = (¢, +y,)(1+
YDy + G and A, = supfllx, = pI* + (I = V)pll + 1(yQ -
yF)pll)Z/(? -1): p € Q} < co. Suppose that the following
conditions are satisfied:

(1) {rk,n} C [eka fk] C (0) 2["]()) {Ai,n} C [ai) bl] C (0) 2’1;‘))
and v; € (O,Z(j), where k € {1,2,...,M},i €
{1,2,...,N},and j € {1,2};

(ii) lim, , €6, = 0 and 0 < liminf

limsup, , B, < 1.

n%ooﬂn <

Then one has the following:

(D) {x,} converges strongly to x* = Pyxy;
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(1) {x,,} converges strongly to x* = Pyx, provided | x,, —
z,|l = o(e,) and lim, _, o, = 0, which is the unique
solution in () to the VIP

(I-V)x",p-x")<0, VpeQ. (156)

Equivalently, x* = Po(21 - V)x".

Proof. First of all, let us show that the sequence {x,} is well
defined. As lim,_, e, = 0 and 0 < liminf, B, <
limsup, , B, < 1, we may assume, without loss of
generality, that {8,} ¢ [a,a] ¢ (0,1) and 3, + €,[IV] < 1
for all n > 1. Utilizing the arguments similar to those in the
proof of Theorem 24, we get

”(1 - ﬂn) I- enV" <I- ﬁn - en?' (157)
Put
AI:I — Tr(lik#’k) ( I-r, Bk) T’ESI:;I’(Pk—l)
(158)

0,
X (I = 7i_1uBi-1) - ”ngl)nl ) (I-r1,By)x,
forallk € {1,2,...,M}and n > 1 and

Ain =P (I - /\i,nBi) P (I - /\i—l,nBi—l) - Po (I - Al,nBl)
(159)

foralli € {1,2,...,N}, A?l = I, and Aon = I, where I is the
identity mapping on H. Then we have that u,, = AMx, and
v, = AI;] U,

We divide the rest of the proof into several steps.

Step 1. We show that {x,,} is well defined. It is obvious that
C, is closed and convex. As the defining inequality in C,, is
equivalent to the inequality

2(x, = 9.):2) < %’ =yl +6,,  (160)

by Lemma 16 we know that C,, is convex for every n > 1.

First of all, let us show that Q ¢ C,, for all n > 1. Suppose
that O ¢ C,, for some n > 1. Take p € Q arbitrarily. Utilizing
the arguments similar to those in the proof of Theorem 24 we
obtain that

I, - ol < | A5, - ASp| < >, -, (6D
v, - pll < |A s, - Ap| < - ol (162)
v = pll < | - I (163)
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IGv, ~ oI

< "PC(I—Vze)Vn_PC(I_Vze)PHZ

+vy (v - 20)

5 (164)
X |Fy P (I = v,F,) v, = FyPc (I = v, F,) p
< "Vn - P"2 +, (v, - 20,) "Fan - FzP"2
< -2l
I, — ol
< (1+9,) ]z - oI’
+ (1 - 8n) (k - 8n) “Zn - Sﬂzn"2 +c
< (1 + Yn) ”Zn - p”2 +¢
<(1+y,)
2
% ("xn B P||2 + en("(I - V) p t”_(YQ - uF) p) )
y-1
+c,
(165)

So, from (155) and (165) we get

Iy, - 2l
< (1 - ‘xn) "xn - P||2 + ‘xn"kn - P||2

< (1 - (xn) "xn - P”Z

+fxn[(l+yn)

" (uxn o+, LIV AL+ 100 - pF) puf)

?—l
<(1+7) (uxn o

+€ (l

+c,

(1= V) p| + |(yQ - uF) p|))*
7-1
= [, =PI+ Vallx = 2" + (1 + 1) e,

2
Aa-vypl +?|I_(¥Q L0l U

< [ = pI* + (e + 1) (1 +7,)

23
(I-V)p| +[(yQ = uF) p|)°
x (llxn_p“2+ (” P" _"_(V U )P“) >
y-1
+c,
< Jx, = pl* + (eu +9) (L + 1) A+,
= |lx, - oI + 6,
(166)

where 8, = (¢, +7,)(1+y,)A,, +¢,and A, = sup{|x, — pl* +
(I = V)pll + I(yQ = uF)pll)* /(7 — 1) : p € O} < oo. Hence
p € C,,,. This implies that Q ¢ C, for all n > 1. Therefore,
{x,,} is well defined.

