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We introduce the concepts of (𝐻, 𝜓,Φ)-contraction and probabilistic (𝛼, 𝜑)-contraction mappings in generalized probabilistic
metric spaces and prove some fixed point theorems for such two types of mappings in generalized probabilistic metric spaces.
Our results generalize and extend many comparable results in existing literature. Some examples are also given to support our
results. Finally, an application to the existence of solutions for a class of integral equations is presented by utilizing one of our main
results.

1. Introduction and Preliminaries

The notion of a probabilistic metric space was introduced
and studied by Menger [1]. The idea of Menger was to use
distribution functions instead of nonnegative real numbers
to describe the distance between two points. It has become
an active field since then and many fixed point results for
mappings satisfying different contractive conditions have
been studied [2–8].

On the other hand, Mustafa and Sims [9] defined the
concept of a 𝐺-metric space and presented the Banach fixed
point theorem in the context of a complete 𝐺-metric space.
Following their results, some authors have obtained many
fixed point theorems for contractive mappings in 𝐺-metric
spaces [9–16].

As a generalization, using PM-spaces and 𝐺-metric
spaces, Zhou et al. [17] defined the notion of generalized
probabilisticmetric spaces (or probabilistic𝐺-metric spaces).
The purpose of this paper is to establish some fixed point
theorems for two types of mappings satisfying the (𝐻, 𝜓,Φ)-
contraction or probabilistic (𝛼, 𝜑)-contraction in generalized
probabilistic metric spaces. As consequences, our results
generalize and extend many comparable results (see, e.g., [6–
8, 14, 16, 17]).

We introduce some useful concepts and lemmas for the
development of our results.

Let 𝑅 denote the set of reals and 𝑅+ the nonnegative reals.
A mapping 𝐹 : 𝑅 → 𝑅+ is called a distribution function if it
is nondecreasing and left continuous with inf

𝑡∈𝑅
𝐹(𝑡) = 0 and

sup
𝑡∈𝑅
𝐹(𝑡) = 1. We will denote by𝐷 the set of all distribution

functions and let𝐷+ = {𝐹 ∈ 𝐷 : 𝐹(𝑡) = 0, ∀𝑡 ≤ 0}.
Let𝐻 denote the specific distribution function defined by

𝐻(𝑡) = {
0, 𝑡 ≤ 0,

1, 𝑡 > 0.
(1)

Definition 1 (see [2]). The mapping Δ : [0, 1] × [0, 1] →

[0, 1] is called a triangular norm (for short, a 𝑡-norm) if the
following conditions are satisfied:

(Δ − 1) Δ(𝑎, 1) = 𝑎, for all 𝑎 ∈ [0, 1];
(Δ − 2) Δ(𝑎, 𝑏) = Δ(𝑏, 𝑎);
(Δ − 3) Δ(𝑎, 𝑏) ≤ Δ(𝑐, 𝑑), for 𝑐 ≥ 𝑎, 𝑑 ≥ 𝑏;
(Δ − 4) Δ(𝑎, Δ(𝑏, 𝑐)) = Δ(Δ(𝑎, 𝑏), 𝑐).

Three sample examples of continuous 𝑡-norms are
Δ
1
(𝑎, 𝑏) = max{𝑎 + 𝑏 − 1, 0}, Δ

2
(𝑎, 𝑏) = 𝑎𝑏, and Δ

𝑀
(𝑎, 𝑏) =

min{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0, 1].

Definition 2 (see [17]). A Menger probabilistic 𝐺-metric
space (briefly, a Menger PGM-space) is a triplet (𝑋, 𝐺∗, Δ),
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where 𝑋 is a nonempty set, Δ is a continuous 𝑡-norm, and
𝐺∗ is a mapping from 𝑋 × 𝑋 × 𝑋 into 𝐷+ (𝐺∗

𝑥,𝑦,𝑧
denotes

the value of 𝐺∗ at the point (𝑥, 𝑦, 𝑧)) satisfying the following
conditions:

(PGM − 1) 𝐺∗
𝑥,𝑦,𝑧
(𝑡) = 1 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡 > 0

if and only if 𝑥 = 𝑦 = 𝑧;
(PGM − 2) 𝐺∗

𝑥,𝑥,𝑦
(𝑡) ≥ 𝐺∗

𝑥,𝑦,𝑧
(𝑡) for all 𝑥, 𝑦 ∈ 𝑋 with

𝑧 ̸= 𝑦 and 𝑡 > 0;
(PGM − 3) 𝐺∗

𝑥,𝑦,𝑧
(𝑡) = 𝐺∗

𝑦,𝑥,𝑧
(𝑡) = 𝐺∗

𝑦,𝑧,𝑥
(𝑡) = ⋅ ⋅ ⋅

(symmetry in all three variables);
(PGM − 4) 𝐺∗

𝑥,𝑦,𝑧
(𝑡 + 𝑠) ≥ Δ(𝐺∗

𝑥,𝑎,𝑎
(𝑡), 𝐺∗
𝑎,𝑦,𝑧
(𝑠)) for all

𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 and 𝑡, 𝑠 ≥ 0.

Example 3. Let (𝑋, 𝑑) be an ordinary metric space. Define
𝐺
∗

𝑠
(𝑥, 𝑦, 𝑧)(𝑡) = 𝐻(𝑡 − 𝑘(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑥, 𝑧))) and

𝐺∗
𝑚
(𝑥, 𝑦, 𝑧)(𝑡) = 𝐻(𝑡 − max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧), 𝑑(𝑥, 𝑧)}), where

𝑘 > 0. Then (𝑋, 𝐺∗
𝑠
, Δ
𝑀
) and (𝑋, 𝐺∗

𝑚
, Δ
𝑀
) are both Menger

PGM-spaces.

Example 4. Let 𝑄 be a distribution function, 𝑄(0) = 0, and

𝐺
∗

𝑥,𝑦,𝑧
(𝑡) = {

𝑄 (𝑡) , at least two of 𝑥, 𝑦, 𝑧 are distinct,
𝐻 (𝑡) , 𝑥 = 𝑦 = 𝑧.

(2)

Then (𝑋, 𝐺∗, Δ
𝑀
) is a Menger PGM-space.

Example 5. Let (𝑋, 𝑑) be an ordinary metric space, let 𝑄 be a
distribution function different from 𝐻, satisfying 𝑄(0) = 0,
and

𝐺
∗

𝑥,𝑦,𝑧
(𝑡) =

{{{{

{{{{

{

𝑄(
𝑡

𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑥, 𝑧)
) ,

at least two of 𝑥, 𝑦, 𝑧 are distinct,
𝐻 (𝑡) , 𝑥 = 𝑦 = 𝑧.

(3)

Then (𝑋, 𝐺∗, Δ
𝑀
) is a Menger PGM-space.

Remark 6 (see [17]). Zhou et al. pointed out that if (𝑋,𝐺∗, Δ)
is a Menger PGM-space and Δ is continuous, then (𝑋,𝐺∗, Δ)
is a Hausdorff topological space in the (𝜀, 𝜆)-topology 𝑇; that
is, the family of sets {𝑁

𝑥
(𝜀, 𝜆) : 𝜀 > 0, 𝜆 ∈ (0, 1]} (𝑥 ∈ 𝑋) is

a basis of neighborhoods of a point 𝑥 for 𝑇, where𝑁
𝑥
(𝜀, 𝜆) =

{𝑦 ∈ 𝑋 : 𝐺∗
𝑥,𝑦,𝑦
(𝜀) > 1 − 𝜆, 𝐺∗

𝑦,𝑥,𝑥
(𝜀) > 1 − 𝜆}.

Definition 7 (see [17]). Let (𝑋, 𝐺∗, Δ) be a PGM-space.

(1) A sequence {𝑥
𝑛
} in 𝑋 is said to be convergent to a

point 𝑥 in 𝑋 (write 𝑥
𝑛
→ 𝑥) if, for any 𝜀 > 0 and

0 < 𝜆 < 1, there exists a positive integer 𝑀
𝜀,𝜆

such
that 𝑥

𝑛
∈ 𝑁
𝑥
(𝜀, 𝜆), whenever 𝑛 > 𝑀

𝜀,𝜆
.

