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We introduce and analyze one iterative algorithm by hybrid shrinking projectionmethod for finding a solution of theminimization
problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: finitely many
generalized mixed equilibrium problems, finitely many variational inequalities, the general system of variational inequalities and
the fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We
prove strong convergence theorem for the iterative algorithmunder suitable conditions. On the other hand, we also propose another
iterative algorithm by hybrid shrinking projection method for finding a fixed point of infinitely many nonexpansive mappings with
the same constraints, and derive its strong convergence under mild assumptions.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻 and let 𝑃𝐶 be the metric projection of 𝐻 onto 𝐶.
Let 𝑆 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We denote
by Fix(𝑆) the set of fixed points of 𝑆 and by R the set of all
real numbers. A mapping 𝑆 : 𝐶 → 𝐻 is called 𝐿-Lipschitz
continuous if there exists a constant 𝐿 ≥ 0 such that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

In particular, if 𝐿 = 1 then 𝑆 is called a nonexpansive
mapping; if 𝐿 ∈ [0, 1) then 𝑆 is called a contraction. A
mapping 𝑉 is called strongly positive on 𝐻 if there exists a
constant 𝛾 > 0 such that

⟨𝑉𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (2)

Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We
consider the following variational inequality problem (VIP):
find a point 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The solution set of VIP (3) is denoted by VI(𝐶, 𝐴).
Let 𝜑 : 𝐶 → R be a real-valued function, let 𝐴 :

𝐻 → 𝐻 be a nonlinear mapping, and let Θ : 𝐶 × 𝐶 → R
be a bifunction. Peng and Yao [1] introduced the following
generalized mixed equilibrium problem (GMEP) of finding
𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (4)

We denote the set of solutions of GMEP (4) by
GMEP(Θ, 𝜑, 𝐴). The GMEP (4) is very general in the sense
that it includes, as special cases, optimization problems,
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variational inequalities, minimax problems, and Nash
equilibrium problems in noncooperative games. It covers
problems considered in [2–5].

It is assumed as in [1] thatΘ : 𝐶 ×𝐶 → R is a bifunction
satisfying conditions (A1)–(A4) and 𝜑 : C → R is a lower
semicontinuous and convex function with restriction (B1) or
(B2), where

(A1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(A3) Θ is upper-hemicontinuous; that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

Θ (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (5)

(A4) Θ(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶;

(B1) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset 𝐷𝑥 ⊂ 𝐶 and 𝑦𝑥 ∈ 𝐶 such that, for any 𝑧 ∈

𝐶 \ 𝐷𝑥,

Θ(𝑧, 𝑦𝑥) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +
1

𝑟
⟨𝑦𝑥 − 𝑧, 𝑧 − 𝑥⟩ < 0; (6)

(B2) 𝐶 is a bounded set.

Given a positive number 𝑟 > 0, let 𝑇(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 be the
solution set of the auxiliary mixed equilibrium problem; that
is, for each 𝑥 ∈ 𝐻,

𝑇
(Θ,𝜑)

𝑟
(𝑥) := {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝑦 − 𝑥, 𝑧 − 𝑦⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(7)

Let 𝐹
1
, 𝐹
2
: 𝐶 → 𝐻 be two mappings. Consider the

following general system of variational inequalities (GSVI)
[6] of finding (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that

⟨]
1
𝐹
1
𝑦
∗
+ 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨]2𝐹2𝑥
∗
+ 𝑦
∗
− 𝑥
∗
, 𝑥 − 𝑦

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(8)

where ]
1
> 0 and ]

2
> 0 are two constants. In 2008, Ceng

et al. [6] transformed the GSVI (8) into a fixed point problem
in the following way.

Proposition CWY (see [6]). For given 𝑥, 𝑦 ∈ 𝐶, (𝑥, 𝑦) is a
solution of the GSVI (8) if and only if 𝑥 is a fixed point of the
mapping 𝐺 : 𝐶 → 𝐶 defined by

𝐺𝑥 = 𝑃
𝐶
(𝐼 − ]

1
𝐹
1
) 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑥, ∀𝑥 ∈ 𝐶, (9)

where 𝑦 = 𝑃𝐶(𝐼 − ]2𝐹2)𝑥.

In particular, if the mapping 𝐹
𝑗 : 𝐶 → 𝐻 is 𝜁𝑗-inverse-

strongly monotone for 𝑗 = 1, 2, then the mapping 𝐺 is
nonexpansive provided ]𝑗 ∈ (0, 2𝜁𝑗] for 𝑗 = 1, 2. We denote
by GSVI(𝐺) the fixed point set of the mapping 𝐺.

Let 𝜆
𝑛,1
, 𝜆
𝑛,2
, . . . , 𝜆

𝑛,𝑁
∈ (0, 1], 𝑛 ≥ 1. Given the

nonexpansive self-mappings𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
on𝐶, for each 𝑛 ≥

1, the mappings 𝑈
𝑛,1
, 𝑈
𝑛,2
, . . . , 𝑈

𝑛,𝑁
are defined by

𝑈
𝑛,1

= 𝜆
𝑛,1
𝑇
1
+ (1 − 𝜆

𝑛,1
) 𝐼,

𝑈
𝑛,2

= 𝜆
𝑛,2
𝑇
𝑛
𝑈
𝑛,1
+ (1 − 𝜆

𝑛,2
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛
+ (1 − 𝜆

𝑛−1
) 𝐼,

...

𝑈
𝑛,𝑁−1

= 𝜆
𝑛,𝑁−1

𝑇
𝑁−1

𝑈
𝑛,𝑁−2

+ (1 − 𝜆
𝑛,𝑁−1

) 𝐼,

𝑊
𝑛
:= 𝑈
𝑛,𝑁

= 𝜆
𝑛,𝑁
𝑇
𝑁
𝑈
𝑛,𝑁−1

+ (1 − 𝜆
𝑛,𝑁
) 𝐼.

(10)

The𝑊
𝑛
is called the𝑊-mapping generated by 𝑇

1
, . . . , 𝑇

𝑁

and 𝜆
𝑛,1
, 𝜆
𝑛,2
, . . . , 𝜆

𝑛,𝑁
. Note that the nonexpansivity of

𝑇
𝑖
implies the one of 𝑊

𝑛
. In 2012, combining the hybrid

steepest-descent method in [7] and viscosity approximation
method, Ceng et al. [8] proposed and analyzed the following
hybrid iterative algorithm for finding a common element of
the solution set of GMEP (4) and the fixed point set of finitely
many nonexpansive mappings {𝑇𝑖}

𝑁

𝑖=1
.

Theorem CGY (see [8, Theorem 3.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let Θ : 𝐶 ×

𝐶 → R be a bifunction satisfying assumptions (A1)–(A4) and
let 𝜑 : 𝐶 → R be a lower semicontinuous and convex function
with restriction (B1) or (B2). Let the mapping 𝐴 : 𝐻 → 𝐻 be
𝛿-inverse-strongly monotone, and let {𝑇

𝑖
}
𝑁

𝑖=1
be a finite family

of nonexpansive mappings on𝐻 such that Ω := ∩
𝑁

𝑖=1
𝐹𝑖𝑥(𝑇𝑖) ∩

𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ̸= 0. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-Lipschitzian and
𝜂-strongly monotone operator with positive constants 𝜅, 𝜂 > 0

and 𝑄 : 𝐻 → 𝐻 an 𝑙-Lipschitzian mapping with constant
𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and 0 ≤ 𝛾𝑙 < 𝜏, where 𝜏 = 1 −

√1 − 𝜇(2𝜂 − 𝜇𝜅2). Suppose {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in

(0, 1), {𝛾
𝑛
} is a sequence in (0, 2𝛿], and {𝜆

𝑛,𝑖
}
𝑁

𝑖=1
is a sequence

in [𝑎, 𝑏] with 0 < 𝑎 ≤ 𝑏 < 1. For every 𝑛 ≥ 1, let 𝑊
𝑛
be the

𝑊-mapping generated by 𝑇1, . . . , 𝑇𝑁 and 𝜆𝑛,1, 𝜆𝑛,2, . . . , 𝜆𝑛,𝑁.
Given 𝑥1 ∈ 𝐻 arbitrarily, suppose the sequences {𝑥𝑛} and {𝑢𝑛}
are generated iteratively by

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑄𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹)𝑊

𝑛
𝑢
𝑛
,

∀𝑛 ≥ 1,

(11)

where the sequences {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝑟

𝑛
} and the finite family of

sequences {𝜆
𝑛,𝑖
}
𝑁

𝑖=1
satisfy the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iii) 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝛿 and

lim𝑛→∞(𝑟𝑛+1 − 𝑟𝑛) = 0;
(iv) lim

𝑛→∞
(𝜆
𝑛+1,𝑖

− 𝜆
𝑛,𝑖
) = 0 for 𝑖 = 1, 2, . . . , 𝑁.
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Then both {𝑥
𝑛
} and {𝑢

𝑛
} converge strongly to 𝑥∗ = 𝑃

Ω
(𝐼−𝜇𝐹+

𝛾𝑄)𝑥
∗, which is the unique solution in Ω to the VIP

⟨(𝜇𝐹 − 𝛾𝑄) 𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0, ∀𝑥 ∈ Ω. (12)

Let 𝑓 : 𝐶 → R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing 𝑓 over the constraint set 𝐶

minimize {𝑓 (𝑥) : 𝑥 ∈ 𝐶} . (13)

We denote by Γ the set of minimizers of CMP (13).
Next, recall some concepts. Let𝐶 be a nonempty subset of

a normed space𝑋. Amapping 𝑆 : 𝐶 → 𝐶 is called uniformly
Lipschitzian if there exists a constantL > 0 such that

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ L

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (14)

Recently, Kim and Xu [9] introduced the concept of asymp-
totically 𝑘-strict pseudocontractive mappings in a Hilbert
space as below.

Definition 1. Let𝐶 be a nonempty subset of aHilbert space𝐻.
A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝑘-
strict pseudocontractive mapping with sequence {𝛾

𝑛} if there
exists a constant 𝑘 ∈ [0, 1) and a sequence {𝛾𝑛} in [0,∞) with
lim𝑛→∞𝛾𝑛 = 0 such that

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

2
≤ (1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)
󵄩󵄩󵄩󵄩

2
,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(15)

It is important to note that every asymptotically 𝑘-
strict pseudocontractive mapping with sequence {𝛾𝑛} is a
uniformly L-Lipschitzian mapping with L = sup{(𝑘 +

√1 + (1 − 𝑘)𝛾
𝑛
)/(1 + 𝑘) : 𝑛 ≥ 1}. Subsequently, Sahu et al.

[10] considered the concept of asymptotically 𝑘-strict pseu-
docontractive mappings in the intermediate sense, which are
not necessarily Lipschitzian.

Definition 2. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝑘-
strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
} if there exist a constant 𝑘 ∈ [0, 1) and a

sequence {𝛾
𝑛
} in [0,∞) with lim

𝑛→∞
𝛾
𝑛
= 0 such that

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

2
− (1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)
󵄩󵄩󵄩󵄩

2
) ≤ 0.

(16)

Put 𝑐
𝑛
:= max{0, sup

𝑥,𝑦∈𝐶
(‖𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦‖
2
−(1+𝛾

𝑛
)‖𝑥 − 𝑦‖

2
−

𝑘‖𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)‖
2
)}. Then 𝑐

𝑛
≥ 0 (∀𝑛 ≥ 1), 𝑐

𝑛
→

0 (𝑛 → ∞), and there holds the relation
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

2

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
+ 𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)
󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(17)

In 2009, Sahu et al. [10] first established one weak
convergence theorem for the following Mann-type iterative
scheme:

𝑥
1
= 𝑥 ∈ 𝐶 chosen arbitrary,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑥
𝑛
, ∀𝑛 ≥ 1,

(18)

where 0 < 𝛿 ≤ 𝛼
𝑛
≤ 1 − 𝑘 − 𝛿, ∑

∞

𝑛=1
𝛼
𝑛
𝑐
𝑛
< ∞, and∑∞

𝑛=1
𝛾
𝑛
<

∞, and then obtained another strong convergence theorem
for the following hybrid CQ iterative scheme:

𝑥
1
= 𝑥 ∈ 𝐶 chosen arbitrary,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝐶𝑛 = {𝑧 ∈ 𝐶 :
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃𝑛} ,

𝑄
𝑛 = {𝑧 ∈ 𝐶 : ⟨𝑥𝑛 − 𝑧, 𝑥 − 𝑥𝑛⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥, ∀𝑛 ≥ 1,

(19)

where 0 < 𝛿 ≤ 𝛼𝑛 ≤ 1 − 𝑘, 𝜃𝑛 = 𝑐𝑛 + 𝛾𝑛Δ 𝑛, and
Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑧‖
2
: 𝑧 ∈ Fix(𝑆)} < ∞. Subsequently,

the above iterative schemes are extended to develop new
iterative algorithms for finding a common solution of the
VIP and the fixed point problem of an asymptotically strict
pseudocontractivemapping in the intermediate sense; see, for
example, [11–13].

Motivated and inspired by the above facts, we first
introduce and analyze one iterative algorithm by hybrid
shrinking projection method for finding a solution of the
CMP (13) with constraints of several problems: finitely many
GMEPs, finitely many VIPs, the GSVI (8), and the fixed
point problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense in a real Hilbert space.We
prove strong convergence theorem for the iterative algorithm
under suitable conditions. The iterative algorithm is based
on shrinking projection method, Korpelevich’s extragradient
method, hybrid steepest-descent method in [7], viscosity
approximation method, averaged mapping approach to the
GPA in [14], and strongly positive bounded linear operator
technique. On the other hand, we also propose another
iterative algorithm by hybrid shrinking projection method
for finding a fixed point of infinitely many nonexpansive
mappings with the same constraints. We derive its strong
convergence under mild assumptions. The results obtained
in this paper improve and extend the corresponding results
announced by many others.