Step 2. We prove that ||x, -k, — 0, |x,, —z,] — 0, and
1S"z, —z,ll = 0asn — oo.
Indeed, let x* = Pqx,. From x,, = P; xgand x™ € Q C
C,,, we obtain
[, = xof| < [Ix™ = x| - (167)
This implies that {x,} is bounded and hence
{u,}, {v,}, {z,.}, {k,}, and {y,} are also bounded. Utilizing the

arguments similar to those of (67), (75), (77), and (81) in the
proof of Theorem 24 we obtain that

nILIIéO "xn+1 - xn" =0,

(168)

Jim [x, - W,Gv,| =0,
Jim |x, - z,[ =0, (169)
Jim 8"z, - z,[ = 0. (170)

Step 3. We prove that ||x,, — u,| — 0,]x, - v,| — 0,llv, —
Gv,l — 0,|lv,-Wv,| — 0,and|z,-Sz,|| = Oasn — oo.
Indeed, from (162), (164),y > 1, and yI < 7, it follows that

Iz - pIf
=B (xu = ) + (1= B) I = 5,V) (W,Gv,, — p)

+s, [0,y (Qx, = Qp) + (I - 0,uF) W,x,

—(I - o,uF)W,p]

+5,[(1=V) p+0,(yQ - uF) pl|’
< [Bullxn =2l + 11 = B) I = €,V WGy, - p

+ €, (0,7 | Qx, ~ Q|

+(I = o,uF) Wyx,, - (I - 0,uF) W,,p|)]?

+26n<(I_V)p+0-n(yQ_tuF)p’zn_p>
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< [Bullxn = 2l + (1= By = €,7) |Gy, = p
+e, (0,91 |x, = pll + (1 = 0,7) |x, = P[]
+2¢,((I-V) p+0,(yQ-uF) p.z, - p)
= [Bullxa =Pl + (1= By =€) |GV — P
+e, (1= 0, (z =) |, - p]’
+2¢,((I-V) p+0,(yQ-uF) p.z, - p)
< [(B,+eud) Ixa = pll + (1= By~ &7) G = I
+2¢,((I-V) p+0,(yQ-uF) p.z, - p)
< Byt &) [ = pI* + (1= By = &7) |G —
+2¢,((I-V) p+0,(yQ-uF) p.z, - p)

2

< (ﬁn + en?) "xn - pllz + (1 - ﬁn - En?) ”Vn - pHZ
+2€n <(I_V)P+Un(YQ_HF)p’Zn_P>
s (ﬂn + en?) "xn - p”2 + (1 - /3n - en?) ”un - P"2

+26n <(I_V)p+an(yQ_:“F)p’zn_p>'
(171)

Utilizing the arguments similar to those of (83), (92), (102),
(104), (119), (121), and (129) in the proof of Theorem 24 we
obtain that

dim [, =, =0, (172)

lim A% x, - Alx,| =00 k=12...M,  (73)
Tim A7, - N, =0, i=1,2, N, (174)
dim [, = v, | =0, (175)

Jim v, - G, [ =0, (176)

Jlim v, - W[ =0, (177)

lim |z, - Sz, = 0. (178)

In addition, note that

1 = Wl < [ = Woval + [Wovos =W (179)

So, from [v,, - W,v,ll — 0 and [20, Remark 3.2] it follows
that

Jim v, =W, | =o. (180)