(2) A sequence {𝑥
𝑛
} in 𝑋 is called a Cauchy sequence if,

for any 𝜀 > 0 and 0 < 𝜆 < 1, there exists a positive
integer𝑀

𝜀,𝜆
, such that 𝐺∗

𝑥
𝑛
,𝑥
𝑚
,𝑥
𝑙

(𝜀) > 1 − 𝜆, whenever
𝑛,𝑚, 𝑙 > 𝑀

𝜀,𝜆
.

(3) A PGM-space (𝑋, 𝐺∗, Δ) is said to be complete if
every Cauchy sequence in 𝑋 converges to a point in
𝑋.

(4) A mapping 𝑇 : 𝑋 → 𝑋 is said to be continuous at a
point 𝑥 ∈ 𝑋 if {𝑥

𝑛
} is convergent to 𝑥 implying that

{𝑇𝑥
𝑛
} is convergent to 𝑇𝑥.

Definition 8 (see [3]). A 𝑡-normΔ is said to be of𝐻-type if the
family of functions {Δ𝑚(𝑡)}∞

𝑚=1
is equicontinuous at 𝑡, where

Δ1(𝑡) = Δ(𝑡, 𝑡) and Δ𝑚(𝑡) = Δ(𝑡, Δ𝑚−1(𝑡)), 𝑚 = 1, 2, . . . , 𝑡 ∈
[0, 1].

Definition 9 (see [4]). A function Φ : 𝑅+ → 𝑅+ is said
to satisfy the condition (Φ) if it is strictly increasing, right-
continuous and Φ𝑛(𝑡) → 0, 𝑡 > 0, as 𝑛 → ∞, where Φ𝑛(𝑡)
is the 𝑛th iteration ofΦ(𝑡).

Lemma 10 (see [6]). Suppose that 𝐹 ∈ 𝐷+. For every 𝑛 ∈ 𝑍+,
let 𝐹
𝑛
: 𝑅 → [0, 1] be nondecreasing and 𝑔

𝑛
: (0, +∞) →

(0, +∞) satisfy lim
𝑛→∞

𝑔
𝑛
(𝑡) = 1 for any 𝑡 > 0. If 𝐹

𝑛
(𝑔
𝑛
(𝑡)) ≥

𝐹(𝑡) for any 𝑡 > 0, then lim
𝑛→∞

𝐹
𝑛
(𝑡) = 1 for any 𝑡 > 0.

Lemma 11 (see [17]). Let (𝑋, 𝐺∗, Δ) be a Menger 𝑃𝐺𝑀-space.
Let {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} be sequences in 𝑋 and 𝑥, 𝑦, 𝑧 ∈ 𝑋. If

𝑥
𝑛
→ 𝑥, 𝑦

𝑛
→ 𝑦, and 𝑧

𝑛
→ 𝑧 as 𝑛 → ∞, then, for any

𝑡 > 0, 𝐺∗
𝑥
𝑛
,𝑦
𝑛
,𝑧
𝑛

(𝑡) → 𝐺∗
𝑥,𝑦,𝑧
(𝑡) as 𝑛 → ∞.

2. Main Results

In this section, we will give some fixed point theorems for
two types ofmappings satisfying the (𝐻, 𝜓,Φ)-contraction or
probabilistic (𝛼, 𝜑)-contraction in generalized probabilistic
metric spaces. We first present some useful lemmas.

Lemma 12. Let (𝑋, 𝐺∗, Δ) be a Menger 𝑃𝐺𝑀-space and Δ
be a continuous 𝑡-norm. Then the following statements are
equivalent:

(i) the sequence {𝑥
𝑛
} is a Cauchy sequence;

(ii) for any 𝜀 > 0 and 0 < 𝜆 < 1, there exists𝑀 ∈ 𝑁+ such
that 𝐺∗

𝑥
𝑛
,𝑥
𝑚
,𝑥
𝑚

(𝜀) > 1 − 𝜆, for all 𝑛,𝑚 > 𝑀.

Proof. (i)⇒(ii). This can be easily obtained fromDefinition 7
(2).

(ii)⇒(i). Since Δ is continuous, for every 𝜀 > 0 and 𝜆 > 0,
there exists 𝜆

0
∈ (0, 𝜆), such thatΔ(1−𝜆

0
, 1−𝜆/2) > 1−𝜆. Let

𝜆
1
= min{𝜆

0
, 𝜆/2}.ThenΔ(1−𝜆

1
, 1−𝜆
1
) > 1−𝜆. Hence, from

(ii), there exists𝑀 ∈ 𝑁+, such that 𝐺∗
𝑥
𝑛
,𝑥
𝑚
,𝑥
𝑚

(𝜀/2) > 1 − 𝜆
1

and 𝐺∗
𝑥
𝑙
,𝑥
𝑚
,𝑥
𝑚

(𝜀/2) > 1 − 𝜆
1
, for all 𝑛,𝑚, 𝑙 ≥ 𝑀. Then we have

𝐺∗
𝑥
𝑛
,𝑥
𝑚
,𝑥
𝑙

(𝜀) ≥ Δ(𝐺∗
𝑥
𝑛
,𝑥
𝑚
,𝑥
𝑚

(𝜀/2), 𝐺∗
𝑥
𝑙
,𝑥
𝑚
,𝑥
𝑚

(𝜀/2)) ≥ Δ(1−𝜆
1
, 1 −

𝜆
1
) > 1 − 𝜆. Thus, {𝑥

𝑛
} is a Cauchy sequence.

Lemma 13. Let (𝑋, 𝐺∗, Δ) be a Menger 𝑃𝐺𝑀-space. For each
𝜆 ∈ (0, 1], define a function 𝐺∗

𝜆
by

𝐺
∗

𝜆
(𝑥, 𝑦, 𝑧) = inf

𝑡

{𝑡 ≥ 0 : 𝐺
∗

𝑥,𝑦,𝑧
(𝑡) > 1 − 𝜆} , (4)

for 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then
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(1) 𝐺∗
𝜆
(𝑥, 𝑦, 𝑧) < 𝑡 if and only if 𝐺∗

𝑥,𝑦,𝑧
(𝑡) > 1 − 𝜆;

(2) 𝐺∗
𝜆
(𝑥, 𝑦, 𝑧) = 0 for all 𝜆 ∈ (0, 1] if and only if 𝑥 = 𝑦 =

𝑧;
(3) 𝐺∗
𝜆
(𝑥, 𝑦, 𝑧) = 𝐺∗

𝜆
(𝑦, 𝑥, 𝑧) = 𝐺∗

𝜆
(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ ;

(4) if Δ = Δ
𝑀
, then, for every 𝜆 ∈ (0, 1], 𝐺∗

𝜆
(𝑥, 𝑦, 𝑧) ≤

𝐺∗
𝜆
(𝑥, 𝑎, 𝑎) + 𝐺∗

𝜆
(𝑎, 𝑦, 𝑧).

Proof. It is not difficult to prove that (1), (2), and (3) hold.
Now, we prove that (4) also holds. For any 𝜆 ∈ (0, 1] and
𝜀 > 0, we have 𝐺∗

𝑥,𝑎,𝑎
(𝐺
∗

𝜆
(𝑥, 𝑎, 𝑎) + 𝜀/2) > 1 − 𝜆 and

𝐺∗
𝑎,𝑦,𝑧
(𝐺∗
𝜆
(𝑎, 𝑦, 𝑧) + 𝜀/2) > 1 − 𝜆. Hence, from (PGM − 4)

and Δ = Δ
𝑀
, we have

𝐺
∗

𝑥,𝑦,𝑧
(𝐺
∗

𝜆
(𝑥, 𝑎, 𝑎) + 𝐺

∗

𝜆
(𝑎, 𝑦, 𝑧) + 𝜀)

≥ min {𝐺∗
𝑥,𝑎,𝑎

(𝐺
∗

𝜆
(𝑥, 𝑎, 𝑎) +

𝜀

2
) ,

𝐺
∗

𝑎,𝑦,𝑧
(𝐺
∗

𝜆
(𝑎, 𝑦, 𝑧) +

𝜀

2
)}

> min {1 − 𝜆, 1 − 𝜆} = 1 − 𝜆,

(5)

which implies that 𝐺∗
𝜆
(𝑥, 𝑦, 𝑧) ≤ 𝐺∗

𝜆
(𝑥, 𝑎, 𝑎) + 𝐺∗

𝜆
(𝑎, 𝑦, 𝑧) + 𝜀.