2. Preliminaries

Throughout this paper, we assume that 𝐻 is a real Hilbert
space whose inner product and norm are denoted by ⟨⋅, ⋅⟩
and ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. We write 𝑥

𝑛
⇀ 𝑥 to indicate that the sequence

{𝑥
𝑛
} converges weakly to 𝑥 and 𝑥

𝑛
→ 𝑥 to indicate that

the sequence {𝑥
𝑛
} converges strongly to 𝑥. Moreover, we use
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𝜔
𝑤
(𝑥
𝑛
) to denote the weak 𝜔-limit set of the sequence {𝑥

𝑛
};

that is,

𝜔
𝑤
(𝑥
𝑛
) := {𝑥 ∈ 𝐻 : 𝑥

𝑛
𝑖

⇀ 𝑥 for some subsequence

{𝑥
𝑛
𝑖

} of {𝑥𝑛}} .
(20)

Recall that a mapping 𝐴 : 𝐶 → 𝐻 is called

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (21)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶; (22)

(iii) 𝛼-inverse-stronglymonotone if there exists a constant
𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶. (23)

It is obvious that if 𝐴 is 𝛼-inverse-strongly monotone,
then 𝐴 is monotone and 1/𝛼-Lipschitz continuous.

Themetric (or nearest point) projection from𝐻 onto𝐶 is
the mapping 𝑃

𝐶
: 𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 =: 𝑑 (𝑥, 𝐶) . (24)

Some important properties of projections are gathered in
the following proposition.

Proposition 3. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶,

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 − 𝑧‖

2
, ∀𝑦 ∈ 𝐶;

(iii) ⟨𝑃𝐶𝑥 − 𝑃𝐶𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃𝐶𝑥 − 𝑃𝐶𝑦‖
2
, ∀𝑦 ∈ 𝐻.

Consequently, 𝑃
𝐶 is nonexpansive and monotone.

If 𝐴 is an 𝛼-inverse-strongly monotone mapping of 𝐶 into
𝐻, then it is obvious that 𝐴 is 1/𝛼-Lipschitz continuous. We
also have that if 𝜆 ≤ 2𝛼, then 𝐼−𝜆𝐴 is a nonexpansivemapping
from 𝐶 to𝐻.

Definition 4. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(a) nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻; (25)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive or,
equivalently, if 𝑇 is 1-inverse-strongly monotone (1-
ism):

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻; (26)

alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇 can be
expressed as

𝑇 =
1

2
(𝐼 + 𝑆) , (27)

where 𝑆 : 𝐻 → 𝐻 is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if 𝑇 is nonexpansive, then
𝐼 − 𝑇 is monotone. It is also easy to see that a projection
𝑃
𝐶
is 1-ism. Inverse-strongly monotone (also referred to as

cocoercive) operators have been applied widely in solving
practical problems in various fields.

Definition 5. A mapping 𝑇 : 𝐻 → 𝐻 is said to be an
averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping; that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (28)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are 1/2-averaged mappings.

Proposition 6 (see [15]). Let𝑇 : 𝐻 → 𝐻 be a givenmapping.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇
is 1/2-ism.

(ii) If 𝑇 is ]-ism, then, for 𝛾 > 0, 𝛾𝑇 is ]/𝛾-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼−𝑇 is ]-ism

for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is𝛼-averaged
if and only if 𝐼 − 𝑇 is 1/2𝛼-ism.

Proposition 7 (see [15]). Let 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻 be given
operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1

is averaged, then so is the composite 𝑇
1
, . . . , 𝑇

𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

(v) If the mappings {𝑇
𝑖
}
𝑁

𝑖=1
are averaged and have a

common fixed point, then

𝑁

⋂

𝑖=1

𝐹𝑖𝑥 (𝑇
𝑖
) = 𝐹𝑖𝑥 (𝑇

1
, . . . , 𝑇

𝑁
) . (29)

The notation 𝐹𝑖𝑥(𝑇) denotes the set of all fixed points of the
mapping 𝑇; that is, 𝐹𝑖𝑥(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}.
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Proposition 8 (see [3]). Assume that Θ : 𝐶 × 𝐶 → R
satisfies (A1)–(A4) and let 𝜑 : 𝐶 → R be a proper lower
semicontinuous and convex function. Assume that either (B1)
or (B2) holds. For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping
𝑇
(Θ,𝜑)

𝑟
: 𝐻 → 𝐶 as follows:

𝑇
(Θ,𝜑)

𝑟
(𝑥) = {𝑧 ∈ 𝐶 : Θ (𝑧, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑧)

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(30)

for all 𝑥 ∈ 𝐻. Then the following hold:

(i) for each 𝑥 ∈ 𝐻, 𝑇(Θ,𝜑)
𝑟

(𝑥) ̸= 0;

(ii) 𝑇(Θ,𝜑)
𝑟

is single-valued;

(iii) 𝑇(Θ,𝜑)
𝑟

is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ,𝜑)

𝑟
𝑥 − 𝑇
(Θ,𝜑)

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
(Θ,𝜑)

𝑟
𝑥 − 𝑇
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ ; (31)

(iv) 𝐹𝑖𝑥(𝑇(Θ,𝜑)
𝑟

) = MEP(Θ, 𝜑);

(v) 𝑀𝐸𝑃(Θ, 𝜑) is closed and convex.

We need some facts and tools in a real Hilbert space 𝐻
which are listed as lemmas below.

Lemma 9. Let 𝑋 be a real inner product space. Then there
holds the following inequality:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (32)

Lemma 10. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 3(i)) implies

𝑢 ∈ V𝐼 (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝑢 − 𝜆𝐴𝑢) , 𝜆 > 0. (33)

Lemma 11 (see [16, demiclosedness principle]). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥
𝑛
} strongly converges

to some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼 is the identity
operator of𝐻.

Let {𝑇
𝑛
}
∞

𝑛=1
be an infinite family of nonexpansive mappings

on𝐻 and let {𝜆
𝑛
}
∞

𝑛=1
be a sequence of nonnegative numbers in

[0, 1]. For any 𝑛 ≥ 1, define a mapping𝑊
𝑛
on𝐻 as follows:

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛

= 𝜆
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛
+ (1 − 𝜆

𝑛−1
) 𝐼,

...

𝑈
𝑛,𝑘

= 𝜆
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆𝑘) 𝐼,

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1

𝑇
𝑘−1

𝑈
𝑛,𝑘
+ (1 − 𝜆

𝑘−1
) 𝐼,

...

𝑈
𝑛,2

= 𝜆
2
𝑇
2
𝑈
𝑛,3
+ (1 − 𝜆2) 𝐼,

𝑊
𝑛
= 𝑈
𝑛,1

= 𝜆
1
𝑇
1
𝑈
𝑛,2
+ (1 − 𝜆

1
) 𝐼.

(34)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜆

𝑛
, 𝜆
𝑛−1

, . . . , 𝜆
1
.

Lemma 12 (see [17, Lemma 3.2]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let {𝑇

𝑛
}
∞

𝑛=1

be a sequence of nonexpansive self-mappings on 𝐶 such that
∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ̸= 0 and let {𝜆

𝑛
} be a sequence in (0, 𝑏] for some

𝑏 ∈ (0, 1). Then, for every 𝑥 ∈ 𝐶 and 𝑘 ≥ 1, the limit
lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists, where 𝑈

𝑛,𝑘
is defined as in (34).

Lemma 13 (see [17, Lemma 3.3]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let {𝑇

𝑛
}
∞

𝑛=1

be a sequence of nonexpansive self-mappings on 𝐶 such that
∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ̸= 0, and let {𝜆

𝑛
} be a sequence in (0, 𝑏] for some

𝑏 ∈ (0, 1). Then, 𝐹𝑖𝑥(𝑊) = ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
).

The following lemma can be easily proven, and, therefore,
we omit the proof.

Lemma 14. Let 𝑉 : 𝐻 → 𝐻 be a 𝛾-strongly positive bounded
linear operator with constant 𝛾 > 1. Then, for 𝛾 − 1 > 0,

⟨(𝑉 − 𝐼) 𝑥 − (𝑉 − 𝐼) 𝑦, 𝑥 − 𝑦⟩ ≥ (𝛾 − 1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐻.

(35)

That is, 𝑉 − 𝐼 is strongly monotone with constant 𝛾 − 1.
Let 𝐶 be a nonempty closed convex subset of a real Hilbert

space 𝐻. We introduce some notations. Let 𝜆 be a number in
(0, 1] and let 𝜇 > 0. Associating with a nonexpansive mapping
𝑇 : 𝐶 → 𝐻, we define the mapping 𝑇𝜆 : 𝐶 → 𝐻 by

𝑇
𝜆
𝑥 := 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐶, (36)

where 𝐹 : 𝐻 → 𝐻 is an operator such that, for some positive
constants 𝜅, 𝜂 > 0,𝐹 is 𝜅-Lipschitzian and 𝜂-stronglymonotone
on𝐻; that is, 𝐹 satisfies the following conditions:
󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦

󵄩󵄩󵄩󵄩 ≤ 𝜅
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

(37)

for all 𝑥, 𝑦 ∈ 𝐻.
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Lemma 15 (see [18, Lemma 3.1]). 𝑇𝜆 is a contraction provided
0 < 𝜇 < 2𝜂/𝜅

2 ; that is,
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑥 − 𝑇
𝜆
𝑦
󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝜆𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, (38)

where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2) ∈ (0, 1].

Lemma 16 ([10, Lemma 2.5]). Let 𝐻 be a real Hilbert space.
Given a nonempty closed convex subset of 𝐻 and points
𝑥, 𝑦, 𝑧 ∈ 𝐻 and given also a real number 𝑎 ∈ R, the set

{V ∈ 𝐶 :
󵄩󵄩󵄩󵄩𝑦 − V󵄩󵄩󵄩󵄩

2
≤ ‖𝑥 − V‖2 + ⟨𝑧, V⟩ + 𝑎} (39)

is convex (and closed).

Recall that a set-valued mapping 𝑇 : 𝐷(𝑇) ⊂ 𝐻 → 2
𝐻 is

called monotone if, for all 𝑥, 𝑦 ∈ 𝐷(𝑇), 𝑓 ∈ 𝑇𝑥 and 𝑔 ∈ 𝑇𝑦

imply

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (40)

A set-valued mapping 𝑇 is called maximal monotone if 𝑇 is
monotone and (𝐼+𝜆𝑇)𝐷(𝑇) = 𝐻 for each𝜆 > 0, where 𝐼 is the
identity mapping of𝐻. We denote by 𝐺(𝑇) the graph of 𝑇. It
is known that a monotone mapping 𝑇 is maximal if and only
if, for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑓−𝑔, 𝑥−𝑦⟩ ≥ 0 for every (𝑦, 𝑔) ∈ 𝐺(𝑇)
implies 𝑓 ∈ 𝑇𝑥. Let𝐴 : 𝐶 → 𝐻 be a monotone, 𝑘-Lipschitz-
continuous mapping and let𝑁

𝐶
V be the normal cone to 𝐶 at

V ∈ 𝐶; that is,

𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V − 𝑢,𝑤⟩ ≥ 0, ∀𝑢 ∈ 𝐶} . (41)

Define

𝑇V = {
𝐴V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(42)

Then, 𝑇 is maximal monotone and 0 ∈ 𝑇V if and only if V ∈
VI(𝐶, 𝐴).

Lemma 17 ([10, Lemma 2.6]). Let 𝐶 be a nonempty subset of
a Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be an asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

≤
1

1 − 𝑘

× (𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 +
√(1 + (1 − 𝑘) 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
+ (1 − 𝑘) 𝑐𝑛)

(43)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ≥ 1.

Lemma 18 ([10, Lemma 2.7]). Let 𝐶 be a nonempty subset
of a Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense with sequence {𝛾

𝑛
}. Let {𝑥

𝑛
} be a

sequence in𝐶 such that ‖𝑥
𝑛
−𝑥
𝑛+1

‖ → 0 and ‖𝑥
𝑛
−𝑆
𝑛
𝑥
𝑛
‖ → 0

as 𝑛 → ∞. Then ‖𝑥
𝑛
− 𝑆𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Lemma 19 (demiclosedness principle [10, Proposition 3.1]).
Let 𝐶 be a nonempty closed convex subset of a Hilbert space
𝐻 and let 𝑆 : 𝐶 → 𝐶 be a continuous asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then 𝐼−𝑆 is demiclosed at zero in the sense

that if {𝑥
𝑛
} is a sequence in 𝐶 such that 𝑥

𝑛
⇀ 𝑥 ∈ 𝐶 and

lim sup
𝑚→∞

lim sup
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑚
𝑥
𝑛
‖ = 0, then (𝐼 − 𝑆)𝑥 = 0.

Lemma 20 ([10, Proposition 3.2]). Let 𝐶 be a nonempty
closed convex subset of a Hilbert space 𝐻 and let 𝑆 : 𝐶 →

𝐶 be a continuous asymptotically 𝑘-strict pseudocontractive
mapping in the intermediate sense with sequence {𝛾𝑛} such that
𝐹𝑖𝑥(𝑆) ̸= 0. Then 𝐹𝑖𝑥(𝑆) is closed and convex.

Remark 21. Lemmas 19 and 20 give some basic properties of
an asymptotically 𝑘-strict pseudocontractive mapping in the
intermediate sense with sequence {𝛾𝑛}.

Lemma 22 (see [19]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻. Let {𝑥𝑛} be a sequence in 𝐻 and 𝑢 ∈ 𝐻. Let
𝑞 = 𝑃

𝐶
𝑢. If {𝑥

𝑛
} is such that 𝜔

𝑤
(𝑥
𝑛
) ⊂ 𝐶 and satisfies the

condition
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢 − 𝑞

󵄩󵄩󵄩󵄩 , ∀𝑛, (44)

then 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞.

Lemma 23. Let 𝐻 be a real Hilbert space. Then the following
hold:

(a) ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 − ‖𝑦‖2 − 2⟨𝑥 − 𝑦, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;
(b) ‖𝜆𝑥 + 𝜇𝑦‖2 = 𝜆‖𝑥‖2+𝜇‖𝑦‖2−𝜆𝜇‖𝑥 − 𝑦‖2 for all 𝑥, 𝑦 ∈

𝐻 and 𝜆, 𝜇 ∈ [0, 1] with 𝜆 + 𝜇 = 1;
(c) if {𝑥

𝑛
} is a sequence in 𝐻 such that 𝑥

𝑛
⇀ 𝑥, it follows

that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2
= lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑦 ∈ 𝐻.