Step 4. We prove that x, — x* = Pyx,asn — 0o0.
Indeed, since {x,,} is bounded, there exists a subsequence
{xni} which converges weakly to some w. From (169), (172),
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(175), (173), and (174) we have that Z, — WU, — WV, —
w, Akn,.xn,. — w, and Ar::i”ni — w, where k € {1,2,..., M}
and m € {1,2,...,N}. Since S is uniformly continuous, by
(178) we get lim,, _, llz,, — S"z,|l = 0 for any m > 1. Hence,
from Lemma 19, we obtain w € Fix(S). In the meantime,
utilizing Lemma 11, we deduce from (176) and (180) that w €
GSVI(G)and w € Fix(W) = ;2 Fix(T,) (due to Lemma 13).
Hence we get w € GSVI(G) N N2 Fix(T,). Repeating the
same arguments as in the proof of Theorem 24 we conclude
that w € NY_ VI(C,A,,) and w € N}, GMEP(®y, ¢, By).
Consequently, w € N Fix(T,) N -, GMEP(®, ¢, B,) N
N, VI(C, A;) N GSVI(G) N Fix(S) =: Q. This shows that
w,(x,) ¢ Q. From (167) and Lemma 22 we infer that x, —
x" = Pyxgasn — oo.

Finally, assume additionally that |x,, — z,]l = o(e,) and

lim, , o, = 0.Itis clear that

(V-Dx-(V-Dyx-y)=F-1)]c-y"
Vx,y € H.

(181)

So, we know that V — I is (y — 1)-strongly monotone with
constant y —1 > 0. In the meantime, it is easy to see that V — I
is (IVIl + 1)-Lipschitzian with constant [|[V|| + 1 > 0. Thus,
there exists a unique solution X in Q to the VIP

(I-V)x,p—-x)<0, VpeQ. (182)

Equivalently, ¥ = Py(2I — V)X. Furthermore, from (163),
(164), and (171) we get

Iz - oI’

< (B, + &) I = ol + (1 = B, = &9) [Gv, - oI
+2¢€,{(I-V) p+0,(yQ- pF) p.z, - p)

< (B, +&7) |x. - oI’

+ (1 - ﬁn - en?) ||Vn - p”2

(183)
+26n <(I_V)p+0n(yQ_MF)p’zn_p>
< (ﬁn + en?) "xn - P”z + (1 - ﬁn - en?) “xn - P"2
+2€n <(I_V)p+o'n(yQ_[’£F)p’Zn_P>
= %, - oI’
+ 2€n<(1 _V)p+0n (VQ_/"F)p’Zn _p>’
which hence yields
(I-V)p+0,(yQ-uF)p.p-z,)
_ x— o~z - oI
a 2¢, (184)
Xy — 2y
cbomad e - .

2€¢,
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Since ||x,,—z,,|| = o(s,,),lim,,_, ..o, = 0,lim,, _, . llx,—x"|| = 0,
and {x,}, {z,} are bounded, we infer from (94) that

(I-V)p,p-x")<0, VpeQ, (185)
which, together with Minty’s Lemma, implies that
(I-V)x",p-x")<0, VpeQ. (186)

This shows that x* is a solution in Q) to the VIP (182). Utilizing
the uniqueness of solutions in Q) to the VIP (182), we get x* =
X. This completes the proof. O

Corollary 29. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let ® be a bifunction from C x C to R
satisfying (A1)-(A4) and let ¢ : C — R U {+00} be a proper
lower semicontinuous and convex function. Let B,A; : H —
H, and F; : C — H be ({-inverse-strongly monotone, 1;-
inverse-strongly monotone, and j—inverse—strongly monotone,
respectively, fori = 1,2 and j = 1,2. Let {T,},> | be a sequence
of nonexpansive mappings on H and let {A,,} be a sequence in
(0,b] for some b € (0,1). Let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense for some 0 < k < 1 with sequence
{v.} € [0, 00) such that lim,,_, y, = 0 and {c,} C [0, 0c0) such
that lim, | ¢, = 0. Let V be a y-strongly positive bounded
linear operator with’y > 1. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive
constants k,11 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant | > 0. Let 0 < u < 2n/x* and