Letting 𝜀 → 0, we have𝐺∗
𝜆
(𝑥, 𝑦, 𝑧) ≤ 𝐺∗

𝜆
(𝑥, 𝑎, 𝑎)+𝐺∗

𝜆
(𝑎, 𝑦, 𝑧)

for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Lemma 14. Let (𝑋, 𝐺∗, Δ) be a Menger 𝑃𝐺𝑀-space and let
{𝐺∗
𝜆
}
𝜆∈(0,1]

be a family of functions on 𝑋 defined by (4). If Δ
is a 𝑡-norm of 𝐻-type, then, for each 𝜆 ∈ (0, 1], there exists
𝜇 ∈ (0, 𝜆], such that, for each𝑚 ∈ 𝑍+,

𝐺
∗

𝜆
(𝑥
0
, 𝑥
𝑚
, 𝑥
𝑚
) ≤

𝑚−1

∑
𝑖=0

𝐺
∗

𝜇
(𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+1
) ,

𝐺
∗

𝜆
(𝑥
0
, 𝑥
0
, 𝑥
𝑚
) ≤

𝑚−1

∑
𝑖=0

𝐺
∗

𝜇
(𝑥
𝑖
, 𝑥
𝑖
, 𝑥
𝑖+1
) ,

(6)

for all 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑚
∈ 𝑋.

Proof. Since Δ is a 𝑡-norm of 𝐻-type, there exists 𝜇 ∈ (0, 𝜆],
such that, for all𝑚 ∈ 𝑍+,

Δ
𝑚

(1 − 𝜇) > 1 − 𝜆. (7)

For any given 𝑚 ∈ 𝑍+ and 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑚
∈ 𝑋, we put

𝐺∗
𝜇
(𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+1
) = 𝑡
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑚 − 1). For every 𝜀 > 0,

it is evident that 𝐺∗
𝜇
(𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+1
) < 𝑡
𝑖
+ 𝜀/𝑚. By Lemma 13,

for 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, we have

𝐺
∗

𝑥
𝑖
,𝑥
𝑖+1
,𝑥
𝑖+1

(𝑡
𝑖
+
𝜀

𝑚
) > 1 − 𝜇. (8)

By (7) and (8), we have

𝐺
∗

𝑥
0
,𝑥
𝑚
,𝑥
𝑚

(𝑡
0
+ 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑚−1
+ 𝜀)

≥ Δ(𝐺
∗

𝑥
0
,𝑥
1
,𝑥
1

(𝑡
0
+
𝜀

𝑚
) ,

Δ (𝐺
∗

𝑥
1
,𝑥
2
,𝑥
2

(𝑡
1
+
𝜀

𝑚
) ,

Δ (. . . , Δ (𝐺
∗

𝑥
𝑚−2
,𝑥
𝑚−1
,𝑥
𝑚−1

(𝑡
𝑚−2
+
𝜀

𝑚
) ,

𝐺
∗

𝑥
𝑚−1
,𝑥
𝑚
,𝑥
𝑚

(𝑡
𝑚−1
+
𝜀

𝑚
)) ⋅ ⋅ ⋅ )))

≥ Δ
𝑚

(1 − 𝜇) > 1 − 𝜆.

(9)

Again by Lemma 13, we get 𝐺∗
𝜆
(𝑥
0
, 𝑥
𝑚
, 𝑥
𝑚
) < 𝑡
0
+ 𝑡
1
+ ⋅ ⋅ ⋅ +

𝑡
𝑚−1

+ 𝜀. Letting 𝜀 → 0, for all 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑚
∈ 𝑋, we have

𝐺∗
𝜆
(𝑥
0
, 𝑥
𝑚
, 𝑥
𝑚
) ≤ ∑

𝑚−1

𝑖=0
𝐺∗
𝜇
(𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+1
). Similarly, we have

𝐺∗
𝜆
(𝑥
0
, 𝑥
0
, 𝑥
𝑚
) ≤ ∑
𝑚−1

𝑖=0
𝐺∗
𝜇
(𝑥
𝑖
, 𝑥
𝑖
, 𝑥
𝑖+1
).

Inspired by the notion of𝐻-contraction mappings in [8],
we introduce the notion of (𝐻, 𝜓,Φ)-contraction mappings
in PGM-spaces.

Definition 15. Let (𝑋, 𝐺∗, Δ) be a Menger PGM-space, Φ
satisfy the condition (Φ) and 𝜓 : (−∞, 1) → (−∞, 1) be
a nondecreasing function, 𝜓(𝑠) = 0 if and only if 𝑠 = 0,
lim
𝑠→1
−𝜓(𝑠) = 1. A mapping 𝑇 : 𝑋 → 𝑋 is said to be a

(𝐻, 𝜓,Φ)-contraction mapping on (𝑋, 𝐺∗), if, for any 𝑡 > 0
and 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝐺
∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(Φ (𝑡)) > 𝜓 (1 − Φ (𝑡)) , (10)

whenever 𝐺∗
𝑥,𝑦,𝑧
(𝑡) > 𝜓(1 − 𝑡). If 𝜓(𝑠) = 𝑠 for all 𝑠 ∈ (−∞, 1),

then 𝑇 is said to be a (𝐻,Φ)-contraction mapping.

Theorem16. Let (𝑋, 𝐺∗, Δ) be a completeMenger𝑃𝐺𝑀-space
and let Δ be a continuous 𝑡-norm. Let 𝑇 : 𝑋 → 𝑋 be a
(𝐻, 𝜓,Φ)-contraction mapping satisfying (10). Then we have
the following:

(i) 𝑇 is continuous on 𝑋;
(ii) 𝑇 has a unique fixed point in𝑋, and, for any given 𝑥

0
∈

𝑋, the iterative sequence {𝑇𝑛𝑥
0
} converges to this fixed

point.

Proof. (i) Since Φ is right continuous, strictly increasing and
Φ(0) = 0, we have lim

𝛿→0
+Φ(𝛿) = 0 and Φ(𝑡) > 0, for 𝑡 >

0. Since lim
𝑠→1
−𝜓(𝑠) = 1, we get lim

𝛿→0
+𝜓(1 − Φ(𝛿)) = 1.

Hence, for any given 𝜀 > 0 and 𝜆 ∈ (0, 1), there exists 𝛿 > 0,
such that 0 < Φ(𝛿) < 𝜀 and 𝜓(1 − Φ(𝛿)) > 1 − 𝜆.

Now, for each 𝑥 ∈ 𝑋, suppose that {𝑥
𝑛
} is convergent to

𝑥. Then, for 𝛿 > 0, there exists𝑀 ∈ 𝑁, such that 𝐺∗
𝑥
𝑛
,𝑥,𝑥
(𝛿) >

𝜓(1−𝛿), whenever 𝑛 ≥ 𝑀. Since 𝑇 is a (𝐻, 𝜓,Φ)-contraction
mapping, we have 𝐺∗

𝑇𝑥
𝑛
,𝑇𝑥,𝑇𝑥

(Φ(𝛿)) > 𝜓(1 − Φ(𝛿)), whenever
𝑛 ≥ 𝑀. Thus, 𝐺∗

𝑇𝑥
𝑛
,𝑇𝑥,𝑇𝑥

(𝜀) ≥ 𝐺∗
𝑇𝑥
𝑛
,𝑇𝑥,𝑇𝑥

(Φ(𝛿)) > 𝜓(1 −

Φ(𝛿)) > 1 − 𝜆, which implies that 𝑇 is continuous at 𝑥. By
the arbitrariness of 𝑥, we obtain that 𝑇 is continuous on𝑋.