(45)

3. Convex Minimization Problems
with Constraints

In this section, we will introduce and analyze one iterative
algorithm by hybrid shrinking projection method for finding
a solution of the CMP (13) with constraints of several
problems: finitely many GMEPs, finitely many VIPs, GSVI
(8), and the fixed point problem of an asymptotically strict
pseudocontractive mapping in the intermediate sense in a
real Hilbert space. We prove strong convergence theorem
for the iterative algorithm under suitable conditions. This
iterative algorithm is based on shrinking projection method,
Korpelevich’s extragradient method, hybrid steepest-descent
method in [7], viscosity approximation method, averaged
mapping approach to the GPA in [14], and strongly positive
bounded linear operator technique.

Theorem 24. Let 𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻. Let 𝑀,𝑁 be two integers. Let
𝑓 : 𝐶 → R be a convex functional with 𝐿-Lipschitz
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continuous gradient ∇𝑓. Let Θ
𝑘
be a bifunction from 𝐶 × 𝐶

to R satisfying (A1)–(A4) and let 𝜑
𝑘
: 𝐶 → R ∪ {+∞}

be a proper lower semicontinuous and convex function, where
𝑘 ∈ {1, 2, . . . ,𝑀}. Let 𝐵

𝑘
, 𝐴
𝑖
: 𝐻 → 𝐻, and 𝐹

𝑗
: 𝐶 → 𝐻 be

𝜇
𝑘
-inverse-strongly monotone, 𝜂

𝑖
-inverse-strongly monotone,

and 𝜁
𝑗
-inverse-strongly monotone, respectively, where 𝑘 ∈

{1, 2, . . . ,𝑀}, 𝑖 ∈ {1, 2, . . . , 𝑁}, and 𝑗 ∈ {1, 2}. Let 𝑆 :

𝐶 → 𝐶 be a uniformly continuous asymptotically 𝑘-strict
pseudocontractive mapping in the intermediate sense for some
0 ≤ 𝑘 < 1 with sequence {𝛾𝑛} ⊂ [0,∞) such that lim𝑛→∞𝛾𝑛 =
0 and {𝑐𝑛} ⊂ [0,∞) such that lim𝑛→∞𝑐𝑛 = 0. Let 𝑉 be a 𝛾-
strongly positive bounded linear operator with 𝛾 > 1. Let 𝐹 :

𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-stronglymonotone operator
with positive constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-
Lipschitzian mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2

and 0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := ∩

𝑀

𝑘=1
𝐺𝑀𝐸𝑃(Θ𝑘, 𝜑𝑘, 𝐵𝑘) ∩ ∩

𝑁

𝑖=1
𝑉𝐼(𝐶, 𝐴 𝑖) ∩ GSVI (𝐺) ∩

𝐹𝑖𝑥(𝑆) ∩ Γ is nonempty and bounded and that either (B1) or
(B2) holds. Let 0 < 𝛼 ≤ 𝛼𝑛 ≤ 1, 𝑘 ≤ 𝛿𝑛 ≤ 𝑑 < 1 for all 𝑛 ≥ 1,
and let {𝛽𝑛}, {𝜎𝑛} be sequences in (0, 1]. Pick any 𝑥0 ∈ 𝐻 and
set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated by

the following algorithm:

𝑢𝑛 = 𝑇
(Θ
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟𝑀,𝑛𝐵𝑀) 𝑇
(Θ
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀−1,𝑛

× (𝐼 − 𝑟𝑀−1,𝑛𝐵𝑀−1) ⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟1,𝑛𝐵1) 𝑥𝑛,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
) 𝑃
𝐶
(𝐼 − 𝜆

𝑁−1,𝑛
𝐴
𝑁−1

) ⋅ ⋅ ⋅ 𝑃
𝐶

× (𝐼 − 𝜆
2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑧𝑛 = 𝛽𝑛𝑥n + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] ,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0,

∀𝑛 ≥ 1,

(46)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive;

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)), 𝜃

𝑛
=

(𝑠
𝑛 + 𝛾𝑛)(1 + 𝛾𝑛)Δ 𝑛 + 𝑐𝑛, and Δ 𝑛 = sup{‖𝑥𝑛 − 𝑝‖

2
+ (‖(𝐼 −

𝑉)𝑝‖ + ‖(𝛾𝑄 − 𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that

the following conditions are satisfied:

(i) 𝑠𝑛 ∈ (0, 1/2) for each 𝜆𝑛 ∈ (0, 2/𝐿), lim𝑛→∞𝑠𝑛 = 0 (⇔
lim
𝑛→∞

𝜆
𝑛
= 2/𝐿);

(ii) {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
),

and ]
𝑗
∈ (0, 2𝜁

𝑗
), where 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑖 ∈

{1, 2, . . . , 𝑁}, and 𝑗 ∈ {1, 2};

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Then one has the following:

(I) {𝑥𝑛} converges strongly as 𝜆𝑛 → 2/𝐿 (⇔ 𝑠𝑛 → 0) to
𝑥
∗
= 𝑃
Ω
𝑥
0
;

(II) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ 2/𝐿 (⇔ 𝑠

𝑛
→

0) to 𝑥∗ = 𝑃
Ω
𝑥
0
provided ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
) and

lim
𝑛→∞

𝜎
𝑛
= 0, which is the unique solution in Ω to

the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (47)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Proof. Since ∇𝑓 is 𝐿-Lipschitzian, it follows that ∇𝑓 is 1/𝐿-
ism. By Proposition 6(ii) we know that, for 𝜆 > 0, 𝜆∇𝑓 is
1/𝜆𝐿-ism. So by Proposition 6(iii) we deduce that 𝐼 − 𝜆∇𝑓 is
𝜆𝐿/2-averaged. Now since the projection 𝑃

𝐶
is 1/2-averaged,

it is easy to see from Proposition 7(iv) that the composite
𝑃𝐶(𝐼 − 𝜆∇𝑓) is (2 + 𝜆𝐿)/4-averaged for 𝜆 ∈ (0, 2/𝐿). Hence
we obtain that, for each 𝑛 ≥ 1, 𝑃𝐶(𝐼 − 𝜆𝑛∇𝑓) is (2 + 𝜆𝑛𝐿)/4-
averaged for each 𝜆𝑛 ∈ (0, 2/𝐿). Therefore, we can write

𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) =

2 − 𝜆
𝑛
𝐿

4
𝐼 +

2 + 𝜆
𝑛
𝐿

4
𝑇
𝑛

= 𝑠
𝑛
𝐼 + (1 − 𝑠

𝑛
) 𝑇
𝑛
,

(48)

where 𝑇
𝑛
is nonexpansive and 𝑠

𝑛
:= 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈

(0, 1/2) for each 𝜆
𝑛
∈ (0, 2/𝐿). It is clear that

𝜆
𝑛
󳨀→

2

𝐿
⇐⇒ 𝑠

𝑛
󳨀→ 0. (49)

As lim
𝑛→∞

𝑠
𝑛

= 0 and 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛

< 1, we may assume, without loss of
generality, that {𝛽

𝑛
} ⊂ [𝑎, 𝑎] ⊂ (0, 1) and 𝛽

𝑛
+ 𝑠
𝑛
‖𝑉‖ ≤ 1

for all 𝑛 ≥ 1. Since 𝑉 is a 𝛾-strongly positive bounded linear
operator on𝐻, we know that

‖𝑉‖ = sup {⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1} ≥ 𝛾 > 1. (50)

Taking into account that 𝛽
𝑛
+ 𝑠
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1, we have

⟨((1 − 𝛽
𝑛
) 𝐼 − 𝑠

𝑛
𝑉) 𝑢, 𝑢⟩ = 1 − 𝛽

𝑛
− 𝑠
𝑛 ⟨𝑉𝑢, 𝑢⟩

≥ 1 − 𝛽𝑛 − 𝑠𝑛 ‖𝑉‖ ≥ 0;

(51)

that is, (1 − 𝛽
𝑛
)𝐼 − 𝑠
𝑛
𝑉 is positive. It follows that

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉
󵄩󵄩󵄩󵄩

= sup {⟨((1 − 𝛽
𝑛
) 𝐼 − 𝑠

𝑛
𝑉) 𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

= sup {1 − 𝛽𝑛 − 𝑠𝑛 ⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾.

(52)

Put

Δ
𝑘

𝑛
= 𝑇
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
) 𝑇
(Θ
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟
𝑘−1,𝑛

𝐵
𝑘−1

) ⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛

(53)
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for all 𝑘 ∈ {1, 2, . . . ,𝑀} and 𝑛 ≥ 1 and

Λ
𝑖

𝑛
= 𝑃𝐶 (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝑃𝐶 (𝐼 − 𝜆𝑖−1,𝑛𝐵𝑖−1) ⋅ ⋅ ⋅ 𝑃𝐶 (𝐼 − 𝜆1,𝑛𝐵1)

(54)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, Δ0
𝑛
= 𝐼, and Λ0

𝑛
= 𝐼, where 𝐼 is the

identity mapping on 𝐻. Then we have that 𝑢
𝑛
= Δ
𝑀

𝑛
𝑥
𝑛
and

V
𝑛
= Λ
𝑁

𝑛
𝑢
𝑛
.

We divide the rest of the proof into several steps.

Step 1. We show that {𝑥𝑛} is well defined. It is obvious that
𝐶𝑛 is closed and convex. As the defining inequality in 𝐶𝑛 is
equivalent to the inequality

⟨2 (𝑥
𝑛
− 𝑦
𝑛
) , 𝑧⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
, (55)

by Lemma 16 we know that 𝐶
𝑛 is convex for every 𝑛 ≥ 1.

First of all, let us show thatΩ ⊂ 𝐶𝑛 for all 𝑛 ≥ 1. Suppose
that Ω ⊂ 𝐶𝑛 for some 𝑛 ≥ 1. Take 𝑝 ∈ Ω arbitrarily. From
(46) and Proposition 8(iii), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
) Δ
𝑀−1

𝑛
𝑥
𝑛

−𝑇
(Θ
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
) Δ
𝑀−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑀,𝑛𝐵𝑀) Δ

𝑀−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑀,𝑛𝐵𝑀) Δ

𝑀−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑀−1

𝑛
𝑥
𝑛
− Δ
𝑀−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛
𝑥
𝑛
− Δ
0

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(56)

Similarly, we have

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
) Λ
𝑁−1

𝑛
𝑢
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
) Λ
𝑁−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑁,𝑛𝐴𝑁) Λ
𝑁−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑁,𝑛𝐴𝑁) Λ

𝑁−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁−1

𝑛
𝑢𝑛 − Λ

𝑁−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
0

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(57)

Combining (56) and (57), we have

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (58)

Since 𝑝 = 𝐺𝑝 = 𝑃
𝐶
(𝐼 − ]

1
𝐹
1
)𝑃
𝐶
(𝐼 − ]

2
𝐹
2
)𝑝, 𝐹
𝑗
is 𝜁
𝑗
-inverse-

strongly monotone for 𝑗 = 1, 2, and 0 ≤ ]
𝑗
≤ 2𝜁
𝑗
for 𝑗 = 1, 2,

we deduce that, for any 𝑛 ≥ 1,
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − ]

1
𝐹
1
) 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) V
𝑛

−𝑃𝐶 (𝐼 − ]1𝐹1) 𝑃𝐶 (𝐼 − ]2𝐹2) 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − ]

1
𝐹
1
) 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) V
𝑛

− (𝐼 − ]
1
𝐹
1
) 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩[𝑃𝐶 (𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝]

− ]
1
[𝐹
1
𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝐹
1
𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝]

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − ]2𝐹2) V𝑛 − 𝑃𝐶 (𝐼 − ]2𝐹2) 𝑝

󵄩󵄩󵄩󵄩

2

+ ]
1
(]
1
− 2𝜁
1
)

×
󵄩󵄩󵄩󵄩𝐹1𝑃𝐶 (𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝐹
1
𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − ]

2
𝐹
2
) V
𝑛
− (𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(V𝑛 − 𝑝) − ]2 (𝐹2V𝑛 − 𝐹2𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
.

(59)

Utilizing Lemma 15, from (46), (52), (58), and (59), we obtain
that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
) − 𝑝]

+ 𝑠
𝑛 (𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝜎
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑝) + (𝐼 − 𝜎

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛

− (𝐼 − 𝜎𝑛𝜇𝐹)𝑇𝑛𝑝]

+ 𝑠
𝑛
[(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝]

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
[𝜎
𝑛
𝛾
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑝

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜎𝑛𝜇𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝜎𝑛𝜇𝐹)𝑇𝑛𝑝

󵄩󵄩󵄩󵄩]

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
[𝜎
𝑛
𝛾𝑙
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩]
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+ 𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(1 − 𝜎

𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (1 − 𝜎𝑛 (𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

= (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑠𝑛 (1 − 𝜎𝑛 (𝜏 − 𝛾𝑙))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

≤ (1 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑠𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

= (1 − 𝑠
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)

= (1 − 𝑠
𝑛 (𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑠
𝑛
(𝛾 − 1)

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝
󵄩󵄩󵄩󵄩

𝛾 − 1
,

(60)
which hence yields
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑠𝑛 (𝛾 − 1))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠𝑛 (𝛾 − 1)

×
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

(𝛾 − 1)
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
.

(61)

By Lemma 23(b), we deduce from (46) and (61) that
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛿𝑛 (𝑧𝑛 − 𝑝) + (1 − 𝛿𝑛) (𝑆

𝑛
𝑧
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

= 𝛿𝑛
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿𝑛)

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛿𝑛
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿𝑛)

× [(1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑘

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆
𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
]

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2

= [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
) (𝑘 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤ (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
) (𝑘 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)(

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑠
𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
) + 𝑐
𝑛
.

(62)
So, from (46) and (62) we get
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) (𝑥𝑛 − 𝑝) + 𝛼𝑛 (𝑘𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

× [(1 + 𝛾
𝑛
)(

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+𝑠
𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
) + 𝑐
𝑛
]

≤ (1 + 𝛾
𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
)

+ 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 + 𝛾

𝑛
) 𝑠
𝑛

×
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
+ 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑠
𝑛
(1 + 𝛾

𝑛
)

×
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
+ 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝛾𝑛 + 𝑠𝑛) (1 + 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝑠
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
)
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1

+ 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝑠
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
)

+ 𝑐
𝑛
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≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝑠𝑛 + 𝛾𝑛) (1 + 𝛾𝑛) Δ 𝑛 + 𝑐𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
,

(63)

where 𝜃𝑛 = (𝑠𝑛 +𝛾𝑛)(1 + 𝛾𝑛)Δ 𝑛 + 𝑐𝑛 and Δ 𝑛 = sup{‖𝑥𝑛 − 𝑝‖
2
+

(‖(𝐼 − 𝑉)𝑝‖ + ‖(𝛾𝑄 − 𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Hence

𝑝 ∈ 𝐶
𝑛+1

. This implies that Ω ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Therefore,

{𝑥
𝑛
} is well defined.