0 <yl <1, where T = 1 — 11— u(2n — ux?). Assume that

Q := N2, Fix(T,)NGMEP(®, ¢, B)nVI(C, A, )NVI(C, A,)N
GSVI(G) N Fix(S) is nonempty and bounded and that either
(BI) or (B2) holds. Let 0 < « < &, < 1,k < §,, < d < 1 for all
n > 1, and let {B,}, {e,}, and {o,} be sequences in (0, 1]. Pick
any x, € H and set C; = C,x; = P x,. Let {x,} be a sequence
generated by the following algorithm:

®(un’y)+(P(y)_(P(un)+ <an’y_un>

1
+—(u,-x,y-u,) >0, VyeC,
r

Vo = PC (I - AZ,nAZ) PC (I - Al,nBl) Uy,
Zy = ﬁnxn + ((1 - ﬁn) I- env) WnGvn
té€, [Wn'xn — 0y (.MF (ann) - nyn)] >

k,=90,z,+(1-96,)S"z,,

(187)

Yn = (1 - ‘xn) Xy + (xnkn’
Cpiy = {z €C,: |y, - z||2 < |x, - z||2 + On},

Xy = Pe, X9 VM 21,

where W, is the W-mapping defined by (34), 0,, = (¢, +7v,) (1 +
YA, + ¢, and A, = sup{lx, — pl* + (I(T = V)pll + 1 (yQ -
uE)pl)?/(y = 1) : p € Q} < co. Suppose that the following
conditions are satisfied:
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(i) {r,} < [e, f1 € (0,20),{A;,} € [a;,b] C (0,2n;), and
v € (0,2{j)fori: 1,2and j =1,2;
(ii) lim,, , €6, = 0 and 0 <

limsup, , B, < L.

liminf, | B, <

Then one has the following:

(D) {x,} converges strongly to x* = Pqx,;

(1) {x,,} converges strongly to x* = P,x, provided | x,, -
z,|l = o(e,) and lim, _, o, = 0, which is the unique
solution in Q) to the VIP

(I-V)x",p-x") <0,

Vp e Q. (188)

Equivalently, x* = P21 - V)x".

Corollary 30. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let ® be a bifunction from C x C to
R satisfying (A1)-(A4) and let ¢ : C — R U {+o0o} be a
proper lower semicontinuous and convex function. Let B, A :
H — H,andF;:C — H be {-inverse-strongly monotone, -
inverse-strongly monotone, and (;-inverse-strongly monotone,
respectively, for j = 1,2. Let {T,};>, be a sequence of
nonexpansive mappings on H and let {1} be a sequence in
(0,b] for some b € (0,1). Let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
in the intermediate sense for some 0 < k < 1 with sequence
{y,} € [0, 00) such thatlim, _, .y, = 0 and {c,} C [0, 00) such
that lim, _, ¢, = 0. Let V be a y-strongly positive bounded
linear operator with y > 1. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive
constants k,n1 > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant 1 > 0. Let 0 < u < 2n/k* and
0 <yl <7, wheret = 1—|1 — u(2n — ux?). Assume that Q :=
ny2, Fix(T,) NGMEP(®, ¢, B)nVI(C, A)NGSVI(G) N Fix(S)
is nonempty and bounded and that either (B1) or (B2) holds.
Let0 < a <, < L,k <68, <d < 1foralln > 1, and let
{B.}, €.}, and {o,} be sequences in (0, 1]. Pick any x, € H and
set Cy = C,x; = Pg x. Let {x,} be a sequence generated by
the following algorithm:

O (uy y) + ¢ (¥) — 9 (u,) + (Bx,, y — 14,,)

+i(un—xn,y—un>20, Vy eC,
T

o= Pell - p,A)
2, = Bux, + (1= B,) I - €,V) W, G,
+ 6, [Wox, =0, (uF (W,x,) —yQx,)],  (189)
k,=08,z,+(1-6,)S"z,,
Vo= (1=a,) x, + a,k,
Con =1z €Cpi 2l <, —2l* +6,}.