(ii) For any given 𝑥
0
∈ 𝑋, define the sequence {𝑥

𝑛
} by

𝑥
𝑛
= 𝑇𝑛𝑥

0
. Let 𝜀 > 0.Then𝐺∗

𝑥
0
,𝑥
𝑚
,𝑥
𝑚

(1+𝜀) ≥ 0 > 𝜓(1−(1+𝜀)),
and it follows from (10) that𝐺∗

𝑇
𝑛
𝑥
0
,𝑇
𝑛
𝑥
𝑚
,𝑇
𝑛
𝑥
𝑚

(Φ𝑛(1+𝜀)) > 𝜓(1−

Φ𝑛(1 + 𝜀)) for 𝑛,𝑚 ∈ 𝑍+.
Since lim

𝑛→∞
Φ𝑛(1+𝜀) = 0, we have lim

𝑛→∞
𝜓(1−Φ𝑛(1+

𝜀)) = 1. Hence, for any 𝜀 > 0 and 𝜆 > 0, there exists𝑀 ∈ 𝑍+

such thatΦ𝑛(1+𝜀) < 𝜀 and𝜓(1−Φ𝑛(1+𝜀)) > 1−𝜆, whenever
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𝑛 ≥ 𝑀. Hence, for 𝑛 ≥ 𝑀, we have 𝐺∗
𝑥
𝑛
,𝑥
𝑛+𝑚
,𝑥
𝑛+𝑚

(𝜀) =

𝐺∗
𝑇
𝑛
𝑥
0
,𝑇
𝑛
𝑥
𝑚
,𝑇
𝑛
𝑥
𝑚

(𝜀) ≥ 𝜓(1−Φ𝑛(1+𝜀)) > 1−𝜆. Using Lemma 12,
we know that {𝑥

𝑛
} is a Cauchy sequence. Since (𝑋, 𝐺∗) is

complete, there exists 𝑥∗ ∈ 𝑋 such that 𝑥
𝑛
→ 𝑥∗. Since 𝑇

is continuous, we have 𝑇𝑥∗ = 𝑥∗.
Now, Suppose that 𝑦∗ is another fixed point of 𝑇. Then,

for any 𝜀 > 0 and 𝜆 > 0,𝐺∗
𝑥
∗
,𝑦
∗
,𝑦
∗(1+𝜀) > 𝜓(1−(1+𝜀)), which

implies that𝐺∗
𝑇
𝑛
𝑥
∗
,𝑇
𝑛
𝑦
∗
,𝑇
𝑛
𝑦
∗(Φ
𝑛(1+ 𝜀)) > 𝜓(1−Φ𝑛(1+ 𝜀)). For

any given 𝜀 > 0 and 𝜆 > 0, there exists 𝑀 ∈ 𝑍+ such that
Φ𝑛(1 + 𝜀) < 𝜀 and 𝜓(1 −Φ𝑛(1 + 𝜀)) > 1 − 𝜆, whenever 𝑛 ≥ 𝑀.
Hence, for 𝑛 ≥ 𝑀, we have 𝐺∗

𝑥
∗
,𝑦
∗
,𝑦
∗(𝜀) = 𝐺

∗

𝑇𝑥
∗
,𝑇𝑦
∗
,𝑇𝑦
∗(𝜀) ≥

𝐺∗
𝑇
𝑛
𝑥
∗
,𝑇
𝑛
𝑦
∗
,𝑇
𝑛
𝑦
∗(Φ
𝑛(1+𝜀)) > 1−𝜆, which implies that 𝑥∗ = 𝑦∗.

This completes the proof.

Now, we present an example to illustrate Theorem 16.

Example 17. Let 𝑋 = [0, 1]. Define 𝐺∗ : 𝑋 × 𝑋 × 𝑋 → 𝐷+

by 𝐺∗
𝑥,𝑦,𝑧
(𝑡) = 𝐻(𝑡 − max{|𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑥 − 𝑧|}) for all

𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡 ∈ 𝑅. It is easy to verify that (𝑋, 𝐺∗, Δ)
is a complete Menger PGM-space. Let Φ(𝑡) = (1/3)𝑡 for all
𝑡 ∈ 𝑅+, let 𝜓(𝑠) = 𝑠3 for all 𝑠 ∈ (−∞, 1), and let 𝑇 : 𝑋 → 𝑋

be defined by 𝑇𝑥 = (1/4)𝑥.
Now, if 𝑡 > 3, then 𝐺∗

𝑥,𝑦,𝑧
(𝑡) ≥ 0 > (1 − 𝑡)

3 and
𝐺∗
𝑇𝑥,𝑇𝑦,𝑇𝑧

(𝑡/3) ≥ 0 > (1 − 𝑡/3)
3 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

If 1 < 𝑡 ≤ 3, then 𝐺∗
𝑥,𝑦,𝑧
(𝑡) = 1 > (1 − 𝑡)

3. For any 𝑥, 𝑦, 𝑧 ∈
𝑋 = [0, 1], we have max{|𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑥 − 𝑧|} ≤ 1. Hence,

𝐺
∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(
𝑡

3
)

= 𝐻(
𝑡

3
−max {1

4

𝑥 − 𝑦
 ,
1

4

𝑦 − 𝑧
 ,
1

4
|𝑥 − 𝑧|})

= 𝐻(
1

3
[𝑡 −

3

4
max {𝑥 − 𝑦

 ,
𝑦 − 𝑧

 , |𝑥 − 𝑧|}])

= 𝐻(𝑡 −
3

4
max {𝑥 − 𝑦

 ,
𝑦 − 𝑧

 , |𝑥 − 𝑧|})

≥ 𝐻(𝑡 −
3

4
) ≥ 𝐻(1 −

3

4
) = 1 > (1 −

𝑡

3
)
3

.

(11)

If 0 < 𝑡 ≤ 1 and𝐺∗
𝑥,𝑦,𝑧
(𝑡) = 𝐻(𝑡−max{|𝑥−𝑦|, |𝑦−𝑧|, |𝑥−

𝑧|}) > (1 − 𝑡)
3

≥ 0, then 𝐺∗
𝑥,𝑦,𝑧
(𝑡) = 1 and

𝐺
∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(
𝑡

3
)

= 𝐻(𝑡 −
3

4
max {𝑥 − 𝑦

 ,
𝑦 − 𝑧

 , |𝑥 − 𝑧|})

≥ 𝐻 (𝑡 −max {𝑥 − 𝑦
 ,
𝑦 − 𝑧

 , |𝑥 − 𝑧|})

= 1 > (1 −
𝑡

3
)
3

.

(12)

Thus, all the conditions ofTheorem 16 are satisfied. Hence, 𝑇
has a unique fixed point in𝑋. In fact, 𝑥 = 0 is the unique fixed
point of 𝑇.

Remark 18. Theorem 16 generalizes and extends fixed point
theorems for𝐻-contraction mappings in [8] to the setting of
generalized probabilistic metric spaces (take 𝜓(𝑠) = 𝑠).

Definition 19. Let 𝑇 : 𝑋 → 𝑋 be a given mapping and
𝛼 : 𝑋

3 × (0,∞) → [0,∞) be a function. We say that 𝑇
is generalized 𝛼-admissible; if 𝑥, 𝑦, 𝑧 ∈ 𝑋, for all 𝑡 > 0,
𝛼(𝑥, 𝑦, 𝑧, 𝑡) ≥ 1, then 𝛼(𝑇𝑥, 𝑇𝑦, 𝑇𝑧, 𝑡) ≥ 1 for all 𝑡 > 0.

Definition 20. Let (𝑋, 𝐺∗) be a PGM-space and let 𝜑 : 𝑅+ →
𝑅+ be a strictly increasing function such that 𝜑−1({0}) = {0}
and ∑∞

𝑛=1
𝜑𝑛(𝑡) < +∞ for any 𝑡 > 0. A mapping 𝑇 : 𝑋 →

𝑋 is said to be a probabilistic (𝛼, 𝜑)-contraction mapping on
(𝑋, 𝐺∗) if there exists a function 𝛼 : 𝑋3 × (0,∞) → [0,∞),
for each 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑡 > 0,

𝐺
∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(𝜑 (𝑡)) ≥ 𝛼 (𝑥, 𝑦, 𝑧, 𝑡) 𝑈

𝑥,𝑦,𝑧
(𝑡) , (13)

where 𝑈
𝑥,𝑦,𝑧
(𝑡) = min{𝐺∗

𝑥,𝑦,𝑧
(𝑡), 𝐺∗
𝑥,𝑇𝑥,𝑇𝑥

(𝑡), 𝐺∗
𝑦,𝑇𝑦,𝑇𝑦

(𝑡),
𝐺∗
𝑧,𝑇𝑧,𝑇𝑧

(𝑡), 𝐺∗
𝑥,𝑥,𝑇𝑥

(𝑡), 𝐺∗
𝑦,𝑦,𝑇𝑦

(𝑡), 𝐺∗
𝑧,𝑧,𝑇𝑧

(𝑡)}.