Step 2. We prove that ‖𝑥
𝑛
− 𝑘
𝑛
‖ → 0, ‖𝑥

𝑛
− 𝑧
𝑛
‖ → 0 and

‖𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, let 𝑥∗ = 𝑃
Ω
𝑥
0
. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and 𝑥∗ ∈ Ω ⊂

𝐶
𝑛
, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥0
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥
0

󵄩󵄩󵄩󵄩 . (64)

This implies that {𝑥
𝑛
} is bounded and hence {𝑢

𝑛
}, {V
𝑛
},

{𝑧
𝑛
}, {𝑘
𝑛
}, and {𝑦

𝑛
} are also bounded. Since 𝑥

𝑛+1
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛

and 𝑥
𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥0
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥0
󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1. (65)

Therefore lim
𝑛→∞‖𝑥𝑛 − 𝑥0‖ exists. From 𝑥𝑛 = 𝑃𝐶

𝑛

𝑥0, 𝑥𝑛+1 ∈

𝐶𝑛+1 ⊂ 𝐶𝑛, by Proposition 3(ii), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥0 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥0 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2
, (66)

which implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (67)

It follows from𝑥
𝑛+1

∈ 𝐶
𝑛+1

that ‖𝑦
𝑛
− 𝑥
𝑛+1

‖
2
≤ ‖𝑥
𝑛
− 𝑥
𝑛+1

‖
2
+

𝜃
𝑛
and hence

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

2

≤ 2 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2
)

≤ 2 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
)

= 2 (2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
) .

(68)

From (67) and lim
𝑛→∞

𝜃
𝑛
= 0, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (69)

Since 𝑦
𝑛
− 𝑥
𝑛
= 𝛼
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) and 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, we have

𝛼
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 , (70)

which immediately leads to

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (71)

Also, utilizing Lemmas 9 and 23(b) we obtain from (46), (58),
(59), and (62) that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛

+𝑠𝑛 [𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑝)

+𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
) − 𝑉𝑇

𝑛
𝐺V
𝑛
]
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨𝑇
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
) − 𝑉𝑇

𝑛
𝐺V
𝑛
, 𝑧
𝑛
− 𝑝⟩

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛, 𝑧𝑛 − 𝑝⟩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽𝑛 (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽𝑛 (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽𝑛 (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(72)

and hence
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
]

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
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× [ (1 + 𝛾
𝑛)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ) + 𝑐𝑛]

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ) + 𝑐𝑛

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ (1 + 𝛾
𝑛
) 2𝑠
𝑛

×
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑐𝑛

≤ (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛼𝑛 (1 + 𝛾𝑛) 𝛽𝑛 (1 − 𝛽𝑛)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)

×
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑐𝑛.

(73)

So, it follows that

𝛼 (1 + 𝛾
𝑛
) 𝑎 (1 − 𝑎)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)

×
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑐𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝛾𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (1 + 𝛾𝑛)

×
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑐𝑛.

(74)

Since lim
𝑛→∞

𝑠
𝑛
= 0, lim

𝑛→∞
𝛾
𝑛
= 0, and lim

𝑛→∞
𝑐
𝑛
= 0,

it follows from (69) and the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
},

and {V
𝑛
} that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 = 0. (75)

Note that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑥𝑛)

+𝑠𝑛 (𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛)
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛) − 𝑉𝑇𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 .

(76)

Hence, it follows from (75) and lim
𝑛→∞𝑠𝑛 = 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0. (77)

Note that

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 . (78)

Thus, we deduce from (71) and (77) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0. (79)

Since 𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
) and 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1, we

have

(1 − 𝑑)
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛿𝑛)
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 ,

(80)

which, together with (79), yields

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 = 0. (81)

Step 3. We prove that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖𝑥

𝑛
− V
𝑛
‖ → 0, ‖V

𝑛
−

𝐺V
𝑛
‖ → 0, ‖V

𝑛
−𝑃
𝐶
(𝐼− (2/𝐿)∇𝑓)V

𝑛
‖ → 0, and ‖𝑧

𝑛
−𝑆𝑧
𝑛
‖ →

0 as 𝑛 → ∞.
Indeed, from (57), (59), 𝛾 > 1, and 𝛾𝑙 ≤ 𝜏 it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝜎
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑝) + (𝐼 − 𝜎

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛

− (𝐼 − 𝜎
𝑛
𝜇𝐹)𝑇

𝑛
𝑝]
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+𝑠
𝑛 [(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝]

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛 [𝜎𝑛𝛾 (𝑄𝑥𝑛 − 𝑄𝑝) + (𝐼 − 𝜎𝑛𝜇𝐹)𝑇𝑛𝑥𝑛

− (𝐼 − 𝜎
𝑛
𝜇𝐹)𝑇

𝑛
𝑝]
󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝑠
𝑛 (𝜎𝑛𝛾

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑝
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜎𝑛𝜇𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝜎𝑛𝜇𝐹)𝑇𝑛𝑝

󵄩󵄩󵄩󵄩)]
2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+𝑠
𝑛 (𝜎𝑛𝛾𝑙

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩)]
2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

= [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+𝑠
𝑛
(1 − 𝜎

𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]
2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+𝑠
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]
2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ [(𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩]
2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩ .

(82)

Next let us show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (83)

For 𝑝 ∈ Ω, we find from (46) that

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝑇
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)𝑝
󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑘,𝑛𝐵𝑘) Δ

𝑘−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑘,𝑛𝐵𝑘) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

.

(84)

By (56), (82), and (84), we obtain
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

]

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾) 𝑟
𝑘,𝑛
(𝑟
𝑘,𝑛
− 2𝜇
𝑘
)

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩ ,

(85)

which immediately yields

(1 − 𝑎 − 𝑠
𝑛
𝛾) 𝑟
𝑘,𝑛
(2𝜇
𝑘
− 𝑟
𝑘,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾) 𝑟
𝑘,𝑛
(2𝜇
𝑘
− 𝑟
𝑘,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(86)

Since lim
𝑛→∞𝑠𝑛 = 0, {𝑟𝑘,𝑛} ⊂ [𝑒𝑘, 𝑓𝑘] ⊂ (0, 2𝜇𝑘), and {𝑥𝑛} and

{𝑧𝑛} are bounded sequences, it follows from (77) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (87)
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By Proposition 8(iii) and (46), we have
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛𝐵𝑘) Δ
𝑘−1

𝑛
𝑥𝑛 − 𝑇

(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛𝐵𝑘) 𝑝
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
) Δ
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
𝐵
𝑘
) 𝑝, Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
) Δ
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
𝐵
𝑘
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
) Δ
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
𝐵
𝑘
) 𝑝 − (Δ

𝑘

𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛
− 𝑟
𝑘,𝑛
(𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(88)

which implies that
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛 − 𝑟𝑘,𝑛 (𝐵𝑘Δ

𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝)

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝑟
2

𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑘,𝑛 ⟨Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛, 𝐵𝑘Δ

𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝⟩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘Δ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩
.

(89)

From (82) and (89), we have
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+2𝑟
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩
]

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘Δ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩ ,

(90)

which leads to

(1 − 𝑎 − 𝑠
𝑛𝛾)

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘Δ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑟
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝
󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(91)

Since lim
𝑛→∞𝑠𝑛 = 0, {𝑟𝑘,𝑛} ⊂ [𝑒𝑘, 𝑓𝑘] ⊂ (0, 2𝜇𝑘), and {𝑥𝑛}

and {𝑧𝑛} are bounded sequences, it follows from (77) and (87)
that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (92)

Hence we obtain from (92) that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛
𝑥
𝑛
− Δ
𝑀

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛
𝑥
𝑛
− Δ
1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
Δ
1

𝑛
𝑥
𝑛
− Δ
2

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅
󵄩󵄩󵄩󵄩󵄩
Δ
𝑀−1

𝑛
𝑥𝑛 − Δ

𝑀

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(93)

That is, (83) holds.
Next we show that lim

𝑛→∞
‖𝐴
𝑖
Λ
𝑖

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. As a matter of fact, observe that

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

.

(94)
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Combining (57), (82), and (94), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾) 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(95)

which leads to

(1 − 𝑎 − 𝑠
𝑛
𝛾) 𝜆
𝑖,𝑛
(2𝜂
𝑖
− 𝜆
𝑖,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾) 𝜆
𝑖,𝑛
(2𝜂
𝑖
− 𝜆
𝑖,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(96)

Since lim
𝑛→∞

𝑠
𝑛
= 0, {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), and {𝑥

𝑛
} and

{𝑧𝑛} are bounded sequences, it follows from (77) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁. (97)

By Proposition 3(iii) and Lemma 23(a), we obtain

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑖,𝑛
𝐴
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝, Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝

− (Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛 − 𝜆𝑖,𝑛 (𝐴 𝑖Λ

𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(98)

which implies

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝜆
2

𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛
⟨Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
, 𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
.

(99)

Combining (57), (82), and (99), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
]

+ 2𝑠
𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩ ,

(100)
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which yields

(1 − 𝑎 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(101)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} are bounded,

from (77) and (97) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (102)

From (102) we get

󵄩󵄩󵄩󵄩𝑢𝑛 − V
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
Λ
1

𝑛
𝑢
𝑛
− Λ
2

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁−1

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0

as 𝑛 󳨀→ ∞.

(103)

Taking into account that ‖𝑥
𝑛
− V
𝑛
‖ ≤ ‖𝑥

𝑛
−𝑢
𝑛
‖ + ‖𝑢

𝑛
− V
𝑛
‖, we

conclude from (83) and (103) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩 = 0. (104)

On the other hand, for simplicity, we write 𝑝 = 𝑃
𝐶
(𝐼 −

]
2
𝐹
2
)𝑝, Ṽ
𝑛
= 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
)V
𝑛
, and 𝑤

𝑛
= 𝐺V
𝑛
= 𝑃
𝐶
(𝐼 − ]

1
𝐹
1
)Ṽ
𝑛

for all 𝑛 ≥ 1. Then

𝑝 = 𝐺𝑝 = 𝑃
𝐶 (𝐼 − ]

1
𝐹
1) 𝑝 = 𝑃𝐶 (𝐼 − ]

1
𝐹
1) 𝑃𝐶 (𝐼 − ]

2
𝐹
2) 𝑝.

(105)

We now show that lim
𝑛→∞

‖𝐺V
𝑛
− V
𝑛
‖ = 0; that is,

lim
𝑛→∞

‖𝑤
𝑛
− V
𝑛
‖ = 0. As a matter of fact, for 𝑝 ∈ Ω, it

follows from (58), (59), and (82) that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

= (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

×
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]1 (]1 − 2𝜁1)

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]2 (]2 − 2𝜁2)

󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝
󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× []
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(106)

which immediately yields

(1 − 𝑎 − 𝑠
𝑛
𝛾) []
2
(2𝜁
2
− ]
2
)
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(2𝜁
1
− ]
1
)
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩

2
]

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾) []
2
(2𝜁
2
− ]
2
)
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(2𝜁
1
− ]
1
)
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩

2
]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(107)
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Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
} and {𝑧

𝑛
} are bounded, from

(77) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩 = 0. (108)

Also, in terms of the firm nonexpansivity of 𝑃
𝐶 and the 𝜁𝑗-

inverse strongmonotonicity of 𝐹𝑗 for 𝑗 = 1, 2, we obtain from
]
𝑗
∈ (0, 2𝜁

𝑗
), 𝑗 = 1, 2, and (59) that

󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − ]
2
𝐹
2
) V
𝑛
− (𝐼 − ]

2
𝐹
2
) 𝑝, Ṽ
𝑛
− 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − ]

2
𝐹
2
) V
𝑛
− (𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − ]

2
𝐹
2
) V
𝑛
− (𝐼 − ]

2
𝐹
2
) 𝑝 − (Ṽ

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − ]
2
(𝐹
2
V
𝑛
− 𝐹
2
𝑝) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2
]

=
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2
⟨(V
𝑛
− Ṽ
𝑛
) − (𝑝 − 𝑝) , 𝐹

2
V
𝑛
− 𝐹
2
𝑝⟩

−]2
2

󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝
󵄩󵄩󵄩󵄩

2
] ,

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − ]

1
𝐹
1
) Ṽ
𝑛
− 𝑃
𝐶
(𝐼 − ]

1
𝐹
1
) 𝑝
󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − ]
1
𝐹
1
) Ṽ
𝑛
− (𝐼 − ]

1
𝐹
1
) 𝑝, 𝑤
𝑛
− 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − ]

1
𝐹
1
) Ṽ
𝑛
− (𝐼 − ]

1
𝐹
1
) 𝑝
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − ]

1
𝐹
1
) Ṽ
𝑛
− (𝐼 − ]

1
𝐹
1
) 𝑝 − (𝑤

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1
⟨𝐹
1
Ṽ
𝑛
− 𝐹
1
𝑝, (Ṽ
𝑛
− 𝑤
𝑛
) + (𝑝 − 𝑝)⟩

−]2
1

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]1 ⟨𝐹1Ṽ𝑛 − 𝐹1𝑝, (Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)⟩ ] .
(109)

Thus, we have

󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐹2V𝑛 − 𝐹2𝑝⟩

− ]2
2

󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝
󵄩󵄩󵄩󵄩

2
,

(110)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 .

(111)

Consequently, from (58), (106), and (110) it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐹2V𝑛 − 𝐹2𝑝⟩

−]2
2

󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]2
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩 ]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)
󵄩󵄩󵄩󵄩

2

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(112)
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which hence leads to

(1 − 𝑎 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(113)

Since lim
𝑛→∞

𝑠
𝑛

= 0 and {𝑥
𝑛
}, {𝑧
𝑛
}, {V
𝑛
}, and {Ṽ

𝑛
} are

bounded sequences, we conclude from (77) and (108) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 = 0. (114)

Furthermore, from (58), (106), and (111) it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

×
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]
1

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 ]

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+2]1
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 ]

+ 2𝑠
𝑛 (
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(115)

which hence yields

(1 − 𝑎 − 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2]1
󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2]
1

󵄩󵄩󵄩󵄩𝐹1Ṽ𝑛 − 𝐹1𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝑠
𝑛
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(116)

Since lim
𝑛→∞𝑠𝑛 = 0 and {𝑥𝑛}, {𝑧𝑛}, {𝑤𝑛}, and {Ṽ𝑛} are

bounded sequences, we conclude from (77) and (108) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)
󵄩󵄩󵄩󵄩 = 0. (117)

Note that

󵄩󵄩󵄩󵄩V𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 .