Xy = Pg,, Xp» V21,
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where W,, is the W-mapping defined by (34), 0, = (¢, +7v,) (1 +
YD, + 6, and A, = supf{llx, — pl* + (1T = V)pll + 1(yQ -
yF)pll)Z/(? - 1) : p € Q} < oo. Suppose that the following
conditions are satisfied:

() {r,.} < [e, f] < (0,20),1p,} < la,c] c (0,28), and
v; €(0,2(;) for j=1,2

(ii) lim,, , €6, = 0 and 0 < liminf

limsup, _, B, < 1.

n—>oo/3n <

Then one has the following:

(D) {x,,} converges strongly to x* = Pqx,;

(1) {x,,} converges strongly to x* = Pyx, provided | x,, -
z,| = o(e,) and lim,,_, . .0, = 0, which is the unique
solution in Q) to the VIP

(I-V)x",p-x") <0, VYpeQ. (190)

Equivalently, x* = Po(21 - V)x".

Corollary 31. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let ® be a bifunction from C x C to
R satisfying (A1)-(A4) and let ¢ : C — R U {+c0} be a
proper lower semicontinuous and convex function. Let B, A :
H — H,andF;: C — H be (-inverse-strongly monotone, &-
inverse-strongly monotone, and { j-inverse-strongly monotone,
respectively, for j = 1,2. Let {T,},2, be a sequence of
nonexpansive mappings on H and let {A,} be a sequence in
(0,b] for some b € (0,1). Let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping
for some 0 < k < 1 with sequence {y,} < [0,00) such
that lim, _, .y, = 0. Let V be a y-strongly positive bounded
linear operator with y > 1. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive
constants xk,n; > 0. Let Q : H — H be an I-Lipschitzian
mapping with constant | > 0. Let 0 < u < 2n/x* and

0 <yl <7, wheret = 1—|1 — u(2n — ux?). Assume that Q :=

Ny2, Fix(T,)NGMEP(0, ¢, B)NVI(C, A)n GSVI (G)NFix(S)
is nonempty and bounded and that either (B1) or (B2) holds.
Let0 < a <o, < L,k <6, <d< 1foralln > 1, and let
{B,}, e}, and {0} be sequences in (0, 1]. Pick any x, € H and
set Cy = C,x; = Pg x,. Let {x,} be a sequence generated by
the following algorithm:

G(un’y)'i'(P(y)_go(un)"' <an’y_un>

1
+— (U, —x,, y—u,) >0, VyeC,
r

n

Vi = PC (I - PnA) Uy»
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2y = ﬁnxn + ((1 - /3n) I- Env) WnGVn
t€, [ann — 0y (MF (ann) - Van)] >
k,=08,z,+(1-6,)S"z,,
Yn = (1 - (Xn) X, + (Xnkn’
Coiy = {z €C,: |y, - z||2 < |x, - z||2 + 9,,},

Xpp = Pg, Xp V21,

(191)

where W,, is the W-mapping defined by (34), 0, = (¢, +7v,) (1 +

Y, and A, = sup{llx, - pI* + (I - V)pll + 16Q -
yF)pll)z/(? -1): p € Q} < oo. Suppose that the following
conditions are satisfied:

() {r,} < [e f1 € (0,20),{p,} < [a,c] c (0,2¢), and
vj € (O,ZCj)forj =1,2;

(ii) lim,, , €6, = 0 and 0 <
limsup, , B, < L.

liminf, | B, <

Then one has the following:

(D) {x,} converges strongly to x* = Pyx,;

(1) {x,,} converges strongly to x* = Pyx, provided | x,, -
z,|l = o(e,) and lim,, _, . .0, = 0, which is the unique
solution in Q) to the VIP

(I-V)x",p-x") <0,

VpeQ. (192)

Equivalently, x* = Po(21 - V)x".