Theorem21. Let (𝑋, 𝐺∗, Δ) be a completeMenger𝑃𝐺𝑀-space
such that Δ is a 𝑡-norm of 𝐻-type and Δ ≥ Δ

1
. Let 𝑇 : 𝑋 →

𝑋 be a probabilistic (𝛼, 𝜑)-contraction mapping satisfying (13).
Suppose that the following hold:

(i) 𝑇 is generalized 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
, 𝑇𝑥
0
, 𝑡) ≥ 1 and

𝛼(𝑥
0
, 𝑥
0
, 𝑇𝑥
0
, 𝑡) ≥ 1 for all 𝑡 > 0;

(iii) if {𝑥
𝑛
} is a sequence in𝑋 such that𝛼(𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
, 𝑡) ≥

1, 𝛼(𝑥
𝑛
, 𝑥
𝑛
, 𝑥
𝑛+1
, 𝑡) ≥ 1 for all 𝑛 ∈ 𝑁, 𝑡 > 0, and 𝑥

𝑛
→

𝑥, then 𝛼(𝑥
𝑛
, 𝑥, 𝑥, 𝑡) ≥ 1 and 𝛼(𝑥

𝑛
, 𝑥
𝑛
, 𝑥, 𝑡) ≥ 1 for all

𝑛 ∈ 𝑁 and 𝑡 > 0.

Then𝑇 has a fixed point in𝑋. Moreover, let𝐴 be the set of fixed
points of 𝑇; if, for each 𝑥, 𝑦 ∈ 𝐴, we have 𝛼(𝑥, 𝑦, 𝑦, 𝑡) ≥ 1 for
all 𝑡 > 0, then 𝑇 has a unique fixed point in𝑋.

Proof. Let 𝑥
0
∈ 𝑋 and define the sequence {𝑥

𝑛
} by 𝑥
𝑛
= 𝑇𝑛𝑥

0
.

Suppose that 𝑥
𝑛
̸= 𝑥
𝑛+1

, for any 𝑛 ∈ 𝑁 (If not, there exists
𝑛
0
∈ 𝑁, such that 𝑥

𝑛
0
+1
= 𝑇𝑥
𝑛
0

= 𝑥
𝑛
0

and then the conclusion
holds).

Since 𝑇 is 𝛼-admissible, 𝛼(𝑥
0
, 𝑇𝑥
0
, 𝑇𝑥
0
, 𝑡) ≥ 1, and

𝛼(𝑥
0
, 𝑥
0
, 𝑇𝑥
0
, 𝑡) ≥ 1 for all 𝑡 > 0, we have 𝛼(𝑥

1
, 𝑥
2
, 𝑥
2
, 𝑡) ≥ 1

and 𝛼(𝑥
1
, 𝑥
1
, 𝑥
2
, 𝑡) ≥ 1 for all 𝑡 > 0. By induction, we obtain

that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
, 𝑡) ≥ 1, 𝛼 (𝑥

𝑛
, 𝑥
𝑛
, 𝑥
𝑛+1
, 𝑡) ≥ 1,

∀𝑛 ∈ 𝑁, 𝑡 > 0.
(14)
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For any 𝑛 ∈ 𝑁, from (13) and (14), we have

𝐺
∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝜑 (𝑡))

≥ 𝛼 (𝑥
𝑛−1
, 𝑥
𝑛
, 𝑥
𝑛
, 𝑡)min {𝐺∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝑡) , 𝐺
∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝑡) ,

𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝑡) ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝑡)}

≥ min {𝐺∗
𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝑡)} ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝜑 (𝑡))

≥ 𝛼 (𝑥
𝑛−1
, 𝑥
𝑛−1
, 𝑥
𝑛
, 𝑡)min {𝐺∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝑡) ,

𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝑡)}

≥ min {𝐺∗
𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝑡)} .

(15)

Suppose that 𝑄
𝑛
(𝑡) = min{𝐺∗

𝑥
𝑛
,𝑥
𝑛+1
,𝑥
𝑛+1

(𝑡), 𝐺∗
𝑥
𝑛
,𝑥
𝑛
,𝑥
𝑛+1

(𝑡)}.
Then, from the above inequalities, we get 𝑄

𝑛
(𝜑(𝑡)) ≥

min{𝑄
𝑛
(𝑡), 𝑄
𝑛−1
(𝑡)}. If min{𝑄

𝑛
(𝑡), 𝑄
𝑛−1
(𝑡)} = 𝑄

𝑛
(𝑡), then

𝑄
𝑛
(𝜑
𝑛

(𝑡)) ≥ 𝑄
𝑛
(𝜑
𝑛−1

(𝑡)) ≥ ⋅ ⋅ ⋅ ≥ 𝑄
𝑛
(𝑡) . (16)

By Lemma 10, we have 𝑄
𝑛
(𝑡) = 1 for any 𝑡 > 0. Then, 𝑥

𝑛
=

𝑥
𝑛+1

, which is in contradiction to 𝑥
𝑛
̸= 𝑥
𝑛+1

.
Hence, min{𝑄

𝑛
(𝑡), 𝑄
𝑛−1
(𝑡)} = 𝑄

𝑛−1
(𝑡). Then we have

𝑄
𝑛
(𝜑
𝑛

(𝑡)) ≥ 𝑄
𝑛−1
(𝜑
𝑛−1

(𝑡)) ≥ ⋅ ⋅ ⋅ ≥ 𝑄
0
(𝑡) . (17)

Next, we show that {𝑥
𝑛
} is a Cauchy sequence. For every

𝜆 ∈ (0, 1], suppose that𝐷
𝜆
= inf{𝑡 > 0 : 𝑄

0
(𝑡) > 1 − 𝜆}. Then

𝑄
0
(𝐷
𝜆
+ 1) > 1 − 𝜆. From (17), for every 𝜆 ∈ (0, 1], we get

𝑄
𝑛
(𝜑𝑛(𝐷

𝜆
+ 1)) > 1 − 𝜆. By Lemma 13, for any 𝑛 ∈ 𝑍+, we

have

𝐺
∗

𝜆
(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) < 𝜑
𝑛

(𝐷
𝜆
+ 1) ,

𝐺
∗

𝜆
(𝑥
𝑛
, 𝑥
𝑛
, 𝑥
𝑛+1
) < 𝜑
𝑛

(𝐷
𝜆
+ 1) .

(18)

By Lemma 14, for every 𝜆 ∈ (0, 1], there exists 𝜇 ∈ (0, 𝜆] such
that

𝐺
∗

𝜆
(𝑥
𝑛
, 𝑥
𝑛+𝑚
, 𝑥
𝑛+𝑚
) ≤

𝑚+𝑛−1

∑
𝑖=𝑛

𝐺
∗

𝜇
(𝑥
𝑖
, 𝑥
𝑖+1
, 𝑥
𝑖+1
) ,

∀𝑛,𝑚 ∈ 𝑍
+

.

(19)

Suppose that 𝜀 > 0 and 𝜆 ∈ (0, 1] are given. Since
∑
∞

𝑛=1
𝜑𝑛(𝐷
𝜇
+ 1) < +∞, there exists 𝑁 ∈ 𝑍+, such that

∑
𝑚+𝑛−1

𝑖=𝑛
𝜑𝑖(𝐷
𝜇
+1) < 𝜀 for all 𝑛,𝑚 ≥ 𝑁.Thus, by (18) and (19),

we have 𝐺∗
𝜆
(𝑥
𝑛
, 𝑥
𝑛+𝑚
, 𝑥
𝑛+𝑚
) < 𝜀. Using Lemma 13, we have

𝐺∗
𝑥
𝑛
,𝑥
𝑛+𝑚
,𝑥
𝑛+𝑚

(𝜀) > 1 − 𝜆 for all 𝑛,𝑚 ≥ 𝑁. From Lemma 12,
we know that {𝑥

𝑛
} is a Cauchy sequence. Since𝑋 is complete,

there exists 𝑥∗ ∈ 𝑋, such that 𝑥
𝑛
→ 𝑥∗.