(118)

Hence from (114) and (117) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝐺V𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑤𝑛
󵄩󵄩󵄩󵄩 = 0. (119)

Observe that

󵄩󵄩󵄩󵄩V𝑛 − 𝑇𝑛V𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝐺V𝑛 − 𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺V𝑛 − V𝑛

󵄩󵄩󵄩󵄩 .

(120)

Hence, from (75), (104), and (119) we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑇𝑛V𝑛
󵄩󵄩󵄩󵄩 = 0. (121)

It is clear that

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑠𝑛V𝑛 + (1 − 𝑠𝑛) 𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝑠
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − V

𝑛

󵄩󵄩󵄩󵄩 ,

(122)
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where 𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿).

Hence we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V𝑛

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− (𝐼 − 𝜆

𝑛
∇𝑓) V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V𝑛

󵄩󵄩󵄩󵄩

≤ (
2

𝐿
− 𝜆𝑛)

󵄩󵄩󵄩󵄩∇𝑓 (V𝑛)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − V𝑛
󵄩󵄩󵄩󵄩 .

(123)

From the boundedness of {V
𝑛
}, 𝑠
𝑛
→ 0 (⇔ 𝜆

𝑛
→ 2/𝐿), and

‖𝑇
𝑛
V
𝑛
− V
𝑛
‖ → 0 (due to (121)), it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
V
𝑛 − 𝑃𝐶 (𝐼 −

2

𝐿
∇𝑓) V𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (124)

In addition, from (67) and (77), we have
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0

as 𝑛 󳨀→ ∞.

(125)

We note that
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑧𝑛 − 𝑆

𝑛+1
𝑧𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛+1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛+1

𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(126)

From (81), (125), and Lemma 17, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (127)

In the meantime, we note that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆𝑧𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛+1

𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(128)

From (81), (127), and the uniform continuity of 𝑆, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆𝑧𝑛
󵄩󵄩󵄩󵄩 = 0. (129)

Step 4. We prove that 𝑥
𝑛
→ 𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Indeed, since {𝑥
𝑛
} is bounded, there exists a subsequence

{𝑥
𝑛
𝑖

} which converges weakly to some 𝑤. From (77), (83),
(104), (92), and (102)we have that 𝑧

𝑛
𝑖

⇀ 𝑤,𝑢
𝑛
𝑖

⇀ 𝑤, V
𝑛
𝑖

⇀ 𝑤,
Δ
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

⇀ 𝑤, and Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤, where 𝑘 ∈ {1, 2, . . . ,𝑀} and
𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is uniformly continuous, by (129)
we get lim

𝑛→∞
‖𝑧
𝑛
− 𝑆
𝑚
𝑧
𝑛
‖ = 0 for any 𝑚 ≥ 1. Hence from

Lemma 19, we obtain 𝑤 ∈ 𝐹𝑖𝑥(𝑆). In the meantime, utilizing
Lemma 11, we deduce from V

𝑛
𝑖

⇀ 𝑤, 𝑥
𝑛
𝑖

⇀ 𝑤, (119), and
(124) that 𝑤 ∈ GSVI(𝐺) and 𝑤 ∈ 𝐹𝑖𝑥(𝑃

𝐶
(𝐼 − (2/𝐿)∇𝑓)) =

VI(𝐶, ∇𝑓) = Γ. Next we prove that 𝑤 ∈ ∩
𝑁

𝑚=1
VI(𝐶, 𝐴

𝑚
). Let

𝑇̃
𝑚
V = {

𝐴
𝑚
V + 𝑁

𝐶
V, V ∈ 𝐶,

0, V ∉ 𝐶,
(130)

where𝑚 ∈ {1, 2, . . . , 𝑁}. Let (V, 𝑢) ∈ 𝐺(𝑇̃
𝑚
). Since 𝑢 − 𝐴

𝑚
V ∈

𝑁
𝐶
V and Λ𝑚

𝑛
𝑢
𝑛
∈ 𝐶, we have

⟨V − Λ𝑚
𝑛
𝑢
𝑛
, 𝑢 − 𝐴

𝑚
V⟩ ≥ 0. (131)

On the other hand, fromΛ
𝑚

𝑛
𝑢𝑛 = 𝑃𝐶(𝐼−𝜆𝑚,𝑛𝐴𝑚)Λ

𝑚−1

𝑛
𝑢𝑛 and

V ∈ 𝐶, we have

⟨V − Λ𝑚
𝑛
𝑢
𝑛
, Λ
𝑚

𝑛
𝑢
𝑛
− (Λ
𝑚−1

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐴
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
)⟩ ≥ 0,

(132)

and hence

⟨V − Λ𝑚
𝑛
𝑢𝑛,

Λ
𝑚

𝑛
𝑢
𝑛
− Λ
𝑚−1

𝑛
𝑢
𝑛

𝜆
𝑚,𝑛

+ 𝐴𝑚Λ
𝑚−1

𝑛
𝑢𝑛⟩ ≥ 0. (133)

Therefore we have

⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝑢⟩

≥ ⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐴
𝑚
V⟩

≥ ⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐴
𝑚
V⟩

−⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

,

Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆𝑚,𝑛
𝑖

+ 𝐴
𝑚
Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

= ⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐴
𝑚
V − 𝐴

𝑚
Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

+ ⟨V − Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

, 𝐴𝑚Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− 𝐴𝑚Λ
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

⟩

−⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

,

Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆
𝑚,𝑛
𝑖

⟩

≥ ⟨V − Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

, 𝐴𝑚Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− 𝐴𝑚Λ
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

⟩

−⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

,

Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆
𝑚,𝑛
𝑖

⟩.

(134)

From (102) and since 𝐴
𝑚
is Lipschitz continuous, we obtain

that lim
𝑛→∞

‖𝐴
𝑚
Λ
𝑚

𝑛
𝑢
𝑛
− 𝐴
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
‖ = 0. From Λ

𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⇀

𝑤, {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), ∀𝑖 ∈ {1, 2, . . . , 𝑁}, and (102), we

have

⟨V − 𝑤, 𝑢⟩ ≥ 0. (135)

Since 𝑇̃
𝑚 is maximal monotone, we have 𝑤 ∈ 𝑇̃

−1

𝑚
0

and hence 𝑤 ∈ VI(𝐶, 𝐴𝑚), 𝑚 = 1, 2, . . . , 𝑁, which
implies 𝑤 ∈ ∩

𝑁

𝑚=1
VI(𝐶, 𝐴

𝑚
). Next we prove that
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𝑤 ∈ ∩
𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
). Since Δ𝑘

𝑛
𝑥
𝑛
= 𝑇
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,n

(𝐼 −

𝑟
𝑘,𝑛
𝐵
𝑘
)Δ
𝑘−1

𝑛
𝑥
𝑛
, 𝑛 ≥ 1, 𝑘 ∈ {1, 2, . . . ,𝑀}, we have

Θ
𝑘
(Δ
𝑘

𝑛
𝑥
𝑛
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(Δ
𝑘

𝑛
𝑥
𝑛
)

+ ⟨𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
, 𝑦 − Δ

𝑘

𝑛
𝑥
𝑛
⟩

+
1

𝑟
𝑘,𝑛

⟨𝑦 − Δ
𝑘

𝑛
𝑥
𝑛
, Δ
𝑘

𝑛
𝑥
𝑛
− Δ
𝑘−1

𝑛
𝑥
𝑛
⟩ ≥ 0.

(136)

By (A2), we have

𝜑
𝑘
(𝑦) − 𝜑

𝑘
(Δ
𝑘

𝑛
𝑥
𝑛
) + ⟨𝐵

𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
, 𝑦 − Δ

𝑘

𝑛
𝑥
𝑛
⟩

+
1

𝑟
𝑘,𝑛

⟨𝑦 − Δ
𝑘

𝑛
𝑥𝑛, Δ
𝑘

𝑛
𝑥𝑛 − Δ

𝑘−1

𝑛
𝑥𝑛⟩

≥ Θ
𝑘
(𝑦, Δ
𝑘

𝑛
𝑥
𝑛
) .

(137)

Let 𝑧
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. This implies

that 𝑧
𝑡
∈ 𝐶. Then, we have

⟨𝑧
𝑡
− Δ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
𝑧
𝑡
⟩

≥ 𝜑
𝑘
(Δ
𝑘

𝑛
𝑥
𝑛
) − 𝜑
𝑘
(𝑧
𝑡
) + ⟨𝑧

𝑡
− Δ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
𝑧
𝑡
⟩

− ⟨𝑧𝑡 − Δ
𝑘

𝑛
𝑥𝑛, 𝐵𝑘Δ

𝑘−1

𝑛
𝑥𝑛⟩

− ⟨𝑧
𝑡
− Δ
𝑘

𝑛
𝑥
𝑛
,
Δ
𝑘

𝑛
𝑥
𝑛
− Δ
𝑘−1

𝑛
𝑥
𝑛

𝑟𝑘,𝑛

⟩ + Θ
𝑘
(𝑧
𝑡
, Δ
𝑘

𝑛
𝑥
𝑛
)

= 𝜑
𝑘
(Δ
𝑘

𝑛
𝑥
𝑛
) − 𝜑
𝑘
(𝑧
𝑡
) + ⟨𝑧

𝑡
− Δ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
𝑧
𝑡
− 𝐵
𝑘
Δ
𝑘

𝑛
𝑥
𝑛
⟩

+ ⟨𝑧
𝑡
− Δ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
Δ
𝑘

𝑛
𝑥
𝑛
− 𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
⟩

− ⟨𝑧
𝑡
− Δ
𝑘

𝑛
𝑥
𝑛
,
Δ
𝑘

𝑛
𝑥𝑛 − Δ

𝑘−1

𝑛
𝑥𝑛

𝑟𝑘,𝑛

⟩ + Θ
𝑘
(𝑧
𝑡
, Δ
𝑘

𝑛
𝑥
𝑛
) .

(138)

By (92), we have ‖𝐵
𝑘
Δ
𝑘

𝑛
𝑥
𝑛
− 𝐵
𝑘
Δ
𝑘−1

𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Furthermore, by the monotonicity of 𝐵
𝑘
, we obtain ⟨𝑧

𝑡
−

Δ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
𝑧
𝑡
− 𝐵
𝑘
Δ
𝑘

𝑛
𝑥
𝑛
⟩ ≥ 0. Then, by (A4) we obtain

⟨𝑧
𝑡
− 𝑤, 𝐵

𝑘
𝑧
𝑡
⟩ ≥ 𝜑
𝑘 (𝑤) − 𝜑𝑘 (𝑧𝑡) + Θ𝑘 (𝑧𝑡, 𝑤) . (139)

Utilizing (A1), (A4), and (139), we obtain

0 = Θ
𝑘
(𝑧
𝑡
, 𝑧
𝑡
) + 𝜑
𝑘
(𝑧
𝑡
) − 𝜑
𝑘
(𝑧
𝑡
)

≤ 𝑡Θ
𝑘
(𝑧
𝑡
, 𝑦) + (1 − 𝑡)Θ𝑘 (𝑧𝑡, 𝑤) + 𝑡𝜑𝑘 (𝑦)

+ (1 − 𝑡) 𝜑𝑘 (𝑤) − 𝜑𝑘 (𝑧𝑡)

≤ 𝑡 [Θ
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
)]

+ (1 − 𝑡) ⟨𝑧𝑡 − 𝑤, 𝐵𝑘𝑧𝑡⟩

= 𝑡 [Θ
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
)]

+ (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑤, 𝐵𝑘𝑧𝑡⟩ ,

(140)

and hence

0 ≤ Θ
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
) + (1 − 𝑡) ⟨𝑦 − 𝑤, 𝐵𝑘𝑧𝑡⟩ .

(141)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

0 ≤ Θ
𝑘 (𝑤, 𝑦) + 𝜑𝑘 (𝑦) − 𝜑𝑘 (𝑤) + ⟨𝑦 − 𝑤, 𝐵𝑘𝑤⟩ . (142)

This implies that 𝑤 ∈ GMEP(Θ
𝑘, 𝜑𝑘, 𝐵𝑘) and

hence 𝑤 ∈ ∩
𝑀

𝑘=1
GMEP(Θ𝑘, 𝜑𝑘, 𝐵𝑘). Consequently,

𝑤 ∈ ∩
𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
) ∩ ∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ GSVI(𝐺) ∩

𝐹𝑖𝑥(𝑆) ∩ Γ =: Ω. This shows that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω. From (64) and

Lemma 22 we infer that 𝑥
𝑛
→ 𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Finally, assume additionally that ‖𝑥
𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
) and

lim
𝑛→∞

𝜎
𝑛
= 0. It is clear that

⟨(𝑉 − 𝐼) 𝑥 − (𝑉 − 𝐼) 𝑦, 𝑥 − 𝑦⟩ ≥ (𝛾 − 1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐻.

(143)

So, we know that 𝑉 − 𝐼 is (𝛾 − 1)-strongly monotone with
constant 𝛾−1 > 0. In the meantime, it is easy to see that𝑉−𝐼
is (‖𝑉‖ + 1)-Lipschitzian with constant ‖𝑉‖ + 1 > 0. Thus,
there exists a unique solution 𝑥 in Ω to the VIP

⟨(𝐼 − 𝑉) 𝑥, 𝑝 − 𝑥⟩ ≤ 0, ∀𝑝 ∈ Ω. (144)

Equivalently, 𝑥 = 𝑃
Ω
(2𝐼 −𝑉)𝑥. Furthermore, from (58), (59),

and (82) we get
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

×
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑠
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩,

(145)

which hence yields

⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑝 − 𝑧
𝑛
⟩

≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

2𝑠
𝑛

≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩

2𝑠
𝑛

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩) .

(146)
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Since ‖𝑥
𝑛
−𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
), lim

𝑛→∞
𝜎
𝑛
= 0, lim

𝑛→∞
‖𝑥
𝑛
−𝑥
∗
‖ =

0, and {𝑥
𝑛
}, {𝑧
𝑛
} are bounded, we infer from (146) that

⟨(𝐼 − 𝑉) 𝑝, 𝑝 − 𝑥
∗
⟩ ≤ 0, ∀𝑝 ∈ Ω, (147)

which, together with Minty’s Lemma [4], implies that

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (148)

This shows that𝑥∗ is a solution inΩ to theVIP (144).Utilizing
the uniqueness of solutions inΩ to the VIP (144), we get 𝑥∗ =
𝑥. This completes the proof.