Remark 32. Let A: C — H be &-inverse-strongly monotone
and let F; : C — H be v;-inverse-strongly monotone for
j=12.LetQ:C — C bea p-contraction with p € [0, 1),
andletS: C — C be a uniformly continuous asymptotically
k-strict pseudocontractive mapping in the intermediate sense
for some 0 < k < 1 with sequence {y,} ¢ [0, 00) such that
lim,_, .y, = 0 and {¢,} ¢ [0, 00) such that lim, _, ¢, = 0.
Assume that Q := VI(C, A) N GSVI(G) N Fix(S) is nonempty
and bounded. In [11], Guu et al. introduced and analyzed a
hybrid viscosity CQ iterative algorithm for finding a point p €
Q:

x; = x € C choosen arbitrarily,

Yn = PC ('xn - PnAxn)’
t, = aann + (1 - an) Gyn’

Zp = (1 ~Un 1}n) X+ Uty + vnsntn’ (193)

O
I

=z e C:|z, -2 < ||xn—z||2+6n},
Q,={zeC:{(x,-z,x—x,) >0},

Xp1 = Pong® Vnz1,
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where v; € (0,2(;) for j = 1,2,6, = (e, + y,)A, + ¢
A, = supfllx, — pI* + (1+7,)/(1 = p)I(T - Q)plP : p € O <
00; {p,} is a sequence in (0, 2&); and {w,}, {,}, and {v,} are
three sequences in [0, 1] such that g, + v, < 1foralln > 1.
The authors of [11] proved that under suitable conditions {x,,}
converges strongly to P,x; see [11, Theorem 3.1] for more
details.

Theorem 28 extends, improves, supplements, and devel-
ops [11, Theorem 3.1] in the following aspects.

(i) The problem of finding a point p € N2, Fix(T,) N
N, GMEP(®y, ¢, By) NN, VI(C, A;) N GSVI(G) N
Fix(S) in Theorem 28 is very different from the
problem of finding a point p € VI(C, A) NGSVI(G) N
Fix(S) in [11, Theorem 3.1]. There is no doubt that
our problem of finding a point p € N2 Fix(T,) N
Nt GMEP(®y, ¢, B,) NN, VI(C, A;) N GSVI(G) N
Fix(S) is more general and more subtle than the
problem of finding a point p € VI(C, A) NGSVI(G) N
Fix(S) in [11, Theorem 3.1].

(ii) The iterative scheme in [11, Theorem 3.1] is extended
to develop the iterative scheme in Theorem 28 by
virtue of Cai and Bu iterative algorithm in [21, The-
orem 3.1] and Ceng et al. iterative one in [8, Theorem
3.1]. The iterative scheme in Theorem 28 is more
advantageous and more flexible than the iterative
scheme in [11, Theorem 3.1] because it involves solving
four problems: the GSVI (8), finitely many GMEPs,
finitely many VIPs, and the common fixed point
problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense and infinitely
many nonexpansive mappings on H.

(iii) The iterative scheme in Theorem 28 is very different
from the iterative scheme in [11, Theorem 3.1] because
the iterative scheme in our theorem (Theorem 28)
involves hybrid steepest-descent method in [7],
strongly positive bounded linear operator technique,
finitely many GMEPs, finitely many VIPs, and
infinitely many nonexpansive mappings. The proof in
[11, Theorem 3.1] makes use of Proposition CWY and
the properties of asymptotically strict pseudocontrac-
tive mapping in the intermediate sense (see Lemmas
17-20). However, the proof of Theorem 28 depends
on not only Proposition CWY and Lemmas 17-20 but
also Proposition 8, the properties of strongly positive
bounded linear operator V, and the ones of the W-
mapping W, and ™ -mapping (see Lemmas 12,13, and
15) because there are the mapping Tr(gk""k), infinitely
many nonexpansive mappings {1}, -Lipschitzian
and #-strongly monotone operator F, and strongly
positive bounded linear operator V appearing in the
iterative scheme of our theorem (Theorem 28).