Since 𝑥
𝑛

→ 𝑥∗, by (14) and (iii), we have
𝛼(𝑥
𝑛
, 𝑥∗, 𝑥∗, 𝑡) ≥ 1 and 𝛼(𝑥

𝑛
, 𝑥
𝑛
, 𝑥∗, 𝑡) ≥ 1 for all 𝑛 ∈ 𝑁 and

𝑡 > 0. From (13), for any 𝑛 ∈ 𝑁, we have

𝐺
∗

𝑥
𝑛
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝜑 (𝑡))

≥ 𝛼 (𝑥
𝑛−1
, 𝑥
∗

, 𝑥
∗

, 𝑡)min {𝐺∗
𝑥
𝑛−1
,𝑥
∗
,𝑥
∗ (𝑡) , 𝐺

∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) , 𝐺

∗

𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) ,

𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡) ,

𝐺
∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡)}

≥ min {𝐺∗
𝑥
𝑛−1
,𝑥
∗
,𝑥
∗ (𝑡) , 𝐺

∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) , 𝐺

∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡)} ,

𝐺
∗

𝑥
𝑛
,𝑥
𝑛
,𝑇𝑥
∗ (𝜑 (𝑡))

≥ 𝛼 (𝑥
𝑛−1
, 𝑥
𝑛−1
, 𝑥
∗

, 𝑡)min {𝐺∗
𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
∗ (𝑡) , 𝐺

∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) ,

𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡)}

≥ min {𝐺∗
𝑥
𝑛−1
,𝑥
∗
,𝑥
∗ (𝑡) , 𝐺

∗

𝑥
𝑛−1
,𝑥
𝑛
,𝑥
𝑛

(𝑡) , 𝐺
∗

𝑥
𝑛−1
,𝑥
𝑛−1
,𝑥
𝑛

(𝑡) ,

𝐺
∗

𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) , 𝐺

∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡)} .

(20)

Letting 𝑛 → ∞, since 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞, by Lemma 11,

(20), we have

min {𝐺∗
𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝜑 (𝑡)) , 𝐺

∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝜑 (𝑡))}

≥ min {1, 1, 1, 𝐺∗
𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) , 𝐺

∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡)} .

(21)

Hence,

min {𝐺
𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝜑
𝑛

(𝑡)) , 𝐺
𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝜑
𝑛

(𝑡))}

≥ min {𝐺
𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝜑
𝑛−1

(𝑡)) , 𝐺
𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝜑
𝑛−1

(𝑡))}

≥ ⋅ ⋅ ⋅ ≥ min {𝐺
𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝑡) , 𝐺

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝑡)} .

(22)

By Lemma 10, we have𝐺∗
𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗(𝑡) = 1 and𝐺∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗(𝑡) = 1

for all 𝑡 > 0. Thus 𝑇𝑥∗ = 𝑥∗.
Moreover, let 𝐴 be the set of fixed points of 𝑇; if for each

𝑥, 𝑦 ∈ 𝐴, we have 𝛼(𝑥, 𝑦, 𝑦, 𝑡) ≥ 1 for all 𝑡 > 0. Now, suppose
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that 𝑦∗ is another fixed point of 𝑇. Then 𝛼(𝑥∗, 𝑦∗, 𝑦∗, 𝑡) ≥ 1
for all 𝑡 > 0. Hence, by (13), we have

𝐺
∗

𝑥
∗
,𝑦
∗
,𝑦
∗ (𝜑
𝑛

(𝑡))

= 𝐺
∗

𝑇𝑥
∗
,𝑇𝑦
∗
,𝑇𝑦
∗ (𝜑
𝑛

(𝑡))

≥ 𝛼 (𝑥
∗

, 𝑦
∗

, 𝑦
∗

, 𝑡)

×min {𝐺∗
𝑥
∗
,𝑦
∗
,𝑦
∗ (𝜑
𝑛−1

(𝑡)) , 𝐺
∗

𝑥
∗
,𝑇𝑥
∗
,𝑇𝑥
∗ (𝜑
𝑛−1

(𝑡)) ,

𝐺
∗

𝑦
∗
,𝑇𝑦
∗
,𝑇𝑦
∗ (𝜑
𝑛−1

(𝑡)) , 𝐺
∗

𝑦
∗
,𝑇𝑦
∗
,𝑇𝑦
∗ (𝜑
𝑛−1

(𝑡)) ,

𝐺
∗

𝑥
∗
,𝑥
∗
,𝑇𝑥
∗ (𝜑
𝑛−1

(𝑡)) , 𝐺
∗

𝑦
∗
,𝑦
∗
,𝑇𝑦
∗ (𝜑
𝑛−1

(𝑡)) ,

𝐺
∗

𝑦
∗
,𝑦
∗
,𝑇𝑦
∗ (𝜑
𝑛−1

(𝑡))}

≥ min {𝐺∗
𝑥
∗
,𝑦
∗
,𝑦
∗ (𝜑
𝑛−1

(𝑡)) , 1, 1, 1, 1, 1, 1}

≥ 𝐺
∗

𝑥
∗
,𝑦
∗
,𝑦
∗ (𝜑
𝑛−1

(𝑡)) ≥ ⋅ ⋅ ⋅ ≥ 𝐺
∗

𝑥
∗
,𝑦
∗
,𝑦
∗ (𝑡) .

(23)

By Lemma 10, we get 𝑥∗ = 𝑦∗. This completes the proof.

Now, we present an example to illustrate Theorem 21.

Example 22. Let 𝑋 = [0, +∞] and Δ = Δ
𝑀
. Then Δ is a 𝑡-

norm of𝐻-type. Define 𝐺∗ : 𝑋 × 𝑋 × 𝑋 → 𝐷+ by

𝐺
∗

𝑥,𝑦,𝑧
(𝑡) = {

0, 𝑡 ≤ 0,

𝑒−max{|𝑥−𝑦|,|𝑦−𝑧|,|𝑥−𝑧|}/𝑡, 𝑡 > 0,
(24)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. We claim that (𝑋, 𝐺∗, Δ
𝑀
) is a Menger

PGM-space. In fact, (PGM− 1)-(PGM− 3) are easy to check.
Next, we prove that (PGM − 4) holds.

Suppose that 𝑡, 𝑠 > 0, 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, and Δ
𝑀
(𝐺∗
𝑥,𝑎,𝑎
(𝑡),

𝐺∗
𝑎,𝑦,𝑧
(𝑠)) = min{𝑒−|𝑥−𝑎|/𝑡, 𝑒−max{|𝑎−𝑦|,|𝑦−𝑧|,|𝑎−𝑧|}/𝑠} = 𝑒−|𝑥−𝑎|/𝑡.

Then we have (𝑠/𝑡)|𝑥 − 𝑎| ≥ max{|𝑎 − 𝑦|, |𝑦 − 𝑧|, |𝑎 − 𝑧|}
and so (𝑡 + 𝑠)/𝑡|𝑥 − 𝑎| = |𝑥 − 𝑎| + (𝑠/𝑡)|𝑥 − 𝑎| ≥ |𝑥 − 𝑎| +
max{|𝑎 − 𝑦|, |𝑦 − 𝑧|, |𝑎 − 𝑧|} ≥ max{|𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑥 − 𝑧|},
which implies that 𝐺∗

𝑥,𝑦,𝑧
(𝑡 + 𝑠) = 𝑒

−max{|𝑥−𝑦|,|𝑦−𝑧|,|𝑥−𝑧|}/(𝑡+𝑠)
≥

𝑒−|𝑥−𝑎|/𝑡 = Δ
𝑀
(𝐺∗
𝑥,𝑎,𝑎
(𝑡), 𝐺∗
𝑎,𝑦,𝑧
(𝑠)).