Corollary 25. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let Θ be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑 : 𝐶 → R ∪ {+∞} be a proper lower semicontinuous and
convex function. Let 𝐵, 𝐴

𝑖
: 𝐻 → 𝐻, and 𝐹

𝑗
: 𝐶 → 𝐻 be 𝜁-

inverse-strongly monotone, 𝜂
𝑖
-inverse-strongly monotone, and

𝜁
𝑗
-inverse-strongly monotone, respectively, for 𝑖 = 1, 2 and 𝑗 =

1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
for some 0 ≤ 𝑘 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that

lim
𝑛→∞

𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛
= 0. Let

𝑉 be a 𝛾-strongly positive bounded linear operator with 𝛾 > 1.
Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-strongly monotone
operator with positive constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be
an 𝑙-Lipschitzian mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 <

2𝜂/𝜅
2 and 0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2).

Assume thatΩ := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐵) ∩ 𝑉𝐼(𝐶, 𝐴
1
) ∩ 𝑉𝐼(𝐶, 𝐴

2
) ∩

𝐺𝑆𝑉𝐼(𝐺)∩𝐹𝑖𝑥(𝑆)∩Γ is nonempty and bounded and that either
(B1) or (B2) holds. Let 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1 for all

𝑛 ≥ 1, and let {𝛽
𝑛
}, {𝜎
𝑛
} be sequences in (0, 1]. Pick any 𝑥

0
∈ 𝐻

and set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated

by the following algorithm:

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛

+ 𝑠𝑛 [𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(149)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive;

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)), 𝜃

𝑛
=

(𝑠
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (‖(𝐼 −

𝑉)𝑝‖ + ‖(𝛾𝑄 − 𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that

the following conditions are satisfied:

(i) 𝑠
𝑛
∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿), lim

𝑛→∞
𝑠
𝑛
= 0

(⇔ lim
𝑛→∞

𝜆
𝑛
= 2/𝐿);

(ii) {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜁), {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), and

]
𝑗
∈ (0, 2𝜁

𝑗
) for 𝑖 = 1, 2 and 𝑗 = 1, 2;

(iii) 0 < lim inf𝑛→∞𝛽𝑛 ≤ lim sup
𝑛→∞

𝛽𝑛 < 1.
Then one has the following:
(I) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→ 0)

to 𝑥∗ = 𝑃
Ω
𝑥
0
;

(II) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→

0) to 𝑥∗ = 𝑃
Ω
𝑥
0
provided ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
) and

lim
𝑛→∞

𝜎
𝑛
= 0, which is the unique solution in Ω to

the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (150)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Corollary 26. Let C be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let Θ be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑 : 𝐶 → R ∪ {+∞} be a proper lower semicontinuous and
convex function. Let 𝐵,𝐴 : 𝐻 → 𝐻, and 𝐹

𝑗
: 𝐶 → 𝐻

be 𝜁-inverse-strongly monotone, 𝜉-inverse-strongly monotone,
and 𝜁
𝑗
-inverse-strongly monotone, respectively, for 𝑗 = 1, 2. Let

𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically 𝑘-strict
pseudocontractive mapping in the intermediate sense for some
0 ≤ 𝑘 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
=

0 and {𝑐
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛
= 0. Let 𝑉 be a 𝛾-

strongly positive bounded linear operator with 𝛾 > 1. Let 𝐹 :

𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-stronglymonotone operator
with positive constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-
Lipschitzian mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2

and 0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume
thatΩ := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐵) ∩𝑉𝐼(𝐶, 𝐴) ∩𝐺𝑆𝑉𝐼(𝐺) ∩ 𝐹𝑖𝑥(𝑆) ∩ Γ

is nonempty and bounded and that either (B1) or (B2) holds.
Let 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1 for all 𝑛 ≥ 1, and

let {𝛽
𝑛
}, {𝜎
𝑛
} be sequences in (0, 1]. Pick any 𝑥

0
∈ 𝐻 and set

𝐶1 = 𝐶, 𝑥1 = 𝑃𝐶
1

𝑥0. Let {𝑥𝑛} be a sequence generated by the
following algorithm:

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜌

𝑛
𝐴) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛

+ 𝑠𝑛 [𝑇𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑇𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(151)
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where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive;

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)), 𝜃

𝑛
=

(𝑠
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (‖(𝐼 −

𝑉)𝑝‖ + ‖(𝛾𝑄 − 𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that

the following conditions are satisfied:

(i) 𝑠
𝑛
∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿), lim

𝑛→∞
𝑠
𝑛
= 0 (⇔

lim
𝑛→∞

𝜆
𝑛
= 2/𝐿);

(ii) {𝑟𝑛} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜁), {𝜌𝑛} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉), and
]𝑗 ∈ (0, 2𝜁𝑗) for 𝑗 = 1, 2;

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Then one has the following:

(I) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→ 0)

to 𝑥∗ = 𝑃
Ω
𝑥
0
;

(II) {𝑥𝑛} converges strongly as 𝜆𝑛 → (2/𝐿) (⇔ 𝑠𝑛 →

0) to 𝑥∗ = 𝑃
Ω
𝑥
0
provided ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
) and

lim
𝑛→∞

𝜎
𝑛
= 0, which is the unique solution in Ω to

the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (152)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Corollary 27. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let Θ be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑 : 𝐶 → R ∪ {+∞} be a proper lower semicontinuous and
convex function. Let 𝐵, 𝐴 : 𝐻 → 𝐻, and 𝐹𝑗 : 𝐶 → 𝐻

be 𝜁-inverse-strongly monotone, 𝜉-inverse-strongly monotone,
and 𝜁

𝑗
-inverse-strongly monotone, respectively, for 𝑗 = 1, 2.

Let 𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically
𝑘-strict pseudocontractive mapping for some 0 ≤ 𝑘 < 1 with
sequence {𝛾𝑛} ⊂ [0,∞) such that lim𝑛→∞𝛾𝑛 = 0. Let 𝑉 be a
𝛾-strongly positive bounded linear operator with 𝛾 > 1. Let 𝐹 :
𝐻 → 𝐻 be a 𝜅-Lipschitzian and 𝜂-stronglymonotone operator
with positive constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-
Lipschitzian mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2

and 0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume
thatΩ := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐵) ∩𝑉𝐼(𝐶, 𝐴) ∩𝐺𝑆𝑉𝐼(𝐺) ∩ 𝐹𝑖𝑥(𝑆) ∩ Γ

is nonempty and bounded and that either (B1) or (B2) holds.
Let 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1 for all 𝑛 ≥ 1, and

let {𝛽
𝑛
}, {𝜎
𝑛
} be sequences in (0, 1]. Pick any 𝑥

0
∈ 𝐻 and set

𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated by the

following algorithm:

Θ(𝑢𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐵𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜌

𝑛
𝐴) 𝑢
𝑛
,

𝑧𝑛 = 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛

+ 𝑠
𝑛
[𝑇
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 1,

(153)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive;

𝑠
𝑛

= (2 − 𝜆
𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)),

𝜃
𝑛 = (𝑠𝑛 + 𝛾𝑛)(1 + 𝛾𝑛)Δ 𝑛, and Δ 𝑛 = sup{‖𝑥𝑛 − 𝑝‖

2
+ (‖(𝐼 −

𝑉)𝑝‖+‖(𝛾𝑄 − 𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that

the following conditions are satisfied:

(i) 𝑠
𝑛
∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿), lim

𝑛→∞
𝑠
𝑛
= 0

(⇔ lim
𝑛→∞

𝜆
𝑛
= 2/𝐿);

(ii) {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜁), {𝜌

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉), and

]
𝑗
∈ (0, 2𝜁

𝑗
) for 𝑗 = 1, 2;

(iii) 0 < lim inf𝑛→∞𝛽𝑛 ≤ lim sup
𝑛→∞

𝛽𝑛 < 1.

Then one has the following:

(I) {𝑥
𝑛} converges strongly as 𝜆𝑛 → (2/𝐿) (⇔ 𝑠𝑛 → 0)

to 𝑥∗ = 𝑃Ω𝑥0;
(II) {𝑥

𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→

0) to 𝑥∗ = 𝑃
Ω
𝑥
0
provided ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
) and

lim𝑛→∞𝜎𝑛 = 0, which is the unique solution in Ω to
the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (154)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

4. Fixed Point Problems with Constraints

In this section, wewill introduce and analyze another implicit
iterative algorithm for solving the fixed point problem of
infinitely many nonexpansive mappings with constraints
of several problems: finitely many GMEPs, finitely many
VIPs, the GSVI (8), and the fixed point problem of an
asymptotically strict pseudocontractivemapping in the inter-
mediate sense in a real Hilbert space. We prove strong
convergence theorem for the iterative algorithm under mild
assumptions. This iterative algorithm is based on shrink-
ing projection method, Korpelevich’s extragradient method,
hybrid steepest-descent method in [7], viscosity approxi-
mation method, 𝑊-mapping approach to fixed points of
infinitely many nonexpansive mappings, and strongly posi-
tive bounded linear operator technique.

Theorem 28. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑀,𝑁 be two integers. Let Θ

𝑘
be

a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑
𝑘
: 𝐶 → R ∪ {+∞} be a proper lower semicontinuous
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and convex function, where 𝑘 ∈ {1, 2, . . . ,𝑀}. Let 𝐵
𝑘
, 𝐴
𝑖
:

𝐻 → 𝐻, and 𝐹
𝑗
: 𝐶 → 𝐻 be 𝜇

𝑘
-inverse-strongly monotone,

𝜂
𝑖
-inverse-strongly monotone, and 𝜁

𝑗
-inverse-strongly mono-

tone, respectively, where 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑖 ∈ {1, 2, . . . , 𝑁},
and 𝑗 ∈ {1, 2}. Let {𝑇

𝑛
}
∞

𝑛=1
be a sequence of nonexpansive

mappings on 𝐻 and let {𝜆
𝑛
} be a sequence in (0, 𝑏] for

some 𝑏 ∈ (0, 1). Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such

that lim
𝑛→∞

𝑐
𝑛
= 0. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-
Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and
0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := ∩

∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩∩
𝑀

𝑘=1
𝐺𝑀𝐸𝑃(Θ

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
) ∩∩
𝑁

𝑖=1
𝑉𝐼(𝐶, 𝐴

𝑖
) ∩

𝐺𝑆𝑉𝐼(𝐺) ∩ 𝐹𝑖𝑥(𝑆) is nonempty and bounded and that either
(B1) or (B2) holds. Let 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1 for all

𝑛 ≥ 1, and let {𝛽
𝑛
}, {𝜖
𝑛
}, and {𝜎

𝑛
} be sequences in (0, 1]. Pick

any 𝑥
0
∈ 𝐻 and set𝐶

1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝑢
𝑛
= 𝑇
(Θ
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
) 𝑇
(Θ
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀−1,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐵
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
) 𝑃
𝐶
(𝐼 − 𝜆

𝑁−1,𝑛
𝐴
𝑁−1

) ⋅ ⋅ ⋅ 𝑃
𝐶

× (𝐼 − 𝜆2,𝑛𝐵2) 𝑃𝐶 (𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜖

𝑛
𝑉)𝑊
𝑛
𝐺V
𝑛

+ 𝜖𝑛 [𝑊𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑊𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(155)

where𝑊
𝑛
is the𝑊-mapping defined by (34), 𝜃

𝑛
= (𝜖
𝑛
+𝛾
𝑛
)(1+

𝛾
𝑛
)Δ
𝑛
+ 𝑐
𝑛
, and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (‖(𝐼 − 𝑉)𝑝‖ + ‖(𝛾𝑄 −

𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that the following

conditions are satisfied:

(i) {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
),

and ]
𝑗

∈ (0, 2𝜁
𝑗
), where 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑖 ∈

{1, 2, . . . , 𝑁}, and 𝑗 ∈ {1, 2};

(ii) lim
𝑛→∞

𝜖
𝑛

= 0 and 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛
< 1.

Then one has the following:

(I) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
;

(II) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
provided ‖𝑥

𝑛
−

𝑧
𝑛
‖ = 𝑜(𝜖

𝑛
) and lim

𝑛→∞
𝜎
𝑛
= 0, which is the unique

solution in Ω to the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (156)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Proof. First of all, let us show that the sequence {𝑥
𝑛
} is well

defined. As lim
𝑛→∞

𝜖
𝑛

= 0 and 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽𝑛 < 1, we may assume, without loss of
generality, that {𝛽𝑛} ⊂ [𝑎, 𝑎] ⊂ (0, 1) and 𝛽𝑛 + 𝜖𝑛‖𝑉‖ ≤ 1

for all 𝑛 ≥ 1. Utilizing the arguments similar to those in the
proof of Theorem 24, we get

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝐼 − 𝜖𝑛𝑉
󵄩󵄩󵄩󵄩 ≤ 1 − 𝛽𝑛 − 𝜖𝑛𝛾. (157)

Put

Δ
𝑘

𝑛
= 𝑇
(Θ
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟𝑘,𝑛𝐵𝑘) 𝑇
(Θ
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟
𝑘−1,𝑛

𝐵
𝑘−1

) ⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛

(158)

for all 𝑘 ∈ {1, 2, . . . ,𝑀} and 𝑛 ≥ 1 and

Λ
𝑖

𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑃
𝐶
(𝐼 − 𝜆

𝑖−1,𝑛
𝐵
𝑖−1
) ⋅ ⋅ ⋅ 𝑃

𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
)

(159)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, Δ0
𝑛
= 𝐼, and Λ0

𝑛
= 𝐼, where 𝐼 is the

identity mapping on 𝐻. Then we have that 𝑢
𝑛 = Δ

𝑀

𝑛
𝑥𝑛 and

V
𝑛
= Λ
𝑁

𝑛
𝑢
𝑛
.

We divide the rest of the proof into several steps.