(iv) The proof of Theorem 28 combines Cai and Bu
convergence analysis for their iterative algorithm to
solve finitely many GMEPs, finitely many VIPs, and
the fixed point problem of an asymptotically strict
pseudocontractive mapping in the intermediate sense
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(see [21, Theorem 3.1]); the convergence analysis for
the W-mapping approach to fixed points of infinitely
many nonexpansive mappings and strongly positive
bounded linear operator technique; and Ceng, Guu,
and Yao convergence analysis for hybrid iterative
method (see [11, Theorem 3.1]).

Remark 33. Theorem 28 also extends, improves, supple-
ments, and develops Ceng et al. [8, Theorem 3.1] in the
following aspects.

(i) The problem of finding a point p € N2 Fix(T,) N

Nt GMEP(®y, ¢, B) NNY, VI(C, A;) NGSVI(G) n
Fix(S) in Theorem 28 is very different from the
problem of finding a point p € ﬂfilFix(Ti) n
GMEP(O, ¢, A) in Ceng et al. [8, Theorem 3.1]. Here
our problem of finding a point p € N2 Fix(T,) N
N, GMEP(@y, ¢, B) NNY, VI(C, A;) NGSVI(G) N
Fix(S) is put forth after one GMEP; finitely many
nonexpansive mappings in their problem are replaced
by finitely many GMEPs and infinitely many non-
expansive mappings, respectively; and the GSVI (8),
finitely many VIPs, and the fixed point problem of
an asymptotically strict pseudocontractive mapping
in the intermediate sense are added to their problem.

(ii) The iterative scheme in [8, Theorem 3.1] is extended

to develop the iterative scheme in our theorem
(Theorem 28) by virtue of Korpelevich’s extragradient
method [22], shrinking projection method, Mann
iterative method, and strongly positive bounded
linear operator technique. The iterative scheme in
Theorem 28 is put forth after u, = Tr(ﬂ@""’)(l -r,A)x,
and W,u, in [8, Theorem 3.1] are replaced by u,, =
AMx, and W,GA N u,, respectively.

n-n>

(iii) The iterative scheme in Theorem 28 is very different

from the iterative scheme in [8, Theorem 3.1] because
the iterative scheme in Theorem 28 involves Korpele-
vich’s extragradient method [22], shrinking projec-
tion method, Mann iterative method, and strongly
positive bounded linear operator technique. The
proof of [8, Theorem 3.1] makes use of Proposition 8.
However, the proof of Theorem 28 depends on not
only Proposition 8 but also Proposition CWY, the
properties of strongly positive bounded linear oper-
ator, and the ones of asymptotically strict pseudo-
contractive mapping in the intermediate sense (see
Lemmas 17-20) because there are the SGEP (8),
finitely many GMEPs, asymptotically strict pseudo-
contractive mapping S in the intermediate sense,
and the strongly positive bounded linear operator
V appearing in the iterative scheme of our theorem
(Theorem 28).

(iv) The proof of Theorem 28 involves the convergence

analysis for Korpelevich’s extragradient method to
solve the SGEP (8), finitely many GMEPs, and
finitely many VIPs; the convergence analysis for the
W-mapping approach to fixed points of infinitely
many nonexpansive mappings and strongly positive
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bounded linear operator technique; and Ceng, Guu,
and Yao convergence analysis for viscosity approxi-
mation method and hybrid steepest-descent method
(see [23, Theorem 4.2] and [8, Theorem 3.1]).
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