Similarly, if Δ
𝑀
(𝐺∗
𝑥,𝑎,𝑎
(𝑡), 𝐺∗
𝑎,𝑦,𝑧
(𝑠)) = 𝐺∗

𝑎,𝑦,𝑧
(𝑠), then we

also have 𝐺∗
𝑥,𝑦,𝑧
(𝑡 + 𝑠) = Δ

𝑀
(𝐺∗
𝑥,𝑎,𝑎
(𝑡), 𝐺∗
𝑎,𝑦,𝑧
(𝑠)). Hence,

(PGM − 4) holds. It is easy to prove that (𝑋, 𝐺∗, Δ
𝑀
) is

complete. Let 𝜑(𝑡) = 𝑡/2 for 𝑡 ∈ 𝑅+,

𝑇𝑥 =

{{

{{

{

𝑥

3
+
1

3
, 𝑥 ∈ [0, 2] ,

𝑥
2, 𝑥 ∈ (2,∞) ,

𝛼 (𝑥, 𝑦, 𝑧, 𝑡) = {
1, 𝑥, 𝑦, 𝑧 ∈ [0, 2] ,

0, otherwise.

(25)

It is not difficult to prove that 𝛼 and 𝑇 satisfy (i), (ii), and (iii)
of Theorem 21. Now, suppose that at least one of 𝑥, 𝑦, 𝑧 is in
(2,∞). Then 𝛼(𝑥, 𝑦, 𝑧, 𝑡) = 0 and so inequality (13) holds.

Hence, for 𝑥, 𝑦, 𝑧 ∈ [0, 2], we have 𝛼(𝑥, 𝑦, 𝑧, 𝑡) = 1 for all
𝑡 > 0. Then, for 𝑡 > 0, we have

𝐺
∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(
𝑡

2
)

= 𝑒
−(1/3)max{|𝑥−𝑦|,|𝑦−𝑧|,|𝑥−𝑧|}/(1/2)𝑡

= 𝑒
−(2/3)max{|𝑥−𝑦|,|𝑦−𝑧|,|𝑥−𝑧|}/𝑡

≥ 𝑒
−max{|𝑥−𝑦|,|𝑦−𝑧|,|𝑥−𝑧|}/𝑡

= 𝛼 (𝑥, 𝑦, 𝑧, 𝑡) 𝐺
∗

𝑥,𝑦,𝑧
(𝑡) .

(26)

Thus, all the conditions ofTheorem 21 are satisfied. Hence, 𝑇
has a unique fixed point in 𝑋. In fact, 𝑥 = 1/2 is the unique
fixed point of 𝑇 in𝑋.

Remark 23. Theorem 21 generalizes and extends
Theorem 4.2 in [16] and Theorems 3.5 and 3.6 in [17]
(take 𝛼(𝑥, 𝑦, 𝑧, 𝑡) ≡ 1 and 𝑡 > 0).

3. An Application

In this section, we will apply one of our main results to
investigate the existence of solutions for a class of integral
equations.

Consider the following class of integral equations:

𝑥 (𝑡) = ∫
𝑇
0

0

𝐾 (𝑡, 𝑠) 𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑥
0
(𝑡) , (27)

where 𝑡 ∈ 𝐼 = [0, 𝑇
0
], 𝑇
0
> 0, and 𝑥

0
: [0, 𝑇

0
] → 𝑅, 𝐾 :

[0, 𝑇
0
]
2

→ 𝑅+, and 𝑓 : [0, 𝑇
0
]
2

× 𝑅 → 𝑅+ are all continuous
functions.

Let 𝑋 = 𝐶([0, 𝑇
0
], 𝑅) be the set of all real continuous

functions defined on [0, 𝑇
0
].We define𝐺∗ : 𝑋×𝑋×𝑋 → 𝐷+

by

𝐺
∗

𝑥,𝑦,𝑧
(𝑡)

= 𝐻(𝑡 −max{ sup
𝑡∈[0,𝑇

0
]

𝑥 (𝑡) − 𝑦 (𝑡)
 , sup
𝑡∈[0,𝑇

0
]

𝑦 (𝑡) − 𝑧 (𝑡)
 ,

sup
𝑡∈[0,𝑇

0
]

|𝑥 (𝑡) − 𝑧 (𝑡)|}) ,

(28)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡 ∈ 𝑅. It is easy to verify that
(𝑋, 𝐺∗, Δ

𝑀
) is a complete Menger PGM-space.

Now, we define 𝑇 : 𝑋 → 𝑋 by 𝑇𝑥(𝑡) =

∫
𝑇
0

0
𝐾(𝑡, 𝑠)𝑓(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑥

0
(𝑡), for 𝑡 ∈ [0, 𝑇

0
] and we write

𝑥 ≤ 𝑦 if and only if 𝑥(𝑡) ≤ 𝑦(𝑡) for all 𝑡 ∈ [0, 𝑇
0
]. Then, 𝑥 is a

solution of (27) if and only if it is a fixed point of 𝑇.
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Theorem 24. Suppose that the following hypotheses hold:

(i) 𝑓(𝑡, 𝑠, ⋅) is nondecreasing and 𝜑 : 𝑅+ → 𝑅+ is a
strictly increasing function such that 𝜑−1({0}) = {0}
and ∑∞

𝑛=1
𝜑
𝑛
(𝑡) < +∞ for any 𝑡 > 0;

(ii) one of the following conditions is satisfied:

(a) for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦, and 𝜀 > 0, we have

sup
𝑡∈[0,𝑇0]

∫
𝑇
0

0

𝐾 (𝑡, 𝑠) [𝑓 (𝑡, 𝑠, 𝑦 (𝑠)) − 𝑓 (𝑡, 𝑠, 𝑥 (𝑠))] 𝑑𝑠 < 𝜑 (𝜀) ,

𝑤ℎ𝑒𝑛𝑒V𝑒𝑟 sup
𝑡∈[0,𝑇

0
]

[𝑦 (𝑡) − 𝑥 (𝑡)] < 𝜀;

(29)

(b) there exists a continuous function 𝐿 : [0, 𝑇
0
]
2

→

𝑅+ such that

𝜀

𝑇
0

+ 𝐾 (𝑡, 𝑠) [𝑓 (𝑡, 𝑠, V) − 𝑓 (𝑡, 𝑠, 𝑢)] ≤
𝜑 (𝜀)

𝑇
0

+ 𝐿 (𝑡, 𝑠) (V − 𝑢) ,

∀𝑢, V ∈ 𝑅, 𝑢 ≤ V, 𝑡, 𝑠 ∈ [0, 𝑇
0
] ;

(30)

(iii) sup
𝑡∈[0,𝑇

0
]
∫
𝑇
0

0
𝐿(𝑡, 𝑠)𝑑𝑠 ≤ 1.

Then the integral equation (27) has a solution in 𝑋.

Proof. Since Δ = Δ
𝑀
, Δ is a 𝑡-norm of 𝐻-type and Δ ≥ Δ

1
.

Let

𝛼 (𝑥, 𝑦, 𝑧, 𝑡) = {
1, 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑥 ≤ 𝑦 ≤ 𝑧,

0, otherwise.
(31)

If 𝑥, 𝑦, 𝑧 ∈ 𝑋, for all 𝑡 > 0, 𝛼(𝑥, 𝑦, 𝑧, 𝑡) ≥ 1, then
𝑥 ≤ 𝑦 ≤ 𝑧. Since 𝑓(𝑡, 𝑠, ⋅) is nondecreasing, we have
𝑇𝑥 ≤ 𝑇𝑦 ≤ 𝑇𝑧. Hence, 𝛼(𝑇𝑥, 𝑇𝑦, 𝑇𝑧, 𝑡) ≥ 1. Thus, 𝑇 is
generalized 𝛼-admissible. Let 𝑦

0
= 𝑥
0
∈ 𝑋. Then 𝑦

0
≤ 𝑇𝑦
0
.