Step 1. We show that {𝑥
𝑛
} is well defined. It is obvious that

𝐶
𝑛
is closed and convex. As the defining inequality in 𝐶

𝑛
is

equivalent to the inequality

⟨2 (𝑥
𝑛
− 𝑦
𝑛
) , 𝑧⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
, (160)

by Lemma 16 we know that 𝐶𝑛 is convex for every 𝑛 ≥ 1.
First of all, let us show thatΩ ⊂ 𝐶𝑛 for all 𝑛 ≥ 1. Suppose

that Ω ⊂ 𝐶𝑛 for some 𝑛 ≥ 1. Take 𝑝 ∈ Ω arbitrarily. Utilizing
the arguments similar to those in the proof ofTheorem 24 we
obtain that

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘

𝑛
𝑥𝑛 − Δ

𝑘

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 , (161)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 , (162)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 , (163)
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󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

+ ]1 (]1 − 2𝜁1)

×
󵄩󵄩󵄩󵄩𝐹1𝑃𝐶 (𝐼 − ]

2
𝐹
2
) V
𝑛
− 𝐹
1
𝑃
𝐶
(𝐼 − ]

2
𝐹
2
) 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]2 (]2 − 2𝜁2)

󵄩󵄩󵄩󵄩𝐹2V𝑛 − 𝐹2𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
,

(164)

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿𝑛) (𝑘 − 𝛿𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧𝑛
󵄩󵄩󵄩󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾𝑛)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜖
𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
)

+ 𝑐
𝑛
.

(165)

So, from (155) and (165) we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[

[

(1 + 𝛾
𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜖𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
)

+𝑐
𝑛
]

]

≤ (1 + 𝛾
𝑛)(

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+𝜖
𝑛

(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
) + 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 + 𝛾

𝑛
) 𝜖
𝑛

×
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
+ 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝜖
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
(
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝛾𝑄 − 𝜇𝐹) 𝑝

󵄩󵄩󵄩󵄩)
2

𝛾 − 1
)

+ 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝜖
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
) Δ
𝑛
+ 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜃𝑛,

(166)

where 𝜃
𝑛
= (𝜖
𝑛
+𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

(‖(𝐼 − 𝑉)𝑝‖ + ‖(𝛾𝑄 − 𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Hence

𝑝 ∈ 𝐶𝑛+1. This implies that Ω ⊂ 𝐶𝑛 for all 𝑛 ≥ 1. Therefore,
{𝑥𝑛} is well defined.

Step 2. We prove that ‖𝑥𝑛 − 𝑘𝑛‖ → 0, ‖𝑥𝑛 − 𝑧𝑛‖ → 0, and
‖𝑆
𝑛
𝑧𝑛 − 𝑧𝑛‖ → 0 as 𝑛 → ∞.
Indeed, let 𝑥∗ = 𝑃Ω𝑥0. From 𝑥𝑛 = 𝑃𝐶

𝑛

𝑥0 and 𝑥
∗
∈ Ω ⊂

𝐶𝑛, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥0
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥
0

󵄩󵄩󵄩󵄩 . (167)

This implies that {𝑥
𝑛
} is bounded and hence

{𝑢
𝑛
}, {V
𝑛
}, {𝑧
𝑛
}, {𝑘
𝑛
}, and {𝑦

𝑛
} are also bounded. Utilizing the

arguments similar to those of (67), (75), (77), and (81) in the
proof of Theorem 24 we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 = 0,

(168)

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0, (169)

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (170)

Step 3. We prove that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖𝑥

𝑛
− V
𝑛
‖ → 0, ‖V

𝑛
−

𝐺V
𝑛
‖ → 0, ‖V

𝑛
−𝑊V
𝑛
‖ → 0, and ‖𝑧

𝑛
−𝑆𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, from (162), (164), 𝛾 > 1, and 𝛾𝑙 ≤ 𝜏, it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉) (𝑊𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
[𝜎
𝑛
𝛾 (𝑄𝑥

𝑛
− 𝑄𝑝) + (𝐼 − 𝜎

𝑛
𝜇𝐹)𝑊

𝑛
𝑥
𝑛

− (𝐼 − 𝜎
𝑛
𝜇𝐹)𝑊

𝑛
𝑝]

+𝑠𝑛 [(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝]
󵄩󵄩󵄩󵄩

2

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝐼 − 𝜖𝑛𝑉
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝜖
𝑛 (𝜎𝑛𝛾

󵄩󵄩󵄩󵄩𝑄𝑥𝑛 − 𝑄𝑝
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜎𝑛𝜇𝐹)𝑊𝑛𝑥𝑛 − (𝐼 − 𝜎𝑛𝜇𝐹)𝑊𝑛𝑝

󵄩󵄩󵄩󵄩)]
2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩
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≤ [𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝜖𝑛𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+𝜖
𝑛
(𝜎
𝑛
𝛾𝑙
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩)]
2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

= [𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝜖𝑛𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+𝜖
𝑛
(1 − 𝜎

𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]
2

+ 2𝜖𝑛 ⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ [(𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛 − 𝜖𝑛𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩]
2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩ .

(171)

Utilizing the arguments similar to those of (83), (92), (102),
(104), (119), (121), and (129) in the proof of Theorem 24 we
obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0, (172)

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Δ
𝑘−1

𝑛
𝑥
𝑛
− Δ
𝑘

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀, (173)

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁, (174)

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − V
𝑛

󵄩󵄩󵄩󵄩 = 0, (175)

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝐺V𝑛
󵄩󵄩󵄩󵄩 = 0, (176)

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 −𝑊𝑛V𝑛
󵄩󵄩󵄩󵄩 = 0, (177)

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆𝑧𝑛
󵄩󵄩󵄩󵄩 = 0. (178)

In addition, note that
󵄩󵄩󵄩󵄩V𝑛 −𝑊V𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩V𝑛 −𝑊𝑛V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑛V𝑛 −𝑊V𝑛

󵄩󵄩󵄩󵄩 . (179)

So, from ‖V
𝑛 − 𝑊𝑛V𝑛‖ → 0 and [20, Remark 3.2] it follows

that

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 −𝑊V𝑛
󵄩󵄩󵄩󵄩 = 0. (180)

Step 4. We prove that 𝑥
𝑛
→ 𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Indeed, since {𝑥
𝑛
} is bounded, there exists a subsequence

{𝑥
𝑛
𝑖

} which converges weakly to some 𝑤. From (169), (172),

(175), (173), and (174) we have that 𝑧
𝑛
𝑖

⇀ 𝑤, 𝑢
𝑛
𝑖

⇀ 𝑤, V
𝑛
𝑖

⇀

𝑤,Δ
𝑘

𝑛
𝑖

𝑥𝑛
𝑖

⇀ 𝑤, and Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤, where 𝑘 ∈ {1, 2, . . . ,𝑀}

and 𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is uniformly continuous, by
(178) we get lim

𝑛→∞
‖𝑧
𝑛
− 𝑆
𝑚
𝑧
𝑛
‖ = 0 for any 𝑚 ≥ 1. Hence,

from Lemma 19, we obtain 𝑤 ∈ 𝐹𝑖𝑥(𝑆). In the meantime,
utilizing Lemma 11, we deduce from (176) and (180) that 𝑤 ∈

GSVI(𝐺) and𝑤 ∈ 𝐹𝑖𝑥(𝑊) = ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) (due to Lemma 13).

Hence we get 𝑤 ∈ GSVI(𝐺) ∩ ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
). Repeating the

same arguments as in the proof of Theorem 24 we conclude
that 𝑤 ∈ ∩

𝑁

𝑚=1
VI(𝐶, 𝐴

𝑚
) and 𝑤 ∈ ∩

𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
).

Consequently, 𝑤 ∈ ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩ ∩
𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
) ∩

∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ GSVI(𝐺) ∩ 𝐹𝑖𝑥(𝑆) =: Ω. This shows that

𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω. From (167) and Lemma 22 we infer that 𝑥

𝑛
→

𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Finally, assume additionally that ‖𝑥
𝑛
− 𝑧
𝑛
‖ = 𝑜(𝜖

𝑛
) and

lim
𝑛→∞

𝜎
𝑛
= 0. It is clear that

⟨(𝑉 − 𝐼) 𝑥 − (𝑉 − 𝐼) 𝑦, 𝑥 − 𝑦⟩ ≥ (𝛾 − 1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐻.

(181)

So, we know that 𝑉 − 𝐼 is (𝛾 − 1)-strongly monotone with
constant 𝛾−1 > 0. In the meantime, it is easy to see that𝑉−𝐼
is (‖𝑉‖ + 1)-Lipschitzian with constant ‖𝑉‖ + 1 > 0. Thus,
there exists a unique solution 𝑥 in Ω to the VIP

⟨(𝐼 − 𝑉) 𝑥, 𝑝 − 𝑥⟩ ≤ 0, ∀𝑝 ∈ Ω. (182)

Equivalently, 𝑥 = 𝑃Ω(2𝐼 − 𝑉)𝑥. Furthermore, from (163),
(164), and (171) we get

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
− 𝜖
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜖
𝑛
⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑧

𝑛
− 𝑝⟩,

(183)

which hence yields

⟨(𝐼 − 𝑉) 𝑝 + 𝜎𝑛 (𝛾𝑄 − 𝜇𝐹) 𝑝, 𝑝 − 𝑧
𝑛
⟩

≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

2𝜖
𝑛

≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩

2𝜖
𝑛

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩) .

(184)
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Since ‖𝑥
𝑛
−𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
), lim
𝑛→∞

𝜎
𝑛
= 0, lim

𝑛→∞
‖𝑥
𝑛
−𝑥
∗
‖ = 0,

and {𝑥
𝑛
}, {𝑧
𝑛
} are bounded, we infer from (94) that

⟨(𝐼 − 𝑉) 𝑝, 𝑝 − 𝑥
∗
⟩ ≤ 0, ∀𝑝 ∈ Ω, (185)

which, together with Minty’s Lemma, implies that

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (186)

This shows that𝑥∗ is a solution inΩ to theVIP (182). Utilizing
the uniqueness of solutions inΩ to the VIP (182), we get 𝑥∗ =
𝑥. This completes the proof.

Corollary 29. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let Θ be a bifunction from 𝐶 × 𝐶 to R
satisfying (A1)–(A4) and let 𝜑 : 𝐶 → R ∪ {+∞} be a proper
lower semicontinuous and convex function. Let 𝐵,𝐴 𝑖 : 𝐻 →

𝐻, and 𝐹𝑗 : 𝐶 → 𝐻 be 𝜁-inverse-strongly monotone, 𝜂
𝑖
-

inverse-strongly monotone, and 𝜁
𝑗
-inverse-strongly monotone,

respectively, for 𝑖 = 1, 2 and 𝑗 = 1, 2. Let {𝑇𝑛}
∞

𝑛=1
be a sequence

of nonexpansive mappings on𝐻 and let {𝜆𝑛} be a sequence in
(0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such

that lim
𝑛→∞

𝑐
𝑛
= 0. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-
Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and
0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume that
Ω := ∩

∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛)∩𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐵)∩𝑉𝐼(𝐶, 𝐴1)∩𝑉𝐼(𝐶, 𝐴2)∩

𝐺𝑆𝑉𝐼(𝐺) ∩ 𝐹𝑖𝑥(𝑆) is nonempty and bounded and that either
(B1) or (B2) holds. Let 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1 for all

𝑛 ≥ 1, and let {𝛽
𝑛
}, {𝜖
𝑛
}, and {𝜎

𝑛
} be sequences in (0, 1]. Pick

any 𝑥
0
∈ 𝐻 and set𝐶

1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

Θ(𝑢
𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐵𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝑢𝑛 − 𝑥𝑛, 𝑦 − 𝑢𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜖

𝑛
𝑉)𝑊
𝑛
𝐺V
𝑛

+ 𝜖
𝑛
[𝑊
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑊

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] ,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶𝑛+1 = {𝑧 ∈ 𝐶𝑛 :
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃𝑛} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(187)

where𝑊
𝑛 is the𝑊-mapping defined by (34), 𝜃𝑛 = (𝜖𝑛 +𝛾𝑛)(1+

𝛾
𝑛
)Δ
𝑛
+ 𝑐
𝑛
, and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (‖(𝐼 − 𝑉)𝑝‖ + ‖(𝛾𝑄 −

𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that the following

conditions are satisfied:

(i) {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜁), {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), and

]
𝑗
∈ (0, 2𝜁

𝑗
) for 𝑖 = 1, 2 and 𝑗 = 1, 2;

(ii) lim
𝑛→∞

𝜖
𝑛

= 0 and 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛
< 1.

Then one has the following:

(I) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
;

(II) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
provided ‖𝑥

𝑛
−

𝑧
𝑛
‖ = 𝑜(𝜖

𝑛
) and lim

𝑛→∞
𝜎
𝑛
= 0, which is the unique

solution in Ω to the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (188)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Corollary 30. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let Θ be a bifunction from 𝐶 × 𝐶 to
R satisfying (A1)–(A4) and let 𝜑 : 𝐶 → R ∪ {+∞} be a
proper lower semicontinuous and convex function. Let 𝐵, 𝐴 :

𝐻 → 𝐻, and 𝐹𝑗 : 𝐶 → 𝐻 be 𝜁-inverse-strongly monotone, 𝜉-
inverse-strongly monotone, and 𝜁

𝑗
-inverse-strongly monotone,

respectively, for 𝑗 = 1, 2. Let {𝑇𝑛}
∞

𝑛=1
be a sequence of

nonexpansive mappings on 𝐻 and let {𝜆𝑛} be a sequence in
(0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾n} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such

that lim
𝑛→∞

𝑐
𝑛
= 0. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-
Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and
0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume thatΩ :=

∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛)∩𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐵)∩𝑉𝐼(𝐶, 𝐴)∩𝐺𝑆𝑉𝐼(𝐺)∩𝐹𝑖𝑥(𝑆)

is nonempty and bounded and that either (B1) or (B2) holds.
Let 0 < 𝛼 ≤ 𝛼𝑛 ≤ 1, 𝑘 ≤ 𝛿𝑛 ≤ 𝑑 < 1 for all 𝑛 ≥ 1, and let
{𝛽
𝑛
}, {𝜖
𝑛
}, and {𝜎

𝑛
} be sequences in (0, 1]. Pick any 𝑥

0
∈ 𝐻 and

set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated by

the following algorithm:

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜌

𝑛
𝐴) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜖

𝑛
𝑉)𝑊
𝑛
𝐺V
𝑛

+ 𝜖𝑛 [𝑊𝑛𝑥𝑛 − 𝜎𝑛 (𝜇𝐹 (𝑊𝑛𝑥𝑛) − 𝛾𝑄𝑥𝑛)] ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(189)
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where𝑊
𝑛
is the𝑊-mapping defined by (34), 𝜃

𝑛
= (𝜖
𝑛
+𝛾
𝑛
)(1+

𝛾
𝑛
)Δ
𝑛
+ 𝑐
𝑛
, and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (‖(𝐼 − 𝑉)𝑝‖ + ‖(𝛾𝑄 −

𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that the following

conditions are satisfied:

(i) {𝑟𝑛} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜁), {𝜌𝑛} ⊂ [𝑎, 𝑐] ⊂ (0, 2𝜉), and
]𝑗 ∈ (0, 2𝜁𝑗) for 𝑗 = 1, 2;

(ii) lim
𝑛→∞

𝜖
𝑛

= 0 and 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛
< 1.