Hence, 𝛼(𝑦
0
, 𝑦
0
, 𝑇𝑦
0
, 𝑡) ≥ 1 and 𝛼(𝑦

0
, 𝑇𝑦
0
, 𝑇𝑦
0
, 𝑡) ≥ 1 for

all 𝑡 > 0. Suppose that {𝑦
𝑛
} is a sequence in 𝑋 such that

𝛼(𝑦
𝑛
, 𝑦
𝑛+1
, 𝑦
𝑛+1
, 𝑡) ≥ 1 and 𝛼(𝑦

𝑛
, 𝑦
𝑛
, 𝑦
𝑛+1
, 𝑡) ≥ 1 for all 𝑛 ∈ 𝑁,

𝑡 > 0, and 𝑦
𝑛
→ 𝑦. Then 𝑦

0
≤ 𝑦
1
≤ ⋅ ⋅ ⋅ ≤ 𝑦

𝑛
≤ 𝑦
𝑛+1
≤ ⋅ ⋅ ⋅ ≤

𝑦. Thus, 𝛼(𝑦
𝑛
, 𝑦
𝑛
, 𝑦, 𝑡) ≥ 1 and 𝛼(𝑦

𝑛
, 𝑦, 𝑦, 𝑡) ≥ 1 for all 𝑛 ∈ 𝑁

and 𝑡 > 0.
We now prove that𝐺∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(𝜑(𝜀)) ≥ 𝛼(𝑥, 𝑦, 𝑧, 𝜀)𝐺∗

𝑥,𝑦,𝑧
(𝜀),

for 𝜀 > 0. Suppose that 𝑥 ≰ 𝑦 or 𝑦 ≰ 𝑧. Then 𝛼(𝑥, 𝑦, 𝑧, 𝜀) = 0.
Hence, the above inequality holds.

If 𝑥 ≤ 𝑦 ≤ 𝑧, then 𝛼(𝑥, 𝑦, 𝑧, 𝜀) = 1 for all 𝜀 > 0. Here we
distinguish two cases.

Case (a). If max{sup
𝑡∈[0,𝑇

0
]
[𝑦(𝑡) − 𝑥(𝑡)], sup

𝑡∈[0,𝑇
0
]
[𝑧(𝑡) −

𝑦(𝑡)], sup
𝑡∈[0,𝑇

0
]
[𝑧(𝑡) − 𝑥(𝑡)]} ≥ 𝜀, then 𝐺∗

𝑇𝑥,𝑇𝑦,𝑇𝑧
(𝜑(𝜀)) ≥ 0 =

𝛼(𝑥, 𝑦, 𝑧, 𝜀)𝐺∗
𝑥,𝑦,𝑧
(𝜀).

If max{sup
𝑡∈[0,𝑇

0
]
[𝑦(𝑡) − 𝑥(𝑡)], sup

𝑡∈[0,𝑇
0
]
[𝑧(𝑡) − 𝑦(𝑡)],

sup
𝑡∈[0,𝑇

0
]
[𝑧(𝑡) − 𝑥(𝑡)]} < 𝜀, then we have sup

𝑡∈[0,𝑇
0
]
[𝑦(𝑡) −

𝑥(𝑡)] < 𝜀, sup
𝑡∈[0,𝑇

0
]
[𝑧(𝑡) − 𝑦(𝑡)] < 𝜀, and sup

𝑡∈[0,𝑇
0
]
[𝑧(𝑡) −

𝑥(𝑡)] < 𝜀. By (ii), we get sup
𝑡∈[0,𝑇

0
]
[𝑇𝑦(𝑡) − 𝑇𝑥(𝑡)] < 𝜑(𝜀),

sup
𝑡∈[0,𝑇

0
]
[𝑇𝑧(𝑡) − 𝑇𝑦(𝑡)] < 𝜑(𝜀), and sup

𝑡∈[0,𝑇
0
]
[𝑇𝑧(𝑡) −

𝑇𝑥(𝑡)] < 𝜑(𝜀). Hence, 𝐺∗
𝑇𝑥,𝑇𝑦,𝑇𝑧

(𝜑(𝜀)) = 1 = 𝛼(𝑥, 𝑦, 𝑧, 𝜀)

𝐺∗
𝑥,𝑦,𝑧
(𝜀).

Case (b). For any 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦, and 𝜀 > 0, we have

𝜀 + sup
𝑡∈[0,𝑇0]

𝑇𝑦 (𝑡) − 𝑇𝑥 (𝑡)

= ∫
𝑇
0

0

𝜀

𝑇
0

𝑑𝑠

+ sup
𝑡∈[0,𝑇0]

∫
𝑇
0

0

𝐾 (𝑡, 𝑠) (𝑓 (𝑡, 𝑠, 𝑦 (𝑠)) − 𝑓 (𝑡, 𝑠, 𝑥 (𝑠))) 𝑑𝑠

= sup
𝑡∈[0,𝑇0]

∫
𝑇
0

0

𝜀

𝑇
0

+ 𝐾 (𝑡, 𝑠) [𝑓 (𝑡, 𝑠, 𝑦 (𝑠)) − 𝑓 (𝑡, 𝑠, 𝑥 (𝑠))] 𝑑𝑠

≤ sup
𝑡∈[0,𝑇0]

∫
𝑇
0

0

𝜑 (𝜀)

𝑇
0

+ 𝐿 (𝑡, 𝑠) [𝑦 (𝑠) − 𝑥 (𝑠)] 𝑑𝑠

≤ 𝜑 (𝜀) + sup
𝑡∈[0,𝑇0]

[𝑦 (𝑡) − 𝑥 (𝑡)] sup
𝑡∈[0,𝑇0]

∫
𝑇
0

0

𝐿 (𝑡, 𝑠) 𝑑𝑠

≤ 𝜑 (𝜀) + sup
𝑡∈[0,𝑇0]

[𝑦 (𝑡) − 𝑥 (𝑡)] .

(32)

Hence, 𝜑(𝜀)− sup
𝑡∈[0,𝑇

0
]
[𝑇𝑦(𝑡)−𝑇𝑥(𝑡)] ≥ 𝜀− sup

𝑡∈[0,𝑇
0
]
[𝑦(𝑡)−

𝑥(𝑡)], for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦, and 𝜀 > 0. Then,

𝜑 (𝜀)−max
{

{

{

sup
𝑡∈[0,𝑇0]

[𝑇𝑦 (𝑡)− 𝑇𝑥 (𝑡)] , sup
𝑡∈[0,𝑇0]

[𝑇𝑧 (𝑡)− 𝑇𝑦 (𝑡)] ,

sup
𝑡∈[0,𝑇0]

[𝑇𝑧 (𝑡) − 𝑇𝑥 (𝑡)]
}

}

}

≥ 𝜀 −max
{

{

{

sup
𝑡∈[0,𝑇0]

[𝑦 (𝑡) − 𝑥 (𝑡)] , sup
𝑡∈[0,𝑇

0
]

[𝑧 (𝑡) − 𝑦 (𝑡)] ,

sup
𝑡∈[0,𝑇

0
]

[𝑧 (𝑡) − 𝑥 (𝑡)]
}

}

}

,

(33)

where 𝑥 ≤ 𝑦 ≤ 𝑧. Thus, 𝐺∗
𝑇𝑥,𝑇𝑦,𝑇𝑧

(𝜑(𝜀)) ≥ 𝛼(𝑥, 𝑦, 𝑧, 𝜀)

𝐺∗
𝑥,𝑦,𝑧
(𝜀), for 𝜀 > 0.

In all case, we obtain 𝐺∗
𝑇𝑥,𝑇𝑦,𝑇𝑧

(𝜑(𝑡)) ≥ 𝛼(𝑥, 𝑦, 𝑧, 𝑡)

𝐺∗
𝑥,𝑦,𝑧
(𝑡) ≥ 𝛼(𝑥, 𝑦, 𝑧, 𝑡)𝑈

𝑥,𝑦,𝑧
(𝑡), for all 𝑡 > 0, where𝑈

𝑥,𝑦,𝑧
(𝑡) is

the same as the one in Definition 20. Thus, all the required
conditions of Theorem 21 are satisfied. Therefore, 𝑇 has a
fixed point 𝑥∗ ∈ 𝑋; that is, 𝑥∗ is a solution of the integral
equation (27).
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