Then one has the following:

(I) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
;

(II) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
provided ‖𝑥

𝑛
−

𝑧
𝑛
‖ = 𝑜(𝜖

𝑛
) and lim

𝑛→∞
𝜎
𝑛
= 0, which is the unique

solution in Ω to the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (190)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Corollary 31. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let Θ be a bifunction from 𝐶 × 𝐶 to
R satisfying (A1)–(A4) and let 𝜑 : 𝐶 → R ∪ {+∞} be a
proper lower semicontinuous and convex function. Let 𝐵,𝐴 :

𝐻 → 𝐻, and 𝐹
𝑗
: 𝐶 → 𝐻 be 𝜁-inverse-strongly monotone, 𝜉-

inverse-strongly monotone, and 𝜁
𝑗
-inverse-strongly monotone,

respectively, for 𝑗 = 1, 2. Let {𝑇𝑛}
∞

𝑛=1
be a sequence of

nonexpansive mappings on 𝐻 and let {𝜆𝑛} be a sequence in
(0, 𝑏] for some 𝑏 ∈ (0, 1). Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
for some 0 ≤ 𝑘 < 1 with sequence {𝛾𝑛} ⊂ [0,∞) such
that lim

𝑛→∞
𝛾
𝑛
= 0. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator with 𝛾 > 1. Let 𝐹 : 𝐻 → 𝐻 be a 𝜅-
Lipschitzian and 𝜂-strongly monotone operator with positive
constants 𝜅, 𝜂 > 0. Let 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Let 0 < 𝜇 < 2𝜂/𝜅

2 and
0 ≤ 𝛾𝑙 ≤ 𝜏, where 𝜏 = 1−√1 − 𝜇(2𝜂 − 𝜇𝜅2). Assume thatΩ :=

∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛)∩GMEP(Θ, 𝜑, 𝐵)∩VI(𝐶, 𝐴)∩ GSVI (𝐺)∩𝐹𝑖𝑥(𝑆)

is nonempty and bounded and that either (B1) or (B2) holds.
Let 0 < 𝛼 ≤ 𝛼𝑛 ≤ 1, 𝑘 ≤ 𝛿𝑛 ≤ 𝑑 < 1 for all 𝑛 ≥ 1, and let
{𝛽𝑛}, {𝜖𝑛}, and {𝜎𝑛} be sequences in (0, 1]. Pick any 𝑥0 ∈ 𝐻 and
set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated by

the following algorithm:

Θ(𝑢
𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐵𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝑢
𝑛
− 𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜌

𝑛
𝐴) 𝑢
𝑛
,

𝑧𝑛 = 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝜖𝑛𝑉)𝑊𝑛𝐺V𝑛

+ 𝜖
𝑛
[𝑊
𝑛
𝑥
𝑛
− 𝜎
𝑛
(𝜇𝐹 (𝑊

𝑛
𝑥
𝑛
) − 𝛾𝑄𝑥

𝑛
)] ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥n+1 = 𝑃𝐶
𝑛+1

𝑥0, ∀𝑛 ≥ 1,

(191)

where𝑊
𝑛
is the𝑊-mapping defined by (34), 𝜃

𝑛
= (𝜖
𝑛
+𝛾
𝑛
)(1+

𝛾
𝑛
)Δ
𝑛
, and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (‖(𝐼 − 𝑉)𝑝‖ + ‖(𝛾𝑄 −

𝜇𝐹)𝑝‖)
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Suppose that the following

conditions are satisfied:

(i) {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜁), {𝜌

𝑛
} ⊂ [𝑎, 𝑐] ⊂ (0, 2𝜉), and

]
𝑗
∈ (0, 2𝜁

𝑗
) for 𝑗 = 1, 2;

(ii) lim
𝑛→∞𝜖𝑛 = 0 and 0 < lim inf𝑛→∞𝛽𝑛 ≤

lim sup
𝑛→∞

𝛽𝑛 < 1.

Then one has the following:

(I) {𝑥
𝑛} converges strongly to 𝑥∗ = 𝑃Ω𝑥0;

(II) {𝑥
𝑛
} converges strongly to 𝑥∗ = 𝑃

Ω
𝑥
0
provided ‖𝑥

𝑛
−

𝑧
𝑛
‖ = 𝑜(𝜖

𝑛
) and lim

𝑛→∞
𝜎
𝑛
= 0, which is the unique

solution in Ω to the VIP

⟨(𝐼 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (192)

Equivalently, 𝑥∗ = 𝑃
Ω
(2𝐼 − 𝑉)𝑥

∗.

Remark 32. Let𝐴 : 𝐶 → 𝐻 be 𝜉-inverse-strongly monotone
and let 𝐹

𝑖
: 𝐶 → 𝐻 be ]

𝑗
-inverse-strongly monotone for

𝑗 = 1, 2. Let 𝑄 : 𝐶 → 𝐶 be a 𝜌-contraction with 𝜌 ∈ [0, 1),
and let 𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically
𝑘-strict pseudocontractivemapping in the intermediate sense
for some 0 ≤ 𝑘 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that

lim
𝑛→∞

𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛
= 0.

Assume thatΩ := VI(𝐶, 𝐴) ∩GSVI(𝐺) ∩ 𝐹𝑖𝑥(𝑆) is nonempty
and bounded. In [11], Guu et al. introduced and analyzed a
hybrid viscosityCQ iterative algorithm for finding a point𝑝 ∈
Ω:

𝑥
1
= 𝑥 ∈ 𝐶 choosen arbitrarily,

𝑦𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜌𝑛𝐴𝑥𝑛) ,

𝑡
𝑛
= 𝛼
𝑛
𝑄𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐺𝑦
𝑛
,

𝑧𝑛 = (1 − 𝜇𝑛 − ]𝑛) 𝑥𝑛 + 𝜇𝑛𝑡𝑛 + ]𝑛𝑆
𝑛
𝑡𝑛,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥, ∀𝑛 ≥ 1,

(193)
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where ]
𝑗
∈ (0, 2𝜁

𝑗
) for 𝑗 = 1, 2, 𝜃

𝑛
= (𝛼
𝑛
+ 𝛾
𝑛
)Δ
𝑛
+ 𝑐
𝑛
;

Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ (1 + 𝛾

𝑛
)/(1 − 𝜌)‖(𝐼 − 𝑄)𝑝‖

2
: 𝑝 ∈ Ω} <

∞; {𝜌𝑛} is a sequence in (0, 2𝜉); and {𝛼𝑛}, {𝜇𝑛}, and {]𝑛} are
three sequences in [0, 1] such that 𝜇𝑛 + ]𝑛 ≤ 1 for all 𝑛 ≥ 1.
The authors of [11] proved that under suitable conditions {𝑥𝑛}
converges strongly to 𝑃Ω𝑥; see [11, Theorem 3.1] for more
details.

Theorem 28 extends, improves, supplements, and devel-
ops [11, Theorem 3.1] in the following aspects.

(i) The problem of finding a point 𝑝 ∈ ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩

∩
𝑀

𝑘=1
GMEP(Θ𝑘, 𝜑𝑘, 𝐵𝑘) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐴 𝑖) ∩GSVI(𝐺) ∩

𝐹𝑖𝑥(𝑆) in Theorem 28 is very different from the
problem of finding a point 𝑝 ∈ VI(𝐶, 𝐴) ∩GSVI(𝐺) ∩
𝐹𝑖𝑥(𝑆) in [11, Theorem 3.1]. There is no doubt that
our problem of finding a point 𝑝 ∈ ∩

∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩

∩
𝑀

𝑘=1
GMEP(Θ𝑘, 𝜑𝑘, 𝐵𝑘) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐴 𝑖) ∩GSVI(𝐺) ∩

𝐹𝑖𝑥(𝑆) is more general and more subtle than the
problem of finding a point 𝑝 ∈ VI(𝐶, 𝐴) ∩GSVI(𝐺) ∩
𝐹𝑖𝑥(𝑆) in [11, Theorem 3.1].

(ii) The iterative scheme in [11, Theorem 3.1] is extended
to develop the iterative scheme in Theorem 28 by
virtue of Cai and Bu iterative algorithm in [21, The-
orem 3.1] and Ceng et al. iterative one in [8, Theorem
3.1]. The iterative scheme in Theorem 28 is more
advantageous and more flexible than the iterative
scheme in [11,Theorem 3.1] because it involves solving
four problems: the GSVI (8), finitely many GMEPs,
finitely many VIPs, and the common fixed point
problemof an asymptotically strict pseudocontractive
mapping in the intermediate sense and infinitely
many nonexpansive mappings on𝐻.

(iii) The iterative scheme in Theorem 28 is very different
from the iterative scheme in [11,Theorem 3.1] because
the iterative scheme in our theorem (Theorem 28)
involves hybrid steepest-descent method in [7],
strongly positive bounded linear operator technique,
finitely many GMEPs, finitely many VIPs, and
infinitely many nonexpansive mappings.The proof in
[11, Theorem 3.1] makes use of Proposition CWY and
the properties of asymptotically strict pseudocontrac-
tive mapping in the intermediate sense (see Lemmas
17–20). However, the proof of Theorem 28 depends
on not only Proposition CWY and Lemmas 17–20 but
also Proposition 8, the properties of strongly positive
bounded linear operator 𝑉, and the ones of the 𝑊-
mapping𝑊𝑛 and𝑇

𝜆-mapping (see Lemmas 12, 13, and
15) because there are the mapping 𝑇(Θ𝑘 ,𝜑𝑘)

𝑟
𝑘,𝑛

, infinitely
many nonexpansivemappings {𝑇

𝑛
}
∞

𝑛=1
, 𝜅-Lipschitzian

and 𝜂-strongly monotone operator 𝐹, and strongly
positive bounded linear operator 𝑉 appearing in the
iterative scheme of our theorem (Theorem 28).

(iv) The proof of Theorem 28 combines Cai and Bu
convergence analysis for their iterative algorithm to
solve finitely many GMEPs, finitely many VIPs, and
the fixed point problem of an asymptotically strict
pseudocontractivemapping in the intermediate sense

(see [21, Theorem 3.1]); the convergence analysis for
the𝑊-mapping approach to fixed points of infinitely
many nonexpansive mappings and strongly positive
bounded linear operator technique; and Ceng, Guu,
and Yao convergence analysis for hybrid iterative
method (see [11, Theorem 3.1]).

Remark 33. Theorem 28 also extends, improves, supple-
ments, and develops Ceng et al. [8, Theorem 3.1] in the
following aspects.

(i) The problem of finding a point 𝑝 ∈ ∩
∞

𝑛=1
𝐹𝑖𝑥(𝑇𝑛) ∩

∩
𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
) ∩ ∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩GSVI(𝐺) ∩

𝐹𝑖𝑥(𝑆) in Theorem 28 is very different from the
problem of finding a point 𝑝 ∈ ∩

𝑁

𝑖=1
𝐹𝑖𝑥(𝑇

𝑖
) ∩

GMEP(Θ, 𝜑, 𝐴) in Ceng et al. [8, Theorem 3.1]. Here
our problem of finding a point 𝑝 ∈ ∩

∞

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
) ∩

∩
𝑀

𝑘=1
GMEP(Θ𝑘, 𝜑𝑘, 𝐵𝑘) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐴 𝑖) ∩GSVI(𝐺) ∩

𝐹𝑖𝑥(𝑆) is put forth after one GMEP; finitely many
nonexpansivemappings in their problem are replaced
by finitely many GMEPs and infinitely many non-
expansive mappings, respectively; and the GSVI (8),
finitely many VIPs, and the fixed point problem of
an asymptotically strict pseudocontractive mapping
in the intermediate sense are added to their problem.

(ii) The iterative scheme in [8, Theorem 3.1] is extended
to develop the iterative scheme in our theorem
(Theorem 28) by virtue of Korpelevich’s extragradient
method [22], shrinking projection method, Mann
iterative method, and strongly positive bounded
linear operator technique. The iterative scheme in
Theorem 28 is put forth after 𝑢

𝑛
= 𝑇
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛

and 𝑊
𝑛
𝑢
𝑛
in [8, Theorem 3.1] are replaced by 𝑢

𝑛
=

Δ
𝑀

𝑛
𝑥
𝑛
and𝑊

𝑛
𝐺Λ
𝑁

𝑛
𝑢
𝑛
, respectively.

(iii) The iterative scheme in Theorem 28 is very different
from the iterative scheme in [8, Theorem 3.1] because
the iterative scheme inTheorem 28 involves Korpele-
vich’s extragradient method [22], shrinking projec-
tion method, Mann iterative method, and strongly
positive bounded linear operator technique. The
proof of [8, Theorem 3.1] makes use of Proposition 8.
However, the proof of Theorem 28 depends on not
only Proposition 8 but also Proposition CWY, the
properties of strongly positive bounded linear oper-
ator, and the ones of asymptotically strict pseudo-
contractive mapping in the intermediate sense (see
Lemmas 17–20) because there are the SGEP (8),
finitely many GMEPs, asymptotically strict pseudo-
contractive mapping 𝑆 in the intermediate sense,
and the strongly positive bounded linear operator
𝑉 appearing in the iterative scheme of our theorem
(Theorem 28).

(iv) The proof of Theorem 28 involves the convergence
analysis for Korpelevich’s extragradient method to
solve the SGEP (8), finitely many GMEPs, and
finitely many VIPs; the convergence analysis for the
𝑊-mapping approach to fixed points of infinitely
many nonexpansive mappings and strongly positive
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bounded linear operator technique; and Ceng, Guu,
and Yao convergence analysis for viscosity approxi-
mation method and hybrid steepest-descent method
(see [23, Theorem 4.2] and [8, Theorem 3.1]).